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Is this any good?  
Do the digital test distributions differ between high- and low-amyloid groups?
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Can Digital Tests Stand in for PET Scans? 

Same or different  
distributions?

high amyloid group

low amyloid group

test  
results

good stand in

bad stand in

Two-Sample           
Testing        

Two-sample testing: Given samples  (high-amyloid) and  
(low-amyloid), Test: 

X1, …, Xm ∼ P Y1, …, Yn ∼ Q
H0 : P = Q vs H1 : P ≠ Q
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Digital health  
sensor validation

Fraud intervention  
efficacy

Model Monitoring / ML OPs: 
data drift relative to training?
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2ST: More than a Century of Data-Driven Science

Gosset (1908)

Wald-Wolfowitz (1940s) Friedman-Rafsky (1979)

Modern era
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Given:  and  (iid). Perform the following hypothesis testX1, …, Xm ∼ P Y1, …, Yn ∼ Q

                               
H0 :P = Q
H1 :P ≠ Q

 
We usually compute a statistic from the data, and reject  if the value is too extremeH0

test statistic distribution under  
 and H0 H1

Type I error ( ) 
reject  when it is true

α
H0

Type II error ( ) 
fail to reject  when  true

β
H0 H1
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Friedman, Jerome H., and Lawrence C. Rafsky. "Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests." 
The Annals of Statistics (1979): 697-717.
Henze, Norbert, and Mathew D. Penrose. "On the multivariate runs test." Annals of statistics (1999): 290-298.

Theorem 1 (FR `79) The normalized cut-edge count  is asymptotically normal under  ; it’s 
mean and variance have analytical expressions —> can construct a permutation test 

R H0

Theorem 2 (HP `99) The FR test is consistent. In particular  

 

R /m + n → c [1 − Df (P∥Q)]
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You invent a new digital test 
for Alzheimer’s. 

 

PET scan measuring 
amyloid build up 

Back to our example: validating digital biomarkers for AD
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Digital health  
sensor validation

Financial Fraud Detection

Model Monitoring / ML OPs: 
data drift relative to training?

transactions features easy to obtain;  
classifying is expensive

digital health data easy;  
lab tests expensive

model outputs/perf easy;  
post-deploy groundtruth hard

The Catch:  
Group Memberships are Often Expensive to Determine
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Active Querying for Two-Sample Testing

high amyloid group

low amyloid group

reveal amyloid  
amount by PET scans

a population 
of digital test 

results 
cheap

very expensive!

exhaustive/
random 

samplingX
Active  

selection

only need a 
limited number

Idea: Carefully (and adaptively) select digital test results (features) and query their group 
memberships (i.e., PET scans)
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A New Two-Sample Testing Problem

Given a large population of sample features and a limited labeling (group-
membership ascertaining) budget, our goal is to develop a label-efficient 
two-sample test to determine whether the two samples are drawn from the 
same or different distributions.
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Z ∼ Ber(θ)      
If Z = 1, S ∼ P
If Z = 0, S ∼ Q

(S, Z)

Data Model

The two-sample testing problem can be recast as an independence test here.  

 
 

H0 : p(S ∣ Z = 0) = p(S ∣ Z = 1) or S ⊥⊥ Z
H1 : p(S ∣ Z = 0) ≠ p(S ∣ Z = 1) or S ⊥⊥ Z/
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Bimodal Query Algorithm

1. Construct a training set: Randomly select a set of features and reveal 
their labels 

2. Classifier training: Train a binary classifier using the training set to 
obtain , an estimate of the conditional label probability. ̂P(Z ∣ S)

3. Bimodal Query: using the rest of the label budget, query the labels 
corresponding to high  and  — the modes! ̂P(Z = 0 ∣ S) ̂P(Z = 1 ∣ S)

4. Two-sample testing: Construct a two-sample test (e.g., FR test) on the 
resulting two samples
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Theorem (LKSRDB 24/LDRB 22). Assuming an appropriate 
classifier (e.g., KNN) is used, then under , the distribution of 
features  selected by the bimodal query converges to -- the 
distribution that makes the FR statistic maximally powered.  

H1
s p*(s)
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Proof idea:

• We first show a structural result: the FR statistic ( ) converges to a function 

of . 

R /n

∫ p(Z = 0 |S)p(Z = 1 |S)dp(S)

• We then show that this function is minimized (asymptotically) by our Bimodal 
Query. LP in p(s) —> optima at extremes, roughly. 
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Active Matched Pair Experiment Design

• Same principle: query / enroll where 
information gain is highest

• Actively select pairs (treatment–control)      
from covariate space

• Target regions of large predicted treatment      
effect

• Guarantee: enrolled region encloses true 
responder set

• Achieves provably early detection of 
heterogeneous effects

• Retains valid Type-I inference while  
improving sample efficiency

Bridges testing and design: both are 
adaptive inference under verification 
constraints.
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