Learning Where to Look:
Reliable Certificates Under Scarce Ground Truth

Gautam Dasarathy

Arizona State University | Amazon
http://gautamdasarathy.com

CNI Seminar, lISc
November 2025


http://gautamdasarathy.com

Learning Where to Look:
Reliable Certificates Under Scarce Ground Truth

Or

Label-efficient Two-Sample Testing

Gautam Dasarathy

Arizona State University | Amazon
http://gautamdasarathy.com

CNI Seminar, lISc
November 2025


http://gautamdasarathy.com

Can Digital Tests Stand in for PET Scans?




Can Digital Tests Stand in for PET Scans?

You invent a new digital test
for Alzheimer’s.



Can Digital Tests Stand in for PET Scans?

You invent a new digital test PET scan measuring
for Alzheimer’s. amyloid build up



Can Digital Tests Stand in for PET Scans?

You invent a new digital test PET scan measuring
for Alzheimer’s. amyloid build up

cheap, scalable costly, invasive



Can Digital Tests Stand in for PET Scans?

You invent a new digital test PET scan measuring
for Alzheimer’s. amyloid build up
cheap, scalable costly, invasive

s this any good?
Do the digital test distributions differ between high- and low-amyloid groups?
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Two-sample testing: Given samples X, ..., X, ~ P (high-amyloid) and Y|, ..., Y, ~ Q

m

(low-amyloid), Test: Hy : P=Q vs H; : P # Q
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Modern era

Gosset (1908)

Wald-Wolfowitz (1940s) Friedman-Rafsky (1979)



Setting Up The Two Sample Testing Problem



Setting Up The Two Sample Testing Problem

Given: X,...,X, ~PandY,,...,Y, ~ Q (iid). Perform the following hypothesis test



Setting Up The Two Sample Testing Problem

Given: X,...,X, ~PandY,,...,Y, ~ Q (iid). Perform the following hypothesis test

Hy:P=0
H,:P#Q



Setting Up The Two Sample Testing Problem

Given: X,...,X, ~PandY,,...,Y, ~ Q (iid). Perform the following hypothesis test

Hy:P=0
H,:P#Q

We usually compute a statistic from the data, and reject H,, if the value is too extreme



Setting Up The Two Sample Testing Problem

Given: X;,...,.X ~PandY,,....,Y ~ QO (iid). Perform the following hypothesis test
1 m 1 n g nyp

Hy:P=0
H,:P#Q

We usually compute a statistic from the data, and reject H,, if the value is too extreme

test statistic distribution under
Hyand H,



Setting Up The Two Sample Testing Problem

Given: X;,...,.X ~PandY,,....,Y ~ QO (iid). Perform the following hypothesis test
1 m 1 n g nyp

Hy:P=0
H,:P#Q

We usually compute a statistic from the data, and reject H,, if the value is too extreme

| \*

test statistic distribution under
Hyand H,



Setting Up The Two Sample Testing Problem

Given: X;,...,.X ~PandY,,....,Y ~ QO (iid). Perform the following hypothesis test
1 m 1 n g nyp

Hy:P=0
H,:P#Q

We usually compute a statistic from the data, and reject H,, if the value is too extreme

test statistic distribution under
Hyand H,



Classical Two Sample Test in Action: Friedman-Rafsky

[
[ ]
°
e® o
o %
[
° o8 e o
.o.oo‘ R .: 8
0 * T e’ oo et
“ c® ° o Py °
o" ® ° °
¢ _° * Yo, e
g ° ® ®
P ..Q.‘. s : .‘..'
g %o g ¢ *
o, ®



Classical Two Sample Test in Action: Friedman-Rafsky

e °
°
° : *
° e o
o) e® o °
® e e 4 © )
° ® . :. ... .... ™ .
® °
o e oo ®e® .0.0 .:...°o ¢
® o ® o o) °, . e ° ; ® [
. 0‘00 .o. wo . e, . her "’. :
“ cw e o ,° o o °
° o 4» ® ° & ®e
° '® o ¢ 0o ,® o o o ° o o
® ‘ LY e © ® ‘.f .:.‘
[ ~.. ...‘ .$ Y .. ® o © ° °®
. ° ..0.0. Q: e & e ‘o. e % .
™Y P .‘ ¢ : ... P b : ‘ ®
® o o o ® o . o o
° e °
o® °

Friedman, Jerome H., and Lawrence C. Rafsky. "Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests."
The Annals of Statistics (1979): 697-717.
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Classical Two Sample Test in Action: Friedman-Rafsky

Theorem 1 (FR "79) The normalized cut-edge count R is asymptotically normal under H; ; it's
mean and variance have analytical expressions —> can construct a permutation test

Theorem 2 (HP “99) The FR test is consistent. In particular R/m+n — ¢ [1 — D, (PllQ)]

Friedman, Jerome H., and Lawrence C. Rafsky. "Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests."
The Annals of Statistics (1979): 697-717.
Henze, Norbert, and Mathew D. Penrose. "On the multivariate runs test." Annals of statistics (1999): 290-298.
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The Catch:
Group Memberships are Often Expensive to Determine

Back to our example: validating digital biomarkers for AD

Mild cognitive Alzheimer's
impairment disease

You invent a new digital test PET scan measuring
for Alzheimer’s. amyloid build up
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The Catch:

Group Memberships are Often Expensive to Determine
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Digital health
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digital health data easy;
lab tests expensive

Financial Fraud Detection
transactions features easy to obtain;
classifying is expensive
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Active Querying for Two-Sample Testing

high amyloid group
Active
selection
Qe A % reveal amyloid .
| sampiing amount by PET scans

a population very expensive!
of digital test only need a

results limited number

cheap low amyloid group

Idea: Carefully (and adaptively) select digital test results (features) and query their group
memberships (i.e., PET scans)

11
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A New Two-Sample Testing Problem

Given a large population of sample features and a limited labeling (group-
membership ascertaining) budget, our goal is to develop a label-efficient
two-sample test to determine whether the two samples are drawn from the

same or different distributions.
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A Different Perspective on Two-Sample Testing

Data Model

fZ=1,S~P
Z ~ Ber(9) > £ Z=0.8~0 > (S5,7)

The two-sample testing problem can be recast as an independence test here.

Hy:pS|1Z=0)=pS|Z=1orS1LZ
H :plS|Z=0)#plS|Z=1)orSLZ
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Without Further Ado: The Bimodal Query Algorithm

Bimodal Query Algorithm

1. Construct a training set: Randomly select a set of features and reveal
their labels

2. Classifier training: Train a binary classifier using the training set to
obtain P(Z | ), an estimate of the conditional label probability.

3. Bimodal Query: using the rest of the label budget, query the labels
corresponding to high P(Z =0 |S) and P(Z= 1| 5) — the modes!

4. Two-sample testing: Construct a two-sample test (e.g., FR test) on the
resulting two samples
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What does this really do?

Theorem (LKSRDB 24/LDRB 22). Assuming an appropriate
classifier (e.g., KNN) is used, then under H,, the distribution of

features s selected by the bimodal query converges to p*(s)-- the
distribution that makes the FR statistic maximally powered.
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Theorem (LKSRDB 24/LDRB 22). Assuming an appropriate
classifier (e.g., KNN) is used, then under H,, the distribution of

features s selected by the bimodal query converges to p*(s)-- the
distribution that makes the FR statistic maximally powered.

Proof 1dea:

o We first show a structural result: the FR statistic (R/n) converges to a function
of JP(Z = 0[5)p(Z = 1]5)dp(S).

* We then show that this function is minimized (asymptotically) by our Bimodal
Query. LP in p(s) —> optima at extremes, roughly.

Li, W, Kadambi, P, Saidi, P, Ramamurthy, K, GD, and Berisha, V. "Active Sequential Two-Sample Testing." Transactions on Machine Learning Research (2024).
Li, GD, Ramamurthy, Berisha, “A Label-Efficient Two-Sample Test”. Uncertainty in Al (2022)
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p(S | Z=1) are identical. Consequently our procedure (built on,
say FR) controls the Type I error at the specified level.
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Theorem 2 (LKSRDB 24). Under Hy, p(S | Z = 0) and

p(S | Z=1) are identical. Consequently our procedure (built on,
say FR) controls the Type I error at the specified level.

Li, W, Kadambi, P, Saidi, P, Ramamurthy, K, GD, and Berisha, V. "Active Sequential Two-Sample Testing." Transactions on Machine Learning Research (2024).
Li, GD, Ramamurthy, Berisha, “A Label-Efficient Two-Sample Test”. Uncertainty in Al (2022)
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Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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Sequential Two Sample Testing

e Label acq can be done sequentially

e Maintain a running test-statistic

e Produces anytime-valid p-values — Type-I
control holds even under adaptive stopping

 Enables early stopping once evidence is
sufficient

o Test statistic converges to mutual
information between features and group
labels

e In practice: similar power with fewer queried
verifications
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Sequential Two Sample Testing Active Matched Pair Experiment Design
e Label acq can be done sequentially e Same principle: query / enroll where
e Maintain a running test-statistic information gain is highest
e  Produces anytime-valid p-values — Type-I * Actively select pairs (treatment—control)
control holds even under adaptive stopping from covariate space
e Enables early stopping once evidence is e Target regions of large predicted treatment
sufficient effect
e Test statistic converges to mutual * Guarantee: enrolled region encloses true
information between features and group responder set
labels  Achieves provably early detection of
e In practice: similar power with fewer queried heterogeneous effects
verifications  Retains valid Type-I inference while

improving sample efficiency

Extends classical sequential testing Bridges testing and design: both are
(a la Wald) to nonparametric, label- adaptive inference under verification
limited settings. constraints.

Li, W, Kadambi, P., Saidi, P., Ramamurthy, K, N., GD, and Berisha, Visar. "Active Sequential Two-Sample Testing." Transactions on Machine Learning Research (2024).
Li W, GD, Berisha, V., Matched-Pair Experiment Design with Active Learning. arXiv:2509.10742v2 (2025)
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e Proposed a novel "active” algorithm that is:
e asymptotically valid (Type | Error is correct)
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e Not discussed (in detail) today
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e A new take on a classical hypothesis testing problem: Label Efficient Two-
Sample Tests.

I//

e Proposed a novel "active” algorithm that is:
e asymptotically valid (Type | Error is correct)
* consistent

e provably better than passive sampling

e Not discussed (in detail) today
e Sequential (active) version, where one does testing sequentially
e \WWe adapt Wald-esque SPRT to create an anytime valid sequential test
 Provably consistent and better than passive sequential counterparts
e Cohort enrichment + Matched-Pair experiment design:
e Find a sub-group with significant effect
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Takeaways

e A new take on a classical hypothesis testing problem: Label Efficient Two-
Sample Tests.
e Proposed a novel "active” algorithm that is:

e asymptotically valid (Type | Error is correct) https://gautamdasarathy.com
e consistent
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e provably better than passive sampling
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e Not discussed (in detail) today
e Sequential (active) version, where one does testing sequentially
e \WWe adapt Wald-esque SPRT to create an anytime valid sequential test
 Provably consistent and better than passive sequential counterparts
e Cohort enrichment + Matched-Pair experiment design:
e Find a sub-group with significant effect
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