Research Talk

Efficient Solutions for Machine Learning at the Edge

Saurav Prakash

Assistant Professor

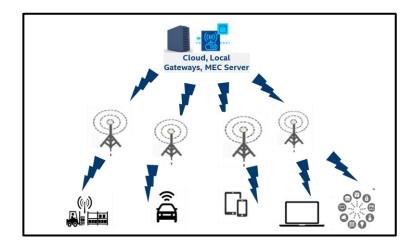
Electrical Engineering, IIT Madras

Motivation: AI/ML over Mobile Edge is Gaining Momentum

 Emerging 6G and beyond client/edge devices capable of sensing, collecting, and processing data locally.

Data is born at the edge!

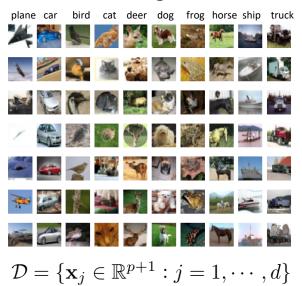
- Privacy, latency, bandwidth and scalability concerns drive local processing of information
- Rich compute, communication, sensing and storage resources in 6G and beyond networks suited for ondevice Al and ML, like personalized healthcare



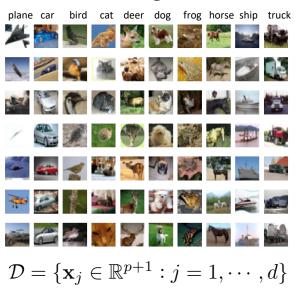
Wireless Mobile Edge

How to enable AI/ML applications at such a massive scale?

➤ Machine learning

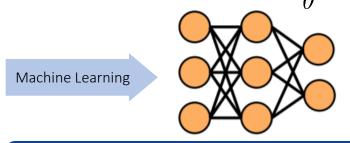


➤ Machine learning



Machine Learning

➤ Machine learning



Problem:
$$\theta^* = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^p} \left(\frac{1}{|\mathcal{D}|} \sum_{\mathbf{x} \in \mathcal{D}} \ell\left(\theta; \mathbf{x}\right) + \lambda R(\theta) \right)$$
Iterative updates: $\theta^{(t+1)} = \theta^{(t)} - \eta_t \left(\frac{1}{|\mathcal{D}|} \mathbf{g} + \lambda \nabla R\left(\theta^t\right) \right)$

$$\mathbf{g} = \sum_{\mathbf{x} \in \mathcal{D}} \nabla \ell\left(\theta^{(t)}; \mathbf{x}\right)$$

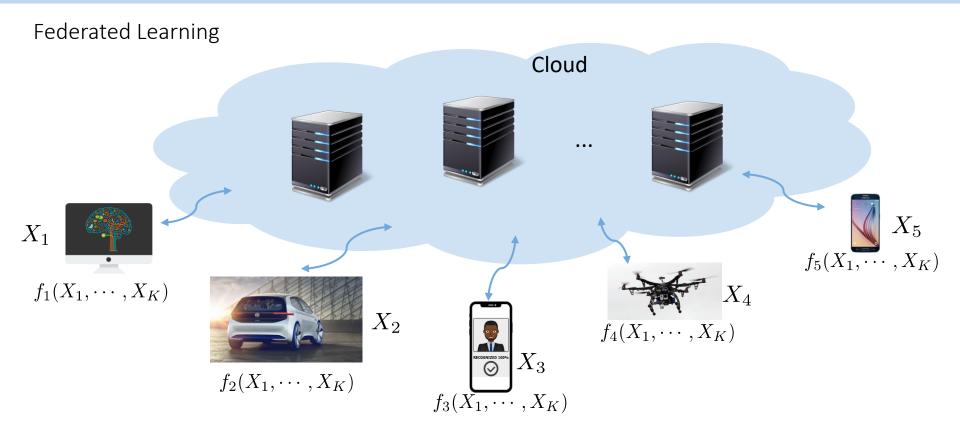
Distributed Machine Learning

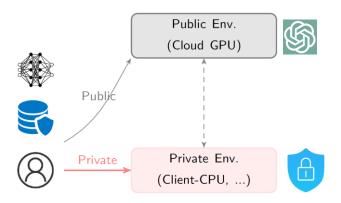
- ➤ Data-set *D* distributedly stored at the cloud
- > Training via Gradient Descent

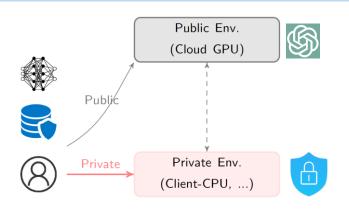
$$\theta^{(t+1)} = \theta^{(t)} - \eta_t \left(\frac{1}{|\mathcal{D}|} \mathbf{g} + \lambda \nabla R \left(\theta^t \right) \right)$$

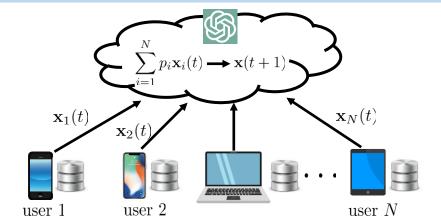
$$\mathcal{D} = \begin{array}{c} \mathcal{D}_1 \\ \mathcal{D}_2 \\ \mathcal{D}_3 \end{array}$$

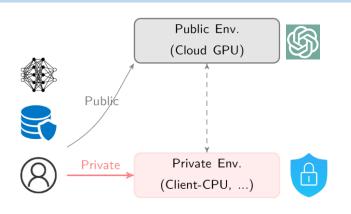
$$\mathbf{g}_1 \begin{array}{c} \mathbf{g}_3 \\ \mathbf{g}_2 \\ \mathcal{D}_3 \end{array}$$

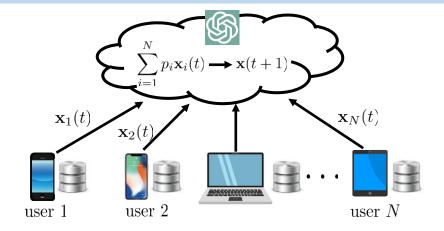










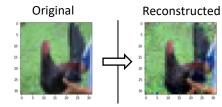


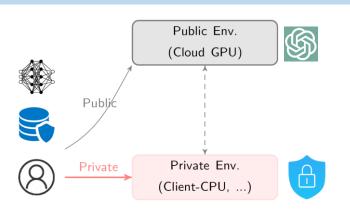
Fundamental Challenges of Edge AI/ML

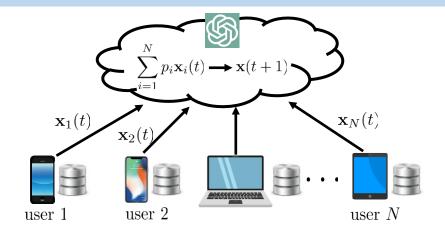
Resource constraints and heterogeneity

Errors and malicious clients

Data leakage through models Model Inversion







Fundamental Challenges of Edge AI/ML

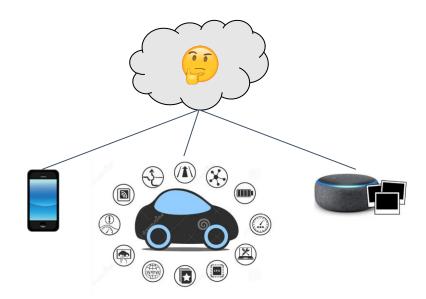
Resource constraints and heterogeneity

Errors and malicious clients

Data leakage through models

Model Inversion

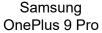
How to enable Efficient, Robust and Trustworthy solutions for Edge AI/ML?



How to efficiently and effectively train large DNN over resource-constrained edge devices?

Key challenges

- 1. Limited memory and computation (no GPU accelerator)
- 2. Limited bandwidth and unstable wireless communication
- Unfair to exclude clients due to limited resources



256 GB

Xiaomi Redmi Note

128 GB

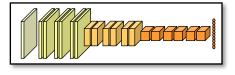
Motorola Moto G Power

64 GB

The conventional assumption of 'homogeneous' and 'powerful' clients does not hold!!

Samsung OnePlus 9 Pro

256 GB

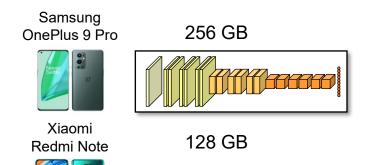


Xiaomi Redmi Note

128 GB

The conventional assumption of 'homogeneous' and 'powerful' clients does not hold!!

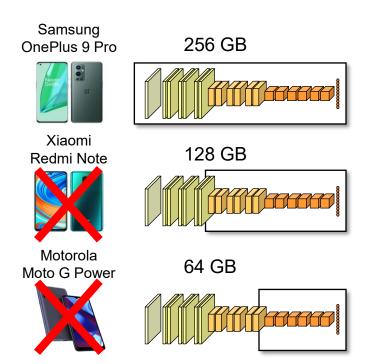
Motorola Moto G Power



The conventional assumption of 'homogeneous' and 'powerful' clients does not hold!!

What happens when model is so large?

 Small and weak devices cannot even hold the whole model in their memory space!



The conventional assumption of 'homogeneous' and 'powerful' clients does not hold!!

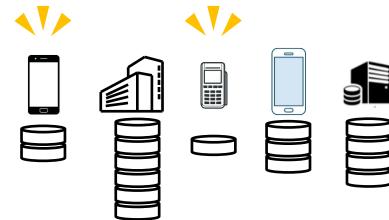
What happens when model is so large?

 Small and weak devices cannot even hold the whole model in their memory space!

Goal: Enable Weak Client Participation in FL

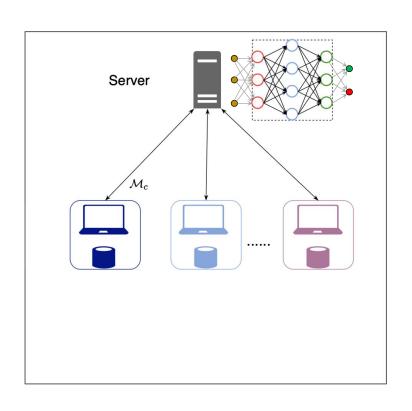
• We consider **weak clients** that cannot effectively train the full model on its own.

- > Limited memory space
- ➤ Too weak compute power

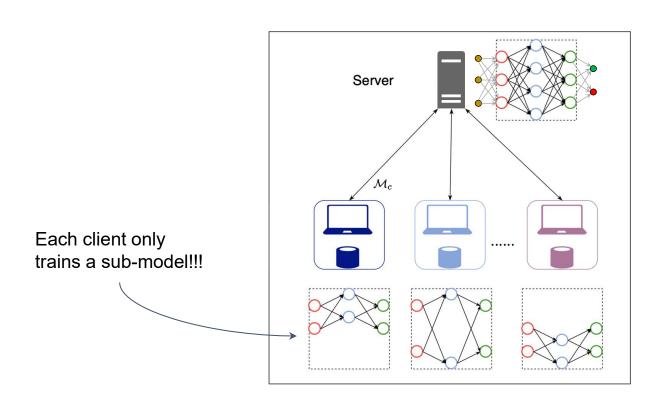


To utilize distributed data in the real-world, we should make all available devices participate in the training!

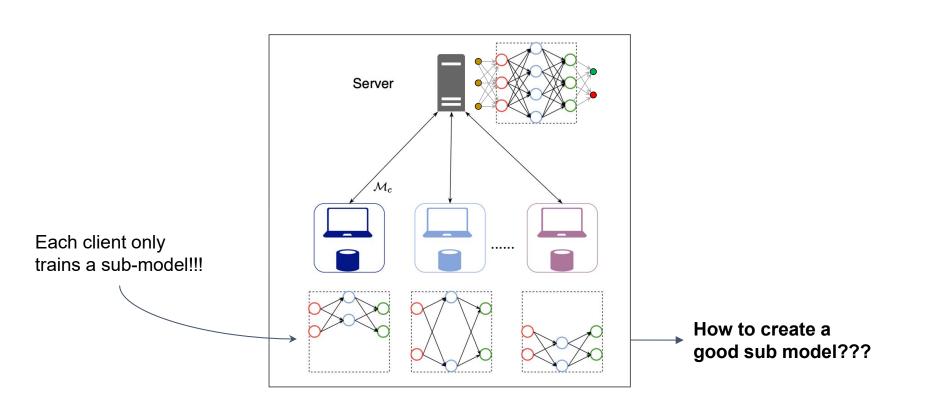
Idea: Sub-Model Training



Idea: Sub-Model Training

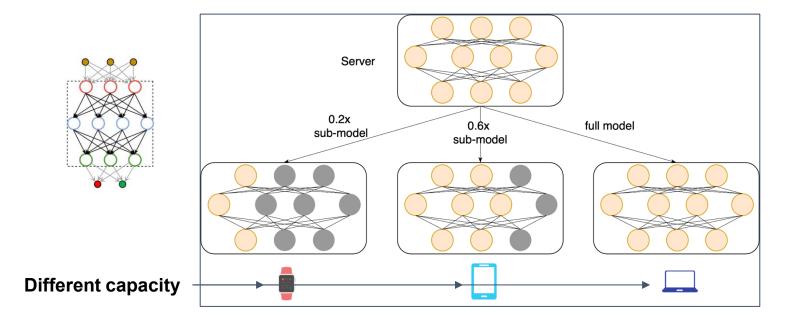


Idea: Sub-Model Training



Related Works on Sub-Model Training

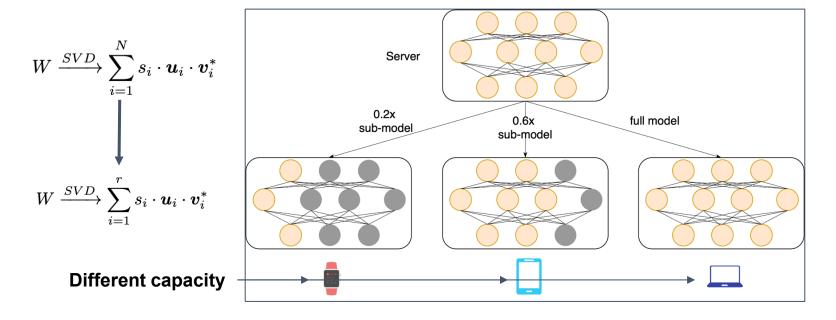
FjORD[1], HeteroFL[2], et al



- [1] Horvath, S., etal. Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout. In NeurIPS, 2021.
- [2] Diao, E., et al, HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients. In ICLR 2021.

Related Works on Low-Rank Training

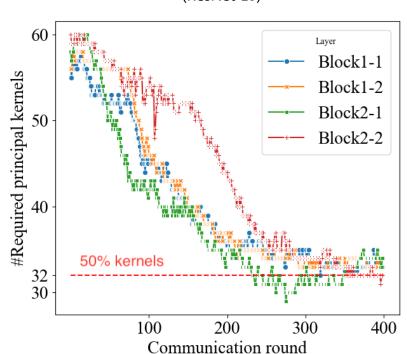
FedHM[3], et al



[3] Yao, D., et al. Fedhm: Efficient federated learning for heterogeneous models via low-rank factorization. arXiv preprint arXiv:2111.14655, 2021.

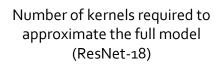
But ... low-rank compression at clients is not enough

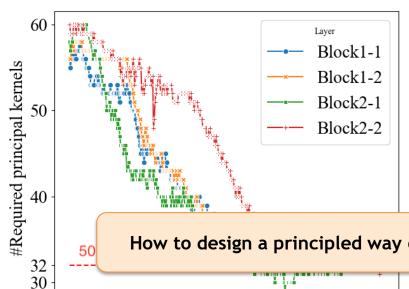
Number of kernels required to approximate the full model (ResNet-18)



Low rank structure is **gradually attained**, a **single low-rank model** incurs **severe reduction** in **model capacity**.

But ... low-rank compression at clients is not enough





Low rank structure is **gradually attained**, a **single low-rank model** incurs **severe reduction** in **model capacity**.

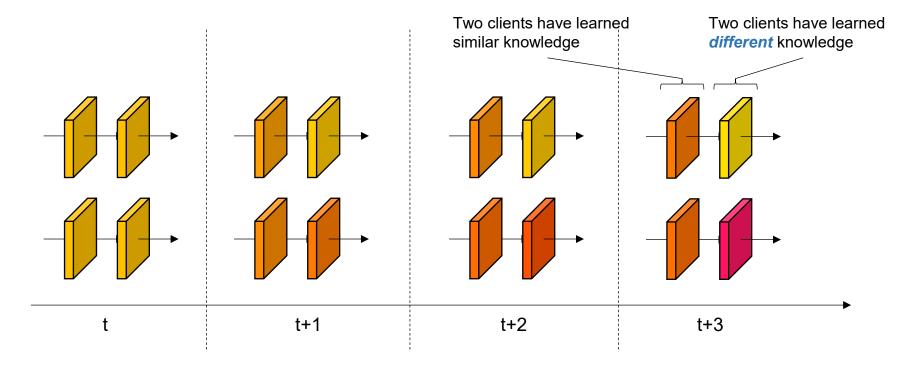
How to design a principled way of splitting and utilizing the 'weak' clients?

100 200 300 400

Communication round

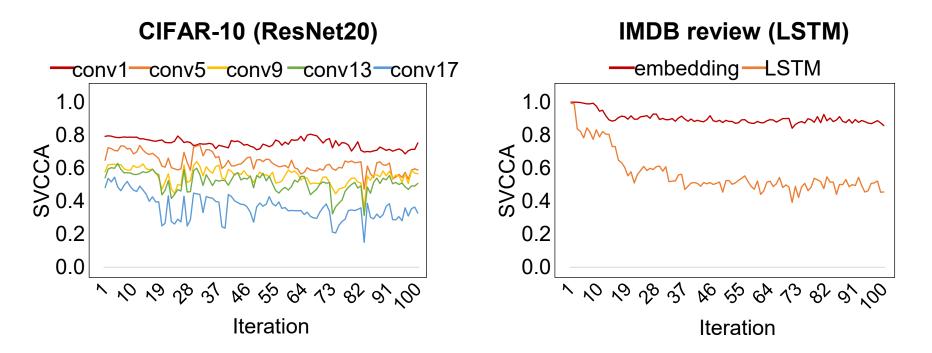
EmbracingFL: Heterogeneous System-Aware FL

Hypothesis: layers may have different data characteristics



Lee S, Zhang T, Prakash S, Niu Y, Avestimehr S. "Embracing Federated Learning: Enabling Weak Client Participation via Partial Model Training." *IEEE Transactions on Mobile Computing*, 2024

Empirical Study: Layer-wise Data Representation Analysis

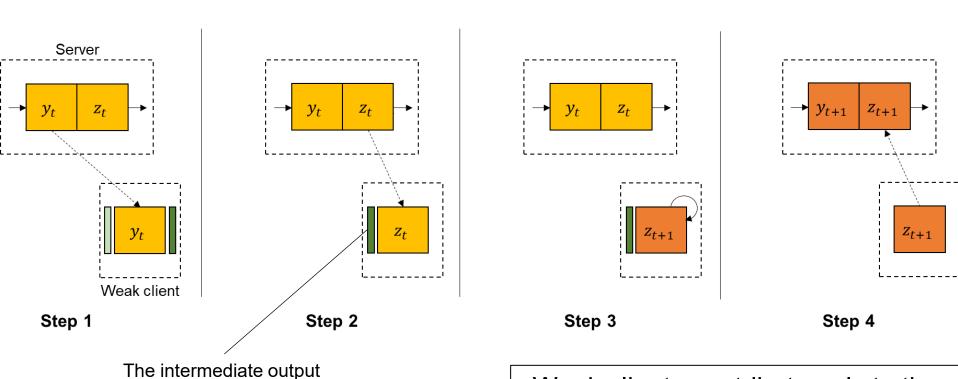


The input-side layers learn similar data across independent clients!

Singular Vector Canonical Correlation Analysis (SVCCA)

 ¹²⁸ clients, each client training independently

Partial Training at Weak Clients

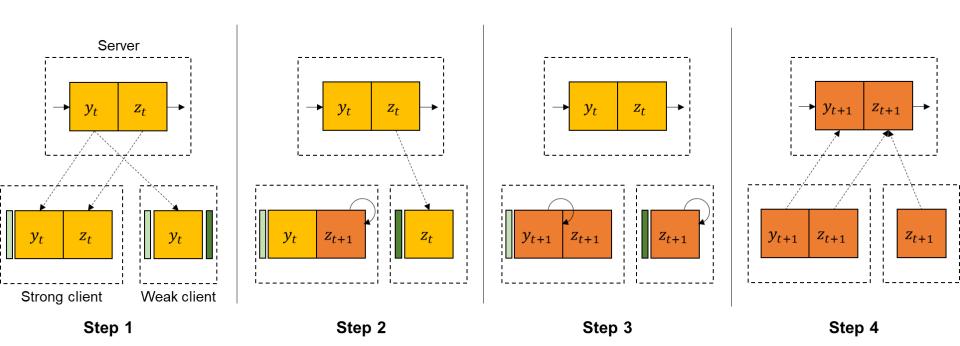


is recorded and reused

multiple steps!

Weak clients contribute only to the output-side subset of layers.

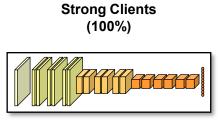
EmbracingFL: Overview of Solution

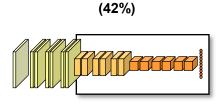


Experimental Settings

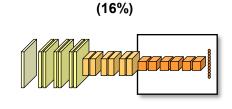
TABLE I
THE MODEL SIZE OF THE THREE DIFFERENT TYPES OF CLIENTS.

Removed layers of Resnet20 (CIFAR-10)	Number of parameters (p)	Number of activations (a)	Capacity
(Strong) -	272,762	6,947,136	1.00
(Moderate) The first conv. layer + the first 3 residual blocks	257,994	2,752,832	0.42
(Weak) The first conv. layer + the first 6 residual blocks	206,346	917,824	0.16





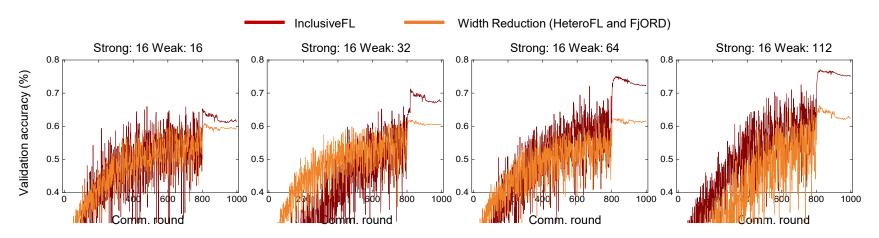
Moderate Clients



Weak Clients

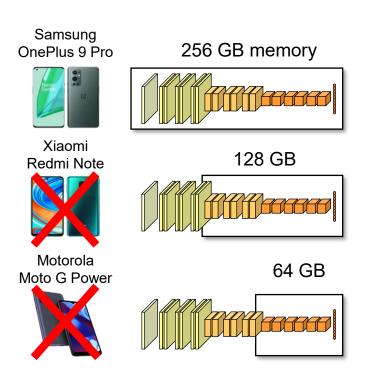
Results: Comparison to SOTA

# of strong	# of weak	Width Reduction	EmbracingFL
16	0	$60.15 \pm 1.5\%$	
16	16	$61.34 \pm 2.1\%$	$66.62 \pm 1.1\%$
16	32	$62.09 \pm 1.5\%$	$72.60 \pm 1.2\%$
16	64	$63.68 \pm 3.3\%$	$74.79 \pm 0.8\%$
16	112	$65.01 \pm 2.9\%$	$77.34 \pm 1.6\%$



These results empirically demonstrate that EmbracingFL better utilize the 'weak' clients than HeteroFL and FjORD!

Training of "Large" Models at the Edge: Is EmbracingFL Enough?

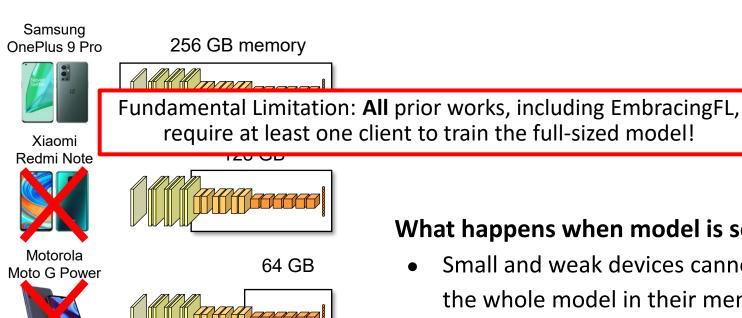


The conventional assumption of 'homogeneous' clients does not hold

What happens when model is so large?

 Small and weak devices cannot even hold the whole model in their memory space!

Training of "Large" Models at the Edge: Is EmbracingFL Enough?

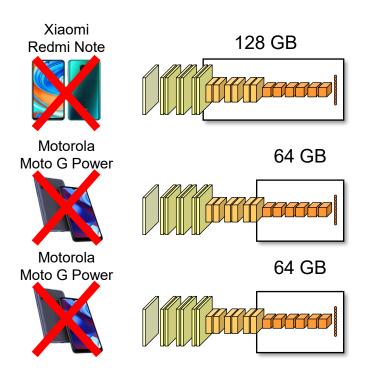


What happens when model is so large?

Small and weak devices cannot even hold the whole model in their memory space!

Training of "Large" Models at the Edge: Is EmbracingFL Enough?

Fundamental Limitation: **All** prior works, including EmbracingFL, require at least one client to train the full-sized model!



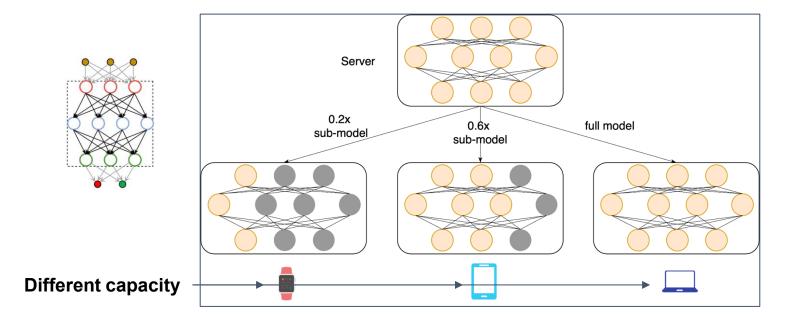
The conventional assumption of 'homogeneous' clients does not hold

What happens when ALL clients are weak?

Can the server still train a "large" model?

Related Works on Sub-Model Training

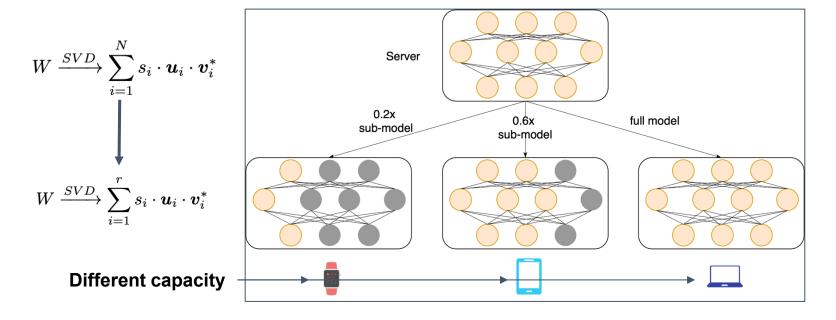
FjORD[1], HeteroFL[2], et al



- [1] Horvath, S., etal. Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout. In NeurIPS, 2021.
- [2] Diao, E., et al, HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients. In ICLR 2021.

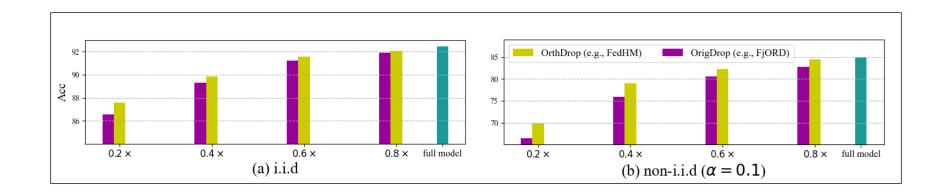
Related Works on Low-Rank Training

FedHM[3], et al



[3] Yao, D., et al. Fedhm: Efficient federated learning for heterogeneous models via low-rank factorization. arXiv preprint arXiv:2111.14655, 2021.

Empirical Evaluations: ResNet-18/CIFAR-10



model: ResNet-18

dataset: CIFAR-10 (i.i.d, non-i.i.d)

clients: 20 (active) / 100 (total)

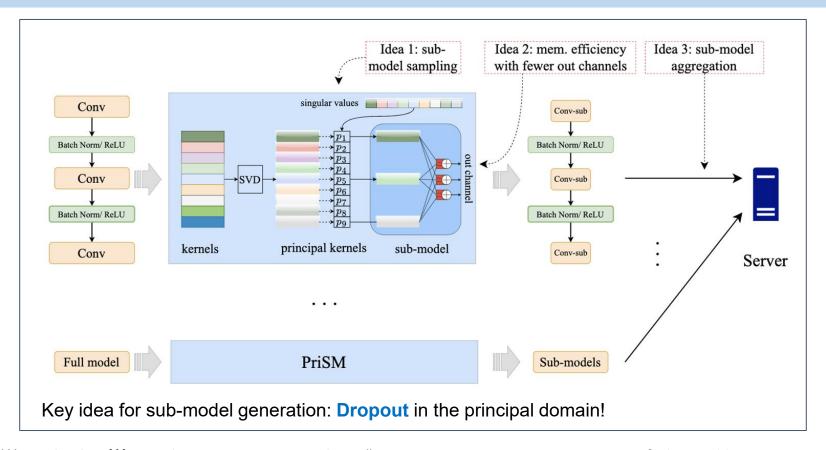
client capabilities: 0.2x, 0.4x, 0.6x, 0.8x

total comm. round: 1000

#local epoch/round: 2

- OrigDrop (FjORD): always select a fixed subset of original kernels.
- OrthDrop (FedHM): always select a fixed subset of principal kernels.

Proposed Solution **PriSM** Overview



Niu Y (*), **Prakash S (*)**, Kundu S, Lee S, Avestimehr S. "Overcoming resource constraints in federated learning: Large models can be trained with only weak clients." *Transactions on Machine Learning Research*, 2023.

Proposed Solution **PriSM** Overview

Centralized Training

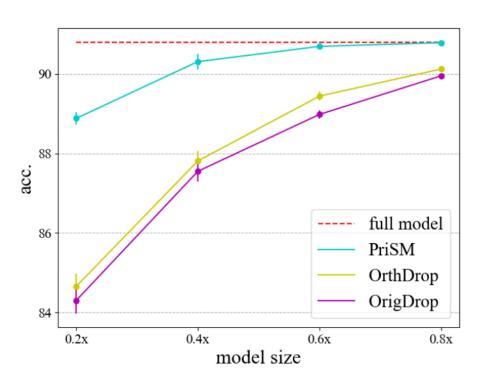
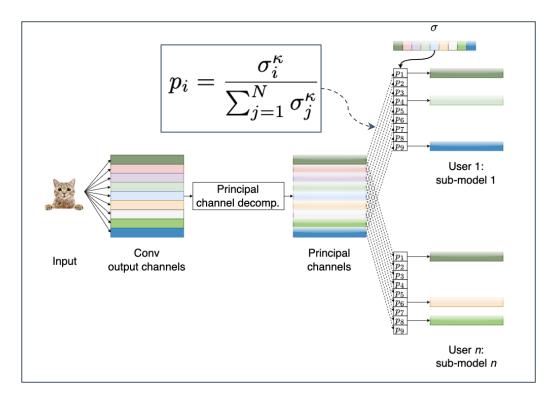


Figure 4: Accuracy of VGG11 on CIFAR-10 with different sub-models. PriSM delivers much better performance under very constrained settings (e.g., training with only $0.2\times$ sub-models) compared to OrthDrop and OrigDrop.

Niu Y (*), **Prakash S (*)**, Kundu S, Lee S, Avestimehr S. "Overcoming resource constraints in federated learning: Large models can be trained with only weak clients." *Transactions on Machine Learning Research*, 2023.

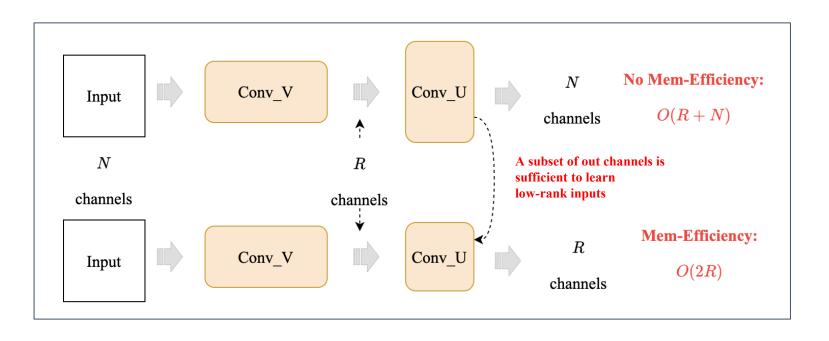
Idea 1: Sub-Model Creation via Probabilistic Kernel Sampling



Each client trains a different sub-model (⅓ of the full model in the example above)

→ computation reduction

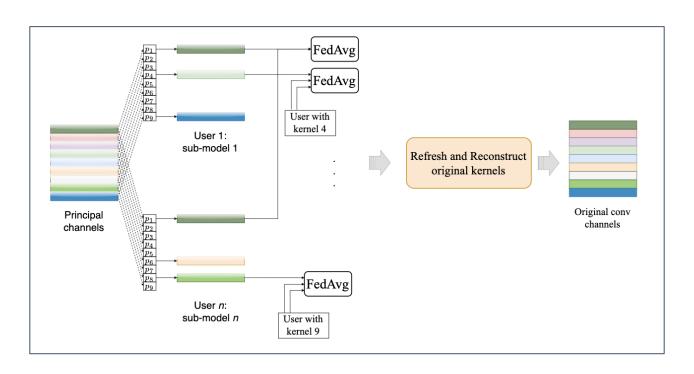
Idea 2: Memory-Efficient Sub-Model Training



Each client only keep a subset of output channel

 \rightarrow computation & memory reduction

Idea 3: Sub-Model Aggregation

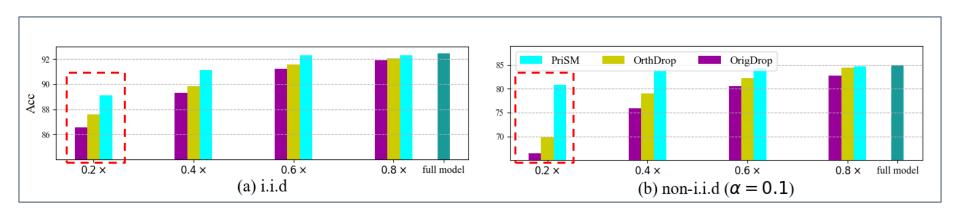


Each kernel get chance to be trained and aggregated

 \rightarrow full-model capacity is preserved

Empirical Evaluations: ResNet-18/CIFAR-10

Empirical Evaluations: ResNet-18/CIFAR-10



model: ResNet-18

dataset: CIFAR-10 (i.i.d, non-i.i.d)

clients: 20 (active) / 100 (total)

client capabilities: 0.2x, 0.4x, 0.6x, 0.8x

total comm. round: 1000

#local epoch/round: 2

Baselines:

- OrigDrop (FjORD): always select a fixed subset of original kernels.
- OrthDrop (FedHM): always select a fixed subset of principal kernels.

Empirical Evaluations: ResNet-18/CIFAR-10

Training time breakdown for ResNet-18 on CIFAR-10.

Training time Steakdown for Restrict to on Cliffic to.						
stage	sub-model create	local train	aggregate	SVD		
time	3.27 s	$36.82~\mathrm{s}$	0.11 s	$0.96 \mathrm{\ s}$		

model: ResNet-18

dataset: CIFAR-10 (i.i.d, non-i.i.d)

clients: 20 (active) / 100 (total)

client capabilities: 0.2x, 0.4x, 0.6x, 0.8x

total comm. round: 1000

#local epoch/round: 2

Another Topic 1: Machine Unlearning

Data Leakage through models

- New privacy regulations (e.g., GDPR, PDPB) ensure Right to be Forgotten
- Permanent data removal is possible: remove it from the dataset
- Is this enough?

Another Topic 1: Machine Unlearning

Data Leakage through models

- New privacy regulations (e.g., GDPR, PDPB) ensure Right to be Forgotten
- Permanent data removal is possible: remove it from the dataset
- Is this enough?
- For example, deep neural networks are known to memorize training samples [Feldman et al., 2020]
 - Model inversion attacks [Fredrikson et al., 2015]

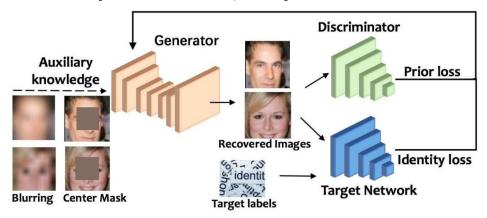


Figure: Generative model inversion attacker frameworks [Zhang et al., 2020], [Dèjá Vu, 2023].

Another Topic 1: Machine Unlearning

Data Leakage through models

- New privacy regulations (e.g., GDPR, PDPB) ensure Right to be Forgotten
- Permanent data removal is possible: remove it from the dataset
- Is this enough?
- For example, deep neural networks are known to memorize training samples
 - Model inversion attacks [Carlini et al., 2020]

Figure: Extracting Training Data from Large Language Models [Carlini et al., 2020].

Another Topic 2: Hyperbolic Machine Learning

Genome sequences

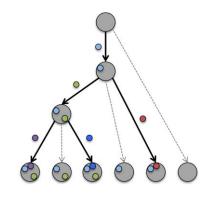
Large

• E.g., Human genome 3 billion base pairs; ~750 MB of data

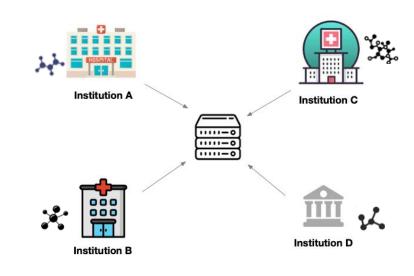
Private

Hierarchical

E.g., Clonal Evolution Theory of Cancer [Nowell, 1976]



Phylogenetic Tree



How to do federated learning with high dimensional hierarchical data?

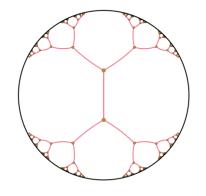
Another Topic 2: Hyperbolic Machine Learning

Hyperbolic space

Negatively curved space: Great for tree-like data

Distance

$$d(u, v) = \operatorname{arcosh} \left(1 + 2 \frac{\|u - v\|^2}{(1 - \|u\|^2)(1 - \|v\|^2)} \right)$$



Poincare disc: Red curves are equidistant geodesics

Linear hyperplane

$$H_{oldsymbol{w},oldsymbol{p}} \stackrel{\Delta}{=} \{oldsymbol{x} \in \mathbb{B}^2 : \langle (-oldsymbol{p} \oplus oldsymbol{x}), oldsymbol{w}
angle = 0\}$$

$$oldsymbol{x} \oplus oldsymbol{y} = rac{(1+2\langle oldsymbol{x}, oldsymbol{y}
angle + \|oldsymbol{y}\|^2)oldsymbol{x} + (1-\|oldsymbol{x}\|^2)oldsymbol{y}}{1+2\langle oldsymbol{x}, oldsymbol{y}
angle + \|oldsymbol{x}\|^2\|oldsymbol{y}\|^2}, orall oldsymbol{x}, oldsymbol{y} \in \mathbb{B}^2$$

For FL, naive model aggregation is **not** applicable!

All Rivers Run to the Sea: Private Learning with Asymmetric Flows (CVPR 2024)

Yue Niu¹, Ramy E. Ali², **Saurav Prakash**³, Salman Avestimehr¹

¹University of Southern California (USC)

²Samsung

³Indian Institute of Technology Madras

January, 2024

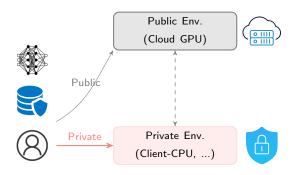
Outline

- Background and Problem Setting
- 2 Delta: Private Learning with Asymmetric Flows
- 3 Empirical Evaluation: Utility, Privacy, Running Time
- Discussion and Future Works

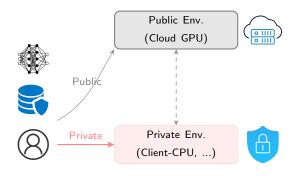
Outline

- Background and Problem Setting
- Delta: Private Learning with Asymmetric Flows
- Sempirical Evaluation: Utility, Privacy, Running Time
- Discussion and Future Works

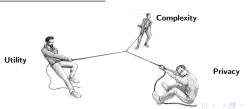
How to leverage cloud ML while ensuring privacy?



How to leverage cloud ML while ensuring privacy?



The Utility-Privacy-Complexity Trilemma



(Naive) DP-based ML

- Provable guarantee
- Severe accuracy drop

(Naive) DP-based ML

- Provable guarantee
- Severe accuracy drop

Crypto-based ML

- Strong protection
- High complexity

(Naive) DP-based ML

- Provable guarantee
- Severe accuracy drop

Crypto-based ML

- Strong protection
- High complexity

Secure Enclaves

- Hardware security
- Long running time

(Naive) DP-based ML

- Provable guarantee
- Severe accuracy drop

Crypto-based ML

- Strong protection
- High complexity

Secure Enclaves

- Hardware security
- Long running time

Our work: Leverage both DP & Trusted hardware (local CPU, ...)

 \rightarrow Overcome accuracy drop of naive-DP & long running time of TEEs

(Naive) DP-based ML

- Provable guarantee
- Severe accuracy drop

Crypto-based ML

- Strong protection
- High complexity

Secure Enclaves

- Hardware security
- Long running time

Related works leveraging TEEs

- \bullet Slalom'18: Inference only \to This work: Inference and Training
- ullet 3LegRace'21: Layerwise TEE-GPU communication ullet This work: No layer-wise communication

Outline

- Background and Problem Setting
- 2 Delta: Private Learning with Asymmetric Flows
- Sempirical Evaluation: Utility, Privacy, Running Time
- Discussion and Future Works

Delta: Private Learning with Asymmetric Flows

What does Delta do?

Decompose model & data into a low-dimensional part & a residual part

- 1. Lightweight model (client-side, TEEs, ...)
 - Fed with the low-dimensional information-sensitive part of the data
 - Confidential computing (no DP noise needed)

Delta: Private Learning with Asymmetric Flows

What does Delta do?

Decompose model & data into a low-dimensional part & a residual part

- 1. Lightweight model (client-side, TEEs, ...)
 - Fed with the low-dimensional information-sensitive part of the data
 - Confidential computing (no DP noise needed)
- Large model (offloaded to cloud)
 - Fed with the quantized residual part of the data
 - The residual data is protected by a DP noise

Delta: Private Learning with Asymmetric Flows

What does Delta do?

Decompose model & data into a low-dimensional part & a residual part

- 1. Lightweight model (client-side, TEEs, ...)
 - Fed with the low-dimensional information-sensitive part of the data
 - Confidential computing (no DP noise needed)
- 2. Large model (offloaded to cloud)
 - Fed with the quantized residual part of the data
 - The residual data is protected by a DP noise
 - ⇒ Delta provides better utility-privacy trade-off than naive-DP methods

Delta Overview

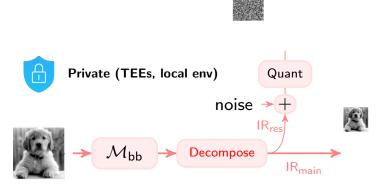
Forward Propagation: Asymmetric Data Decomposition

Private (TEEs, local env)

ightarrow To leverage the low-rank structure of the data

Delta Overview

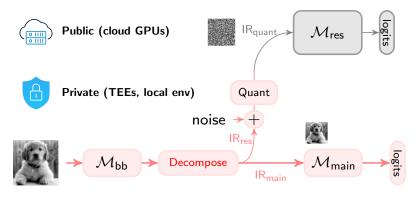
Forward Propagation: Perturbation & Binary Quantization



 \rightarrow To ensure privacy and reduce communication cost

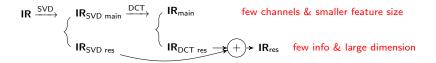
Delta Overview

Forward Propagation: Model Decomposition



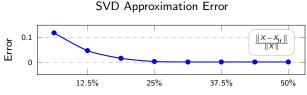
→ To ensure low complexity in the private environment

Asymmetric Data Decomposition



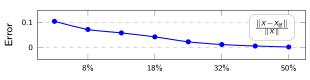
- ullet SVD o asymmetric decomposition along channel dimension
- ullet DCT o asymmetric decomposition along spatial dimension

Why asymmetric decomposition?

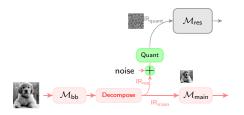


Fraction of principal channels in X_{lr}

DCT Approximation Error

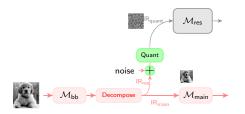


Random Binary Quantization



$$IR_{\mathsf{quant}}(\cdot) = \operatorname{BinQuant}(IR_{\mathsf{noisy}}(\cdot)) = \begin{cases} 0 & IR_{\mathsf{noisy}}(\cdot) < 0 \\ 1 & IR_{\mathsf{noisy}}(\cdot) \geq 0 \end{cases}$$

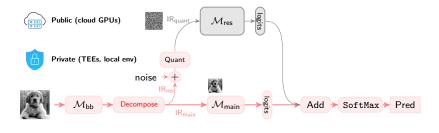
Random Binary Quantization



$$IR_{quant}(\cdot) = \operatorname{BinQuant}(IR_{noisy}(\cdot)) = \begin{cases} 0 & IR_{noisy}(\cdot) < 0 \\ 1 & IR_{noisy}(\cdot) \ge 0 \end{cases}$$

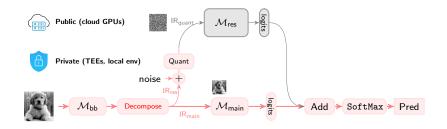
<u>Theorem:</u> Delta ensures that any operation in the public environment satisfy (ϵ, δ) -DP given noise $\mathcal{N}(0, p\Delta/\epsilon \cdot \sqrt{2\log(1.25/\delta)})$ and mini-batch size b, where p = b/N is the sampling probability.

Private Backpropagation



$$egin{aligned} \mathcal{M}_{\mathsf{main}}: oldsymbol{o}_{\mathsf{tot}}(i) &= rac{e^{oldsymbol{z}_{\mathsf{main}}(i) + oldsymbol{z}_{\mathsf{res}}(i)}}{\sum_{j=1} e^{oldsymbol{z}_{\mathsf{main}}(j) + oldsymbol{z}_{\mathsf{res}}(j)}} \quad \mathsf{for} \quad i = 1, \cdots, L \end{aligned} \ \mathcal{M}_{\mathsf{res}}: oldsymbol{o}_{\mathsf{res}}(i) &= rac{e^{oldsymbol{z}_{\mathsf{res}}(i)}}{\sum_{i=1} e^{oldsymbol{z}_{\mathsf{res}}(j)}} \quad \mathsf{for} \quad i = 1, \cdots, L, \end{aligned}$$

Delta: Full Picture

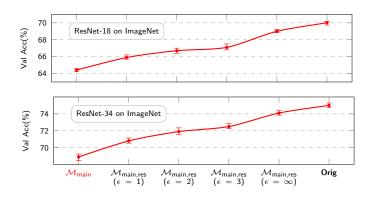


- Asymmetric data decomposition
- Efficient model design
- Random binary quantization
- Private backpropagation

Outline

- Background and Problem Setting
- Delta: Private Learning with Asymmetric Flows
- 3 Empirical Evaluation: Utility, Privacy, Running Time
- Oiscussion and Future Works

Experiment Highlights: Model Utility



 \rightarrow Lightweight model achieves good accuracy, but still residuals are useful

Experiment Highlights: Model Utility

Setting: ResNet-18 with $\epsilon=1$

	Delta: perturb IR _{res}	naive-DP: perturb IR
CIFAR-10	92.4%	$69.6\% (\downarrow -22.8)$
CIFAR-100	71.4%	$48.3\% (\downarrow -23.1)$
ImageNet	65.9%	$34.4\% \ (\downarrow -31.5)$

ightarrow Delta improves accuracy by up to 31.5%

Experiment Highlights: Model Complexity

MACs of the modules in Delta

	$\mathcal{M}_{bb} + \mathcal{M}_{main}$	SVD	DCT	\mathcal{M}_{res}
ResNet-18	48.3 M	0.52 M	0.26 M	547M
ResNet-34	437 M	1.6 M	0.7 M	3.5G

- ullet Small model $\mathcal{M}_{\mathsf{main}}$ only costs 10% complexity of $\mathcal{M}_{\mathsf{res}}$
- Costs of SVD and DCT are marginal

Experiment Highlights: Speedup

Running time with one single input

	Priv-only	3LegRace	Slalom	Delta
Train (ms/speedup)	1372	237 (6×)	- 04 (6)	62 (22×)
Inference (ms/speedup)	510	95 (5×)	84 (6×)	20 (25×)

3LegRace [Niu, et al, PETs 2022]: layer-wise feature decomposition on linear layers Slalom [Tramer, et al, ICLR 2019]: layer-wise computation distribution on linear layers

- Significant speedup compared to solely using private envs
- Faster compared to baselines due to reduced communication

Experiment Highlights: Protection Against Attacks

Procedure: Train a GAN with the quantized residuals

Setting: ResNet-18, CIFAR-100

Against model inversion attack [SecretRevealer, CVPR'20]

Original samples

Reconstruction (no noise)

Reconstruction ($\epsilon=1$)

- Attack can succeed on certain samples (e.g., row 1, col 3)
- Random quantization provide further protection

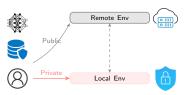
Outline

- Background and Problem Setting
- Delta: Private Learning with Asymmetric Flows
- 3 Empirical Evaluation: Utility, Privacy, Running Time
- Discussion and Future Works

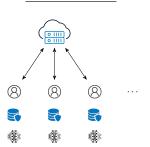
Future Works

Extend to More General Settings

User-Server Setting



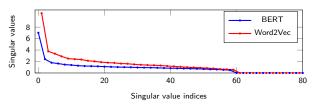
Federated Setting



Ongoing Work

Extend to LMs

LMs' embedding also exhibits a low-ranks structure



Original text (top) and approximated (bottom) text with 1/5 principal vectors.

Large Language Models are foundational machine learning models that use deep learning algorithms to process and understand natural language. These models are trained on massive amounts of text data to learn patterns and entity relationships in the language.

Large Language Models can perform many types of language tasks, such as translating languages, analyzing sentiments, chatbot conversations, and more. They can understand complex textual data, identify entities and relationships between them, and generate new text that is coherent and grammatically accurate.

Large Language Models are foundational machine learning models that use deep learning algorithms to process and understand natural language. These models are trained on massive amounts of text data to learn patterns and entity relationships in the language.

Large Language Models can perform many types of language tasks, such and translating languages, analyzing sentiments, chatbot conversations, and more. They can understand complex textual data, identify entities and relationships between them, and generate new text that are coherent and grammatically accurate.

Ongoing Work

How to leverage the low-rank structure of inputs in self-attention to reduce quadratic complexity?

 Preliminary results – Niu Y, Prakash S, Avestimehr S. "ATP: Enabling Fast LLM Serving via Attention on Top Principal Keys." arXiv preprint arXiv:2403.02352. 2024.

Thanks! Questions?