

Design and Performance Analysis of Medium Access Control (MAC) Protocols for Multipacket Reception

T G Venkatesh

Department of Electrical Engineering,
Indian Institute of Technology Madras

Multipacket Reception

Collision Channel

- ▶ Physical layer limitation
 - ▶ *More than one node access the channel simultaneously \Rightarrow Collision*
 - ▶ (0,1,e) Feedback
- ▶ Protocols - IEEE 802.11, Aloha, Splitting tree

Capture and MPR

- ▶ Physical Layer Technologies
 - ▶ MUD - Multiuser detection
 - ▶ DS-CDMA - Code Division Multiple Access
 - ▶ MU-MIMO - Multiple Input Multiple Output

Problem statement

Design and analysis of MAC protocols for networks capable of Multipacket reception

ALOHA Analysis

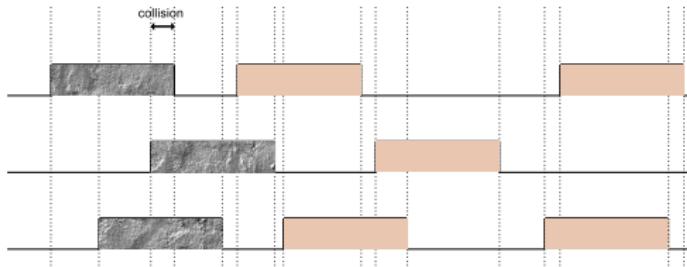


Figure: Packet collision, $K = 2$

- ▶ Channel Model
 - ▶ k -MPR, Generalized MPR
- ▶ Network Model
 - ▶ Infinite user model
 - Poisson packet arrivals
 - ▶ Fixed packet lengths
- ▶ Throughput (S)
 - ★ Time average of the number of packets successfully received
 - ★ Computation: $S = \Lambda \times \Pr(\text{Success of a tagged packet})$

ALOHA- Bounds on throughput

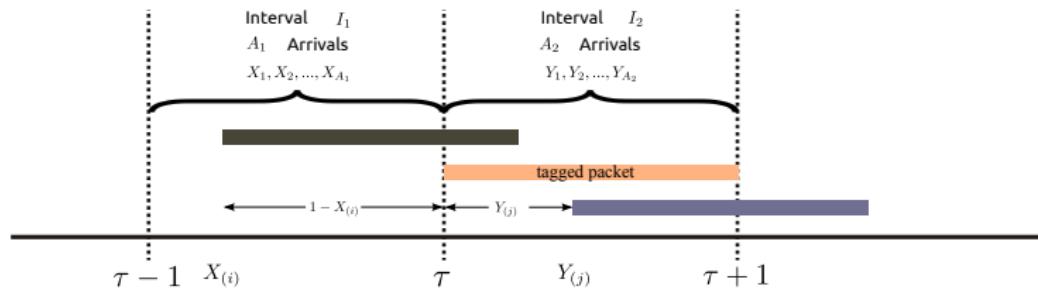


Figure: Tagged packet transmission

Lower Bound : $S_{\text{ALOHA}} \geq \Lambda \sum_{i=0}^{K-1} \frac{(2\Lambda)^i e^{-2\Lambda}}{i!}$ (1)

Upper Bound : $S_{\text{ALOHA}} \leq \Lambda \left(\sum_{i=0}^{K-1} \frac{\Lambda^i e^{-\Lambda}}{i!} \right)^2$ (2)

$$S_{\text{slotted}} = \Lambda \left(\sum_{i=0}^{K-1} \frac{\Lambda^i e^{-\Lambda}}{i!} \right) \geq S_{\text{ALOHA}} \quad (3)$$

Vulnerable Interval

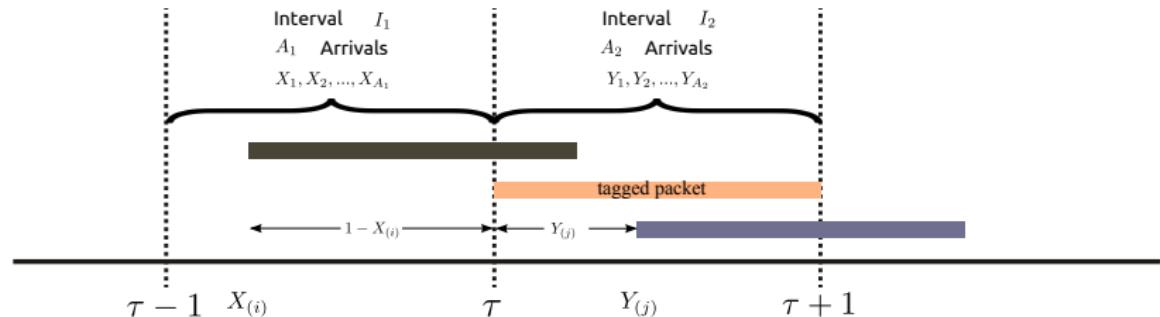


Figure: Tagged packet transmission

- ▶ Conditioned on $A_1 = a_1$, the arrival times are uniform in I_1 .
- ▶ $X(Y)$: measured from the beginning of $I_1(I_2)$ is $\mathcal{U}(0, 1)$.

$X_{(i)}$: i^{th} smallest from a set of a_1 uniform r.v. (i^{th} order statistic)

$Y_{(j)}$: j^{th} smallest from a set of a_2 uniform r.v. (j^{th} order statistic)

Conditions for non-overlapping

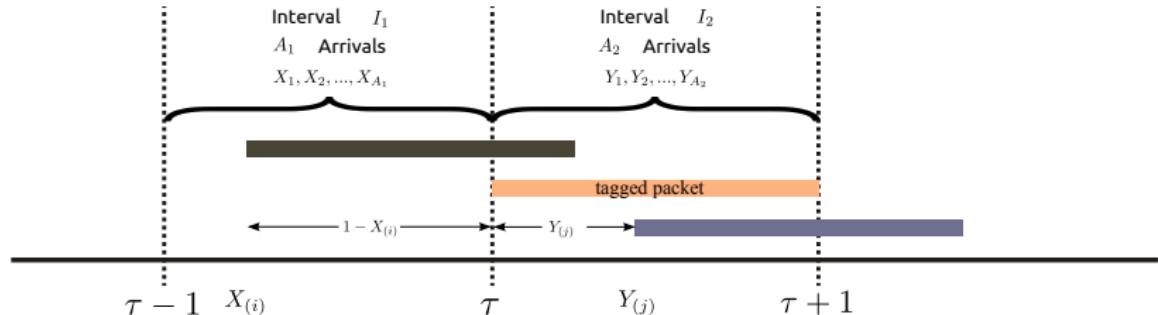


Figure: Tagged packet transmission

$\mathbb{S}_1 \equiv \{\text{ordered set of arrivals in } I_1\}, \quad \mathbb{S}_2 \equiv \{\text{ordered set of arrivals in } I_2\}$

- ▶ Any n.o. pair can be written as $\langle l, m \rangle$, where $l \in \mathbb{S}_1$, and $m \in \mathbb{S}_2$.
- ▶ $X_{(i)}$ and $Y_{(j)}$ are n.o. $\Rightarrow 1 - X_{(i)} + Y_{(j)} > 1 \equiv X_{(i)} < Y_{(j)}$

ALOHA- Order statistics based Analysis

Definitions

- \mathbb{D} is a maximal set of distinct non-overlapping pairs
- $D = |\mathbb{D}|$
- W : the maximum number of transmissions interfering with the tagged packet.

Lemma

$$W = A - D$$

Proof.

The effective interference from a non-overlapping pair of packets to the tagged node will be one (not two). Then, the number of transmissions, at any time, during interval I will be less than or equal to $A - D + 1$ ^a, i.e. $W = A - D$. □

^a D non-overlapping pairs + $(A - 2D)$ unpaired + 1 tagged

Lemma

$$F_W(w \mid a_1, a_2) = \Pr \left(\bigcap_{i=1}^{a-w} \{X_{(i)} < Y_{(w-a_1+i)}\} \right)$$

Proof.

The first d arrivals in I_1 should be non-overlapping with the last d arrivals in I_2 in that order □

Proof(Formal).

From previous Lemma, $A = a \Rightarrow W \leq w$ iff $D \geq a - w$.

$D \geq d \Rightarrow \langle i, a_2 - d + i \rangle \forall i = 1..d$, should be nonoverlapping.

$X_{(i)} \not< Y_{(a_2-d+i)}$ \Rightarrow any n.o. pair $\langle l, m \rangle$ should satisfy (i) $l < i$ or (ii) $m > a_2 - d + i$. □

Illustration

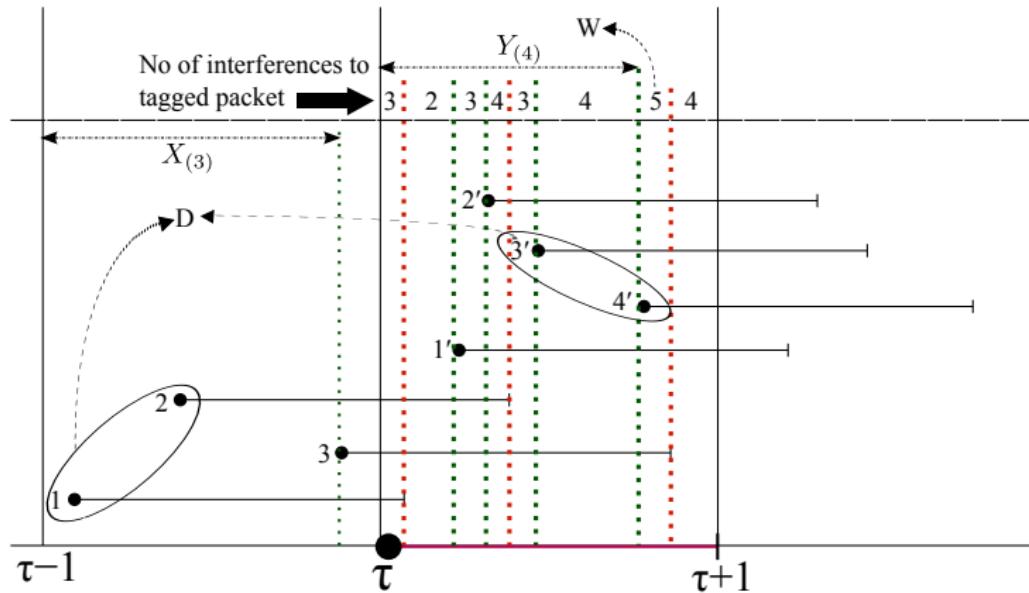


Figure: $S_1 = \{1, 2, 3\}$, $S_2 = \{1', 2', 3', 4'\}$, $A_1 = 3$, $A_2 = 4$, $A = 7$, $W = 5$. A maximal set of distinct non-overlapping pairs $\mathbb{D} = \{\langle 1, 3 \rangle, \langle 2, 4 \rangle\}$, therefore $D = |\mathbb{D}| = 2$. Note that $A - D = W = 5$. If $K \geq 6$ then $W \leq K - 1$ and tagged packet will be successful.

Probability of Success

Lemma

$$P_{suc}(a) = \frac{1}{2^a} \sum_{i=a-(K-1)}^{K-1} \binom{a}{i} F_W(K-1 \mid i, a-i) \quad \forall K-1 < a < 2K-1$$

Proof.

If $A_1 = i$ and $A_2 = a - i$, then the probability of success is $F_W(K-1 \mid i, a-i)$.

$$\Pr(A_1 = i, A_2 = a - i \mid A = a) = \frac{1}{2^a} \binom{a}{i} \quad (4)$$

∴ Each of the a arrivals in I is equally likely to fall in I_1 or I_2 . □

Theorem

Throughput of pure ALOHA in a channel with MPR capability K is given by

$$S = \Lambda \left[\sum_{i=0}^{K-1} \frac{(2\Lambda)^i e^{-2\Lambda}}{i!} + \sum_{i=K}^{2K-2} \frac{\Lambda^i e^{-2\Lambda}}{i!} \sum_{j=i-(K-1)}^{K-1} \binom{i}{j} F_W(K-1 \mid j, i-j) \right]$$

Generalized MPR Channels

Theorem

Throughput of pure ALOHA under generalized MPR channel with reception matrix C is given by,

$$\Lambda \sum_{a=0}^{2K-2} \frac{\Lambda^a e^{-2\Lambda}}{a!} \sum_{i=0}^a \binom{a}{i} \sum_{j=\min(i, a-i)}^{K-1} \frac{\bar{R}_{j+1}}{j+1} f_W(j \mid i, a-i)$$

Proof.

$S = \sum_{i=0}^{2K-2} \Pr(A = a) \bar{p}(a)$, where $\bar{p}(a)$ is the conditional expectation of probability of success when $A = a$.

$$\bar{p}(a) = \frac{1}{2^a} \sum_{i=0}^a \binom{a}{i} \sum_{j=\min(i, a-i)}^{K-1} f_W(j \mid i, a-i) \frac{\bar{R}_{j+1}}{j+1}$$

Finite Nodes

- ▶ N nodes with arrival rates $\lambda_1, \lambda_2, \dots, \lambda_N$.
- ▶ Tagged packet does not suffer collision from another packet from the same node
- ▶ Aggregate traffic from other nodes approximated as Poisson.

$$S(\Lambda, K, N) = \frac{N}{N-1} S\left(\frac{N-1}{N} \Lambda, K\right) \quad (5)$$

$$S_i = \lambda_i \frac{S(\Lambda - \lambda_i, K)}{\Lambda - \lambda_i}$$

$$S(\lambda_1, \dots, \lambda_N, N, K) = \sum_{i=1}^N S_i = \sum_{i=1}^N \lambda_i \frac{S(\Lambda - \lambda_i, K)}{\Lambda - \lambda_i} \quad (6)$$

Computation of $F_W(w \mid a_1, a_2)$

Direct Method

$$F_W(w \mid a_1, a_2) = \Pr(X_{(1)} \leq Y_{(a_2-d+1)}, X_{(2)} \leq Y_{(a_2-d+2)}, \dots, X_{(d)} \leq Y_{(a_2)}) \quad (7)$$

$$= \mathbb{E}_{Y_{(\Phi)}} [F_{X_{(\Omega)}}(y_{(a_2-d+1)}, \dots, y_{(a_2)})] \quad (8)$$

where, $\Omega = \{1, 2, \dots, d\}$, $\Phi = \{a_2 - d + 1, \dots, a_2\}$

$$F_{X_{(\Omega)}}(x_{(1)}, x_{(2)}, \dots, x_{(d)}) = \sum_{i_1=1}^{i_2} \sum_{i_2=2}^{i_3} \dots \sum_{i_d=d}^{i_{d+1}} \left\{ a_1! \prod_{j=1}^{d+1} \left[\frac{(x_{(j)} - x_{(j-1)})^{i_j}}{(i_j - i_{j-1})!} \right] \right\} \quad (9)$$

$$f_{Y_{(\Phi)}}(y_{(a_2-d+1)}, \dots, y_{(a_2)}) = \frac{a_2!}{(a_2 - d)!} (y_{(a_2-d+1)})^{a_2-d} \quad (10)$$

Using moments

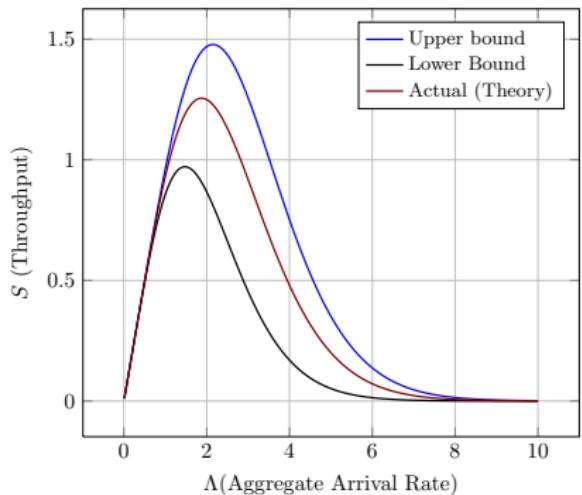
$$\mathbb{E}\left[\prod_{i=1}^k X_{(r_i)}^{a_i}\right] = \frac{n!}{(n + \sum_{i=1}^k a_i)!} \prod_{i=1}^k \frac{(r_i - 1 + \sum_{j=1}^i a_j)!}{(r_i - 1 + \sum_{j=1}^{i-1} a_j)!} \quad (11)$$

Results: Pure ALOHA throughput for MPR

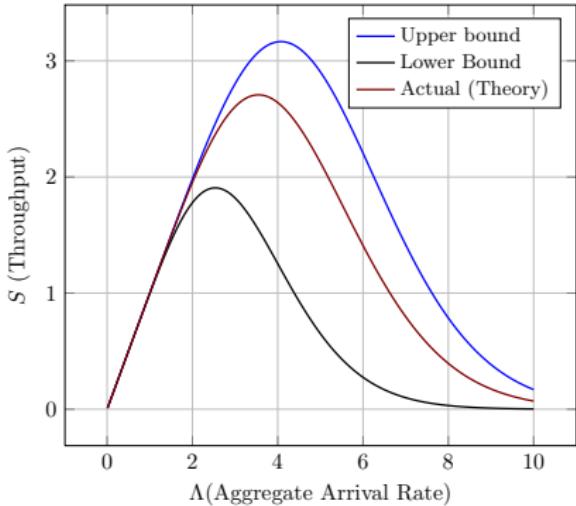
K	Throughput = $\Lambda e^{-2\Lambda}$ times the polynomial given below
2	$1 + 2\Lambda + \frac{1}{2}\Lambda^2$
3	$1 + 2\Lambda + 2\Lambda^2 + \frac{2}{3}\Lambda^3 + \frac{1}{12}\Lambda^4$
4	$1 + 2\Lambda + 2\Lambda^2 + \frac{4}{3}\Lambda^3 + \frac{11}{24}\Lambda^4 + \frac{1}{12}\Lambda^5 + \frac{1}{144}\Lambda^6$
5	$1 + 2\Lambda + 2\Lambda^2 + \frac{4}{3}\Lambda^3 + \frac{2}{3}\Lambda^4 + \frac{13}{60}\Lambda^5 + \frac{2}{45}\Lambda^6 + \frac{1}{180}\Lambda^7 + \frac{\Lambda^8}{2880}$
6	$1 + 2\Lambda + 2\Lambda^2 + \frac{4\Lambda^3}{3} + \frac{2\Lambda^4}{3} + \frac{4\Lambda^5}{15} + \frac{19\Lambda^6}{240} + \frac{\Lambda^7}{60} + \frac{7\Lambda^8}{2880} + \frac{\Lambda^9}{4320} + \frac{\Lambda^{10}}{86400}$
7	$1 + 2\Lambda + 2\Lambda^2 + \frac{4}{3}\Lambda^3 + \frac{2}{3}\Lambda^4 + \frac{4\Lambda^5}{15} + \frac{4\Lambda^6}{45} + \frac{\Lambda^7}{42} + \frac{11\Lambda^8}{2240} + \frac{23\Lambda^9}{30240} + \frac{13\Lambda^{10}}{151200} + \frac{\Lambda^{11}}{151200} + \frac{\Lambda^{12}}{10!}$

Table: Throughput of pure ALOHA for $K=2$ to 7

ALOHA: Simulation Results

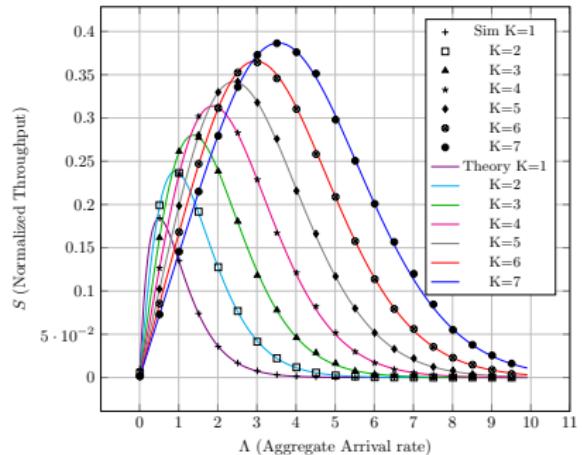
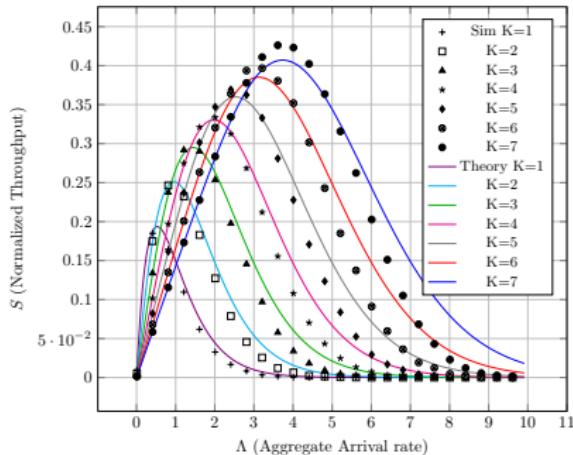


(a) Throughput of ALOHA against channel traffic ($K = 4$)



(b) Throughput of ALOHA against channel traffic ($K = 7$)

ALOHA: Simulation Results



(c) The throughput of ALOHA $N = \infty$ (d) The throughput of ALOHA, $N = 20$

Arun IB, T.G.Venkatesh, "Order statistics based analysis of Pure ALOHA in channels with Multipacket Reception", IEEE Communication Letters, Vol.17, no.10, October 2013

Non-persistent CSMA with MPR

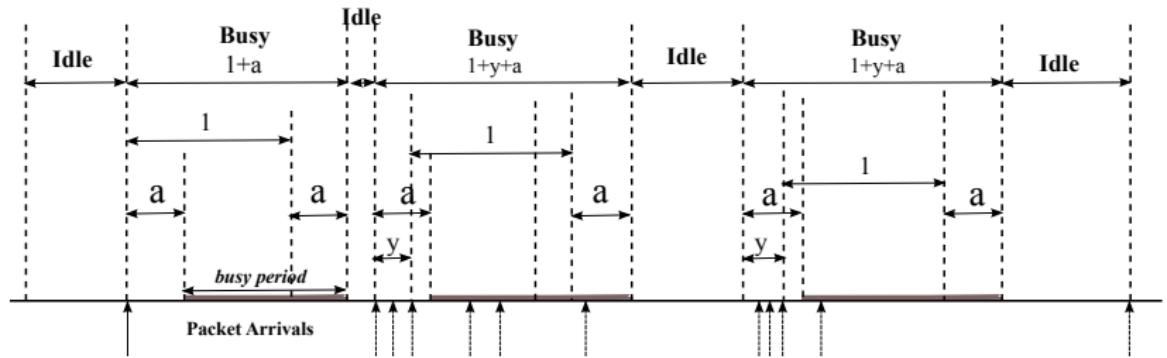


Figure: Illustrating the channel and time of NP-CSMA. Arrivals to a busy period are scheduled for transmission after a *random* time

Non-persistent CSMA with MPR

$$S = \frac{\sum_{i=0}^{K-1} (i+1)(\Lambda a)^i e^{-\Lambda a}}{\frac{1}{\Lambda} + 1 + 2a - \frac{1}{\Lambda}(1 - e^{-a\Lambda})} \quad (12)$$

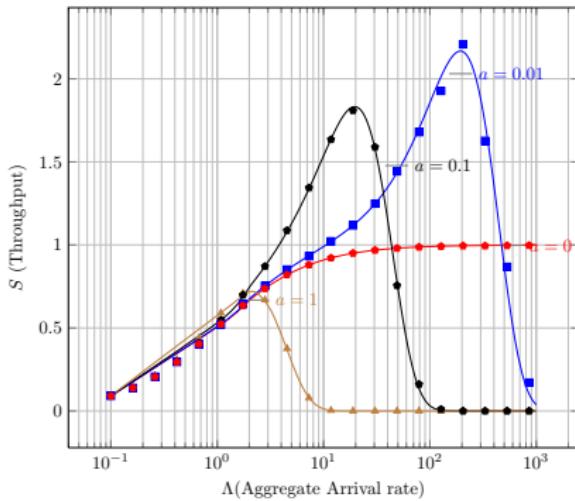


Figure: Throughput of non-persistent CSMA with MPR limit $K = 4$: Theory(lines) vs Simulation(symbols)

Adaptive MPR CSMA Protocol

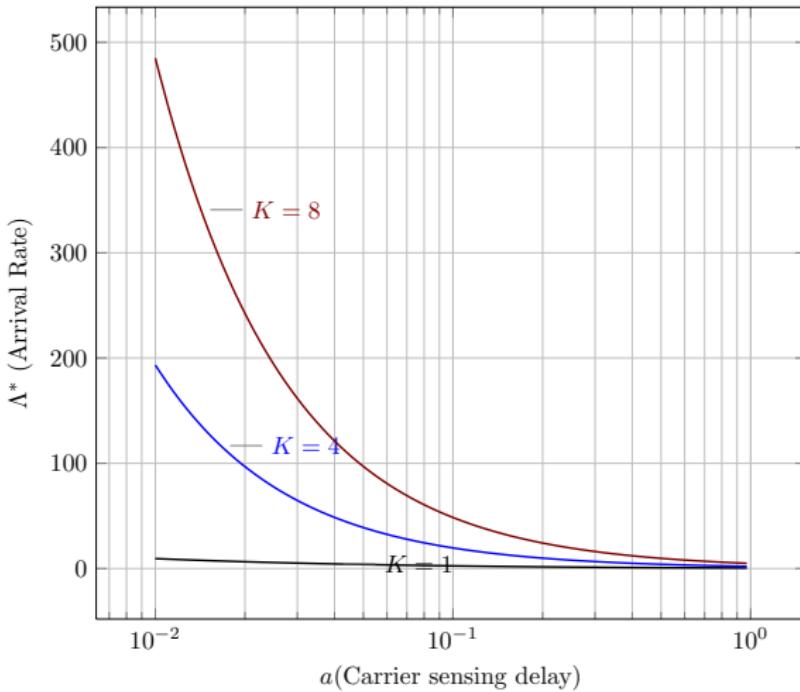


Figure: Effect of carrier sensing delay on arrival rate at which throughput is maximum

1-persistent CSMA with MPR

The three kinds of transmission periods:

- ▶ An idle transmission period (TP) called Type 0.
- ▶ A TP which starts with the transmission of a single packet (Type 1) and which follows the type-0 transmission period.
- ▶ A type 2 TP follows an arrival into a busy channel. A type-2 transmission may begin with more than one packet transmission.

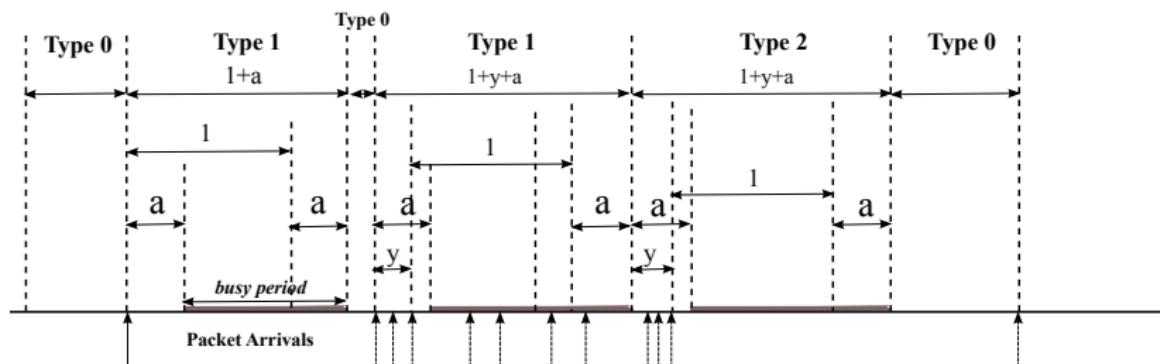


Figure: Illustrating the channel and time: 1P-CSMA. Arrivals to a busy period are scheduled for transmission at the end of the current TP

1-persistent CSMA with MPR

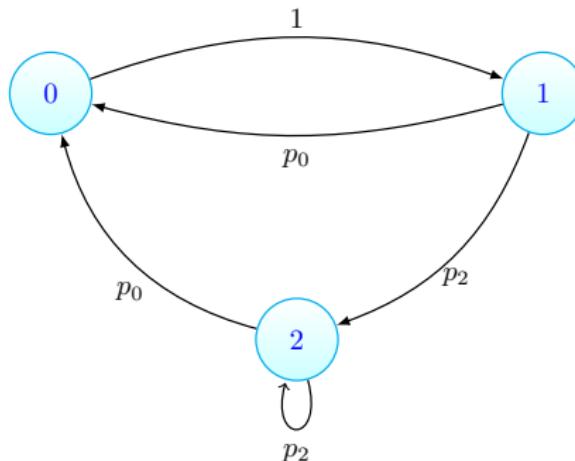


Figure: Markov chain for the transmission periods (TP) of 1-persistent CSMA Protocol with MPR.

$$S = \frac{\pi_i \hat{S}_i}{\sum_{i=0}^2 \pi_i E[T_i]} \quad (13)$$

1-persistent CSMA with MPR

$$\pi_0 = \pi_1 = \frac{(1 + a\Lambda)e^{-\Lambda(1+a)}}{1 + (1 + a\Lambda)e^{-\Lambda(1+a)}} \quad (14)$$

$$\pi_2 = \frac{1 - (1 + a\Lambda)e^{-\Lambda(1+a)}}{1 + (1 + a\Lambda)e^{-\Lambda(1+a)}} \quad (15)$$

$$\hat{S}_1 = \sum_{i=0}^{K-1} (i+1)(a\Lambda)^i \frac{e^{-a\Lambda}}{i!} \quad (16)$$

$$\begin{aligned} E[\hat{S}_2] &= e^{-a\Lambda} \sum_{i=1}^K \sum_{j=0}^{K-i} (i+j) \frac{a^j \Lambda^{i+j} \frac{e^{-\Lambda}}{i!} \frac{e^{-a\Lambda}}{j!}}{1 - e^{-\Lambda}} \\ &+ \sum_{i=1}^K \sum_{j=0}^{K-i} \frac{(i+j)a^j \Lambda^{i+j} e^{-(1+2a)\Lambda}}{i!j!} \int_{y=0}^a \frac{(1+y)^i}{1 - e^{-(1+y)\Lambda}} dy \end{aligned} \quad (17)$$

1-persistent CSMA with MPR

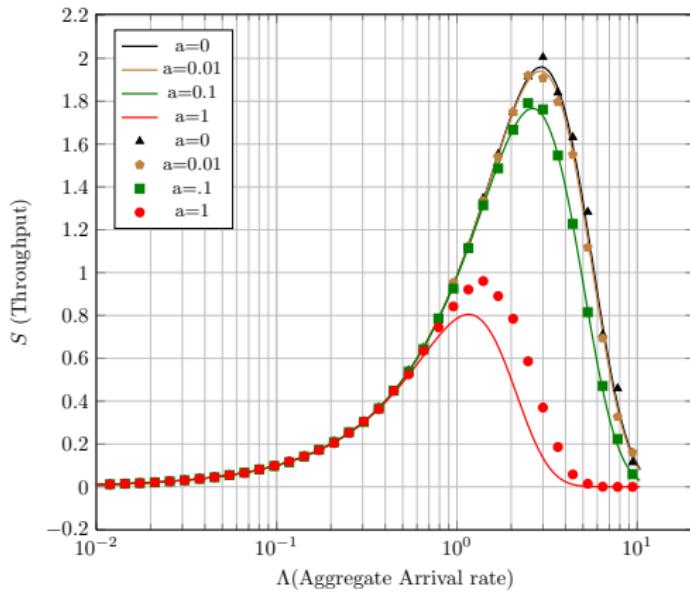


Figure: Throughput of 1P-CSMA with MPR: Analysis(lines) vs Simulation (symbols) for $K = 4$

Adaptive Backoff algorithm for IEEE 802.11 under MPR

Parameters

- ▶ K : MPR capability
- ▶ i : No of ongoing transmissions
- ▶ $d(i)$: the value of counter decrements in a slot for a given i
- ▶ $K_t (< K)$: Threshold

Adaptive MAC protocol

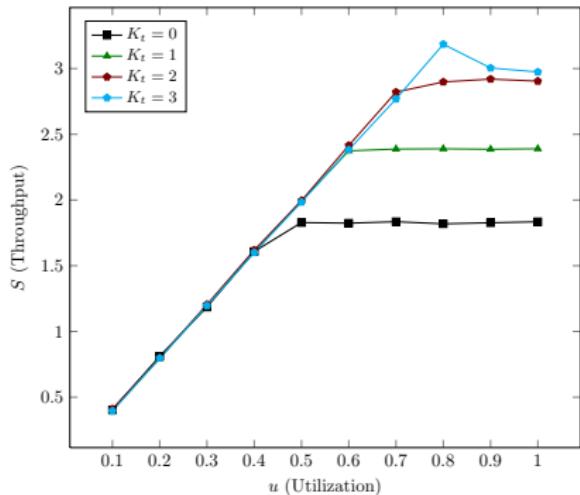
$$d(i) = \begin{cases} K - i & i \leq K_t \\ 0 & otherwise \end{cases}$$

Proposed protocol

- ▶ Decrement the counter based on channel utilization ($K - i$)
- ▶ DIFS - wait till number of ongoing transmissions go below K_t

When the channel utilization is low, the counter gets decremented faster and nodes attempt transmissions sooner \Rightarrow improved delay and throughput

Simulation Results



(a) The throughput of proposed protocol against normalized channel utilization



(b) The average MAC delay of proposed protocol against normalized channel utilization

Figure: Proposed protocol performance for different thresholds (Params: $K = 4$, $N = 30$, $CW_{min} = 128$, $m = 5$, $rlimit = 4$)

Performance Comparison

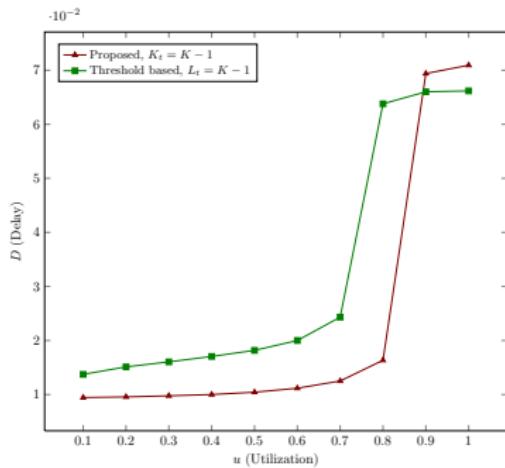


Figure: The MAC delay of proposed protocol and threshold based protocol against utilization (Params: $K = 7$, $N=30$, $CW_{min} = 128$, $m = 5$)

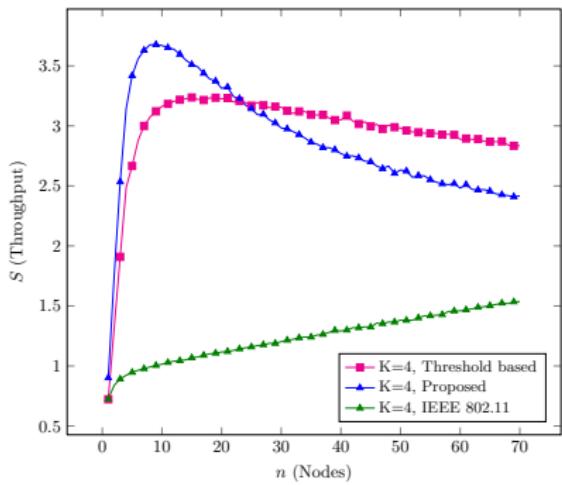


Figure: The normalized saturation throughput of different protocols against number of nodes. (Params: $K = 4$, $CW_{min} = 128$)

Published in 22nd Intl. Conf. on Computer Communication Networks (ICCCN 2013), Bahamas, 30 July - 2 August, 2013

Analysis of generalized counter decrements

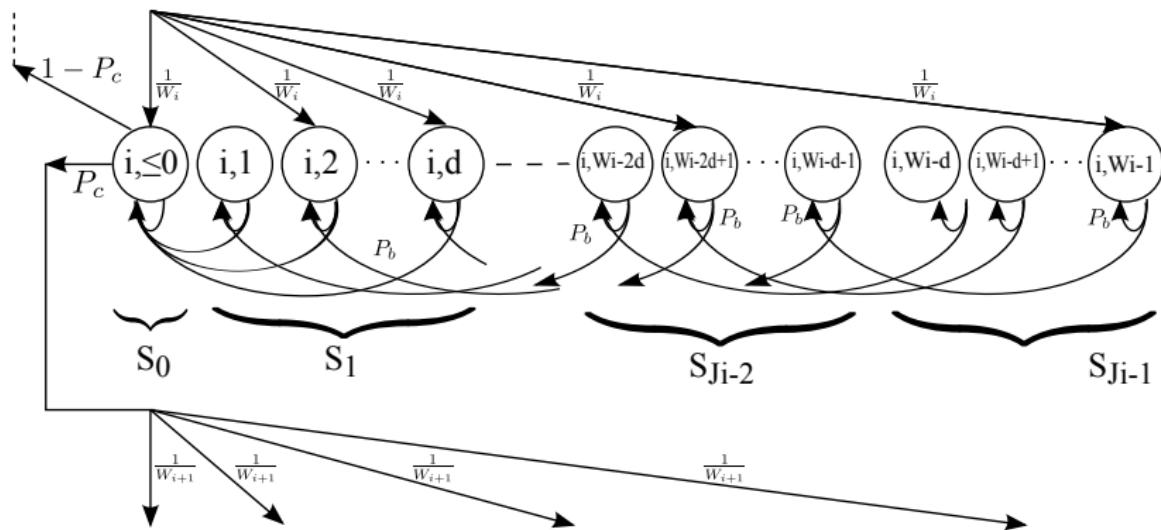


Figure: One stage of the Markov Chain for the backoff process of DCF for the case of backoff decrements by a value $d \geq 1$

$$S_k = \{(k-1)d + 1, \dots, kd\} \quad \forall k \in [0, J_i - 1]$$

$$J_i - 1 = \left\lfloor \frac{W_i - 1}{d} \right\rfloor$$

Markov Chain for backoff process of MRP DCF

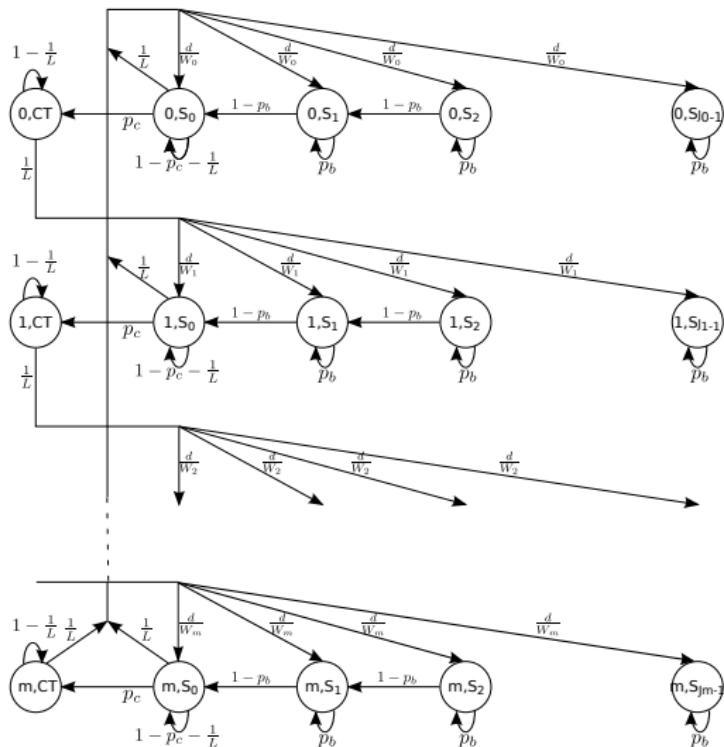


Figure: Markov Chain for the backoff process MPR DCF for uniform counter decrementing by a value $d \geq 1$

Stationary Probabilities

$$r = \frac{Lpc}{1 + Lpc} \quad (18)$$

$$b(i, CT) = Lpc r^i b(0, S_0) \quad \forall i \in [0, m] \quad (19)$$

$$b(i, S_k) = \frac{J_i - k}{J_i} \frac{1}{1 - p_b} r^{(i-1)} b(0, S_0) \quad (20)$$
$$\forall i \in [1, m], k \in [1, J_i - 1]$$

$$b(0, S_0) = \frac{1}{(1 + Lpc)(\frac{1 - r^{m+1}}{1 - r}) + \frac{p_c}{1 - p_b} (\frac{1 - (2r)^m}{1 - 2r} J_0 - \frac{1}{2} \frac{1 - r^m}{1 - r})} \quad (21)$$

$$\tau_d = \frac{(\frac{1}{L} + p_c) \frac{1 - r^{m+1}}{1 - r}}{(1 + Lpc)(\frac{1 - r^{m+1}}{1 - r}) + \frac{p_c}{1 - p_b} (\frac{1 - (2r)^m}{1 - 2r} \lceil \frac{W_0}{d} \rceil - \frac{1}{2} \frac{1 - r^m}{1 - r})} \quad (22)$$

Channel state Markov Chain

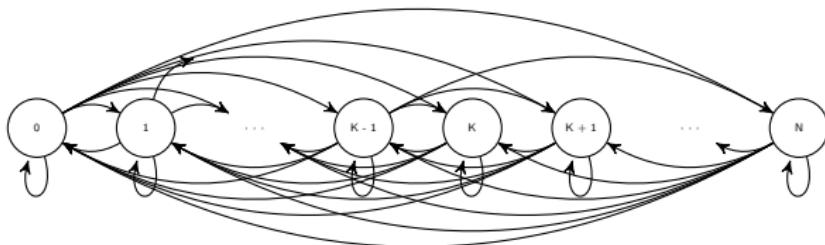


Figure: Channel state DTMC; States \rightarrow (# of ongoing transmissions)

- ▶ Each node starts transmission with probability τ
- ▶ $q(i, j)$ is the probability that j additional nodes starts transmission in a slot in which i transmissions are going on
- ▶ $r(i, j)$ is the probability that j out of i ongoing transmissions finish
- ▶ At every slot, an ongoing transmission encounters a collision with probability p_c
- ▶ Duration of a single packet transmission is geometrically distributed with mean L slots

Transitions

$$q(i, j) \equiv \binom{N-i}{j} \tau^j (1-\tau)^{N-i-j}$$

$$r(i, j) \equiv \binom{i}{j} \left(\frac{1}{L}\right)^j \left(1 - \frac{1}{L}\right)^{i-j}$$

State Transitions

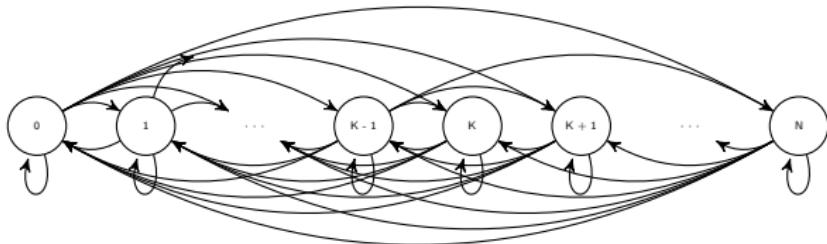


Figure: Channel state DTMC; States \rightarrow (# of ongoing transmissions)

Forward transitions

$$p_{i,i+m} = \sum_{j=0}^{\min(i, N-i)} q(i, m+j) r(i, j) \quad \forall i \leq K_t \quad (23)$$

$$p_{i,i+m} = 0 \quad \forall i > K_t, m > 0 \quad (24)$$

Stationary Probabilities

$$\pi = \pi P$$

$$\pi = \text{left eig}(P)$$

$\pi_i = |M_{i+1}|$ where M_j is the j th principal minor of P .

$$p_{i,i-m} = \sum_{j=0}^{\min(i, N-i)} r(i, m+j) q(i, j) \quad \forall i \leq K_t \quad (25)$$

$$p_{i,i-m} = r(i, m) \quad \forall i > K_t \quad (26)$$

Throughput

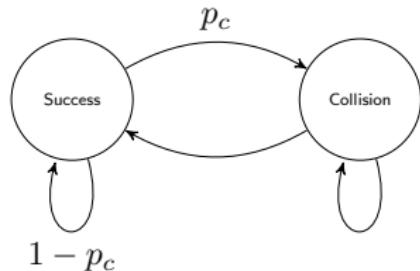


Figure: Two state DTMC of channel

Collision and Busy probabilities

$$p_c = \frac{\sum_{i=0}^K \sum_{j=K+1}^N \pi_i p_{i,j}}{\sum_{i=0}^K \pi_i} \quad (27)$$

$$p_b = \sum_{i=K_t}^N \pi_i \quad (28)$$

Solve

$$\tau = \left(\frac{1}{L} + p_c \right) \frac{1 - r^{m+1}}{1 - r} b(0, 0) \quad (29)$$

$$\text{where } r = \frac{L p_c}{1 + L p_c}$$

Throughput

Conditional collision probability,

$$\Pr(\text{Collision}/\text{tx}) = 1 - (1 - p_c)^L = p \quad (30)$$

Normalized throughput S ,

$$S = \frac{N \tau (1 - p)}{\sigma} \quad (31)$$

Channel State Transitions- Proposed protocol

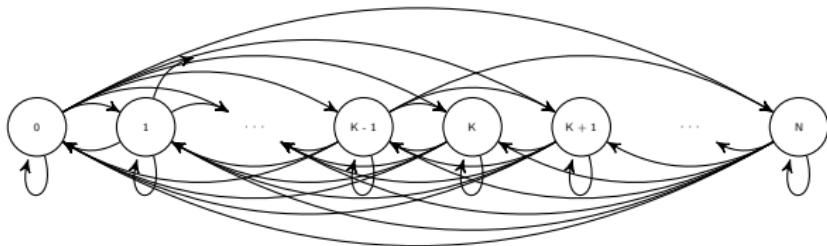


Figure: Channel state DTMC; States \rightarrow (# of ongoing transmissions)

τ is function of i

$$q(i, j) \equiv \binom{N-i}{j} \tau(i)^j (1 - \tau(i))^{N-i-j} \quad (32)$$

$$r(i, j) \equiv \binom{i}{j} \left(\frac{1}{L}\right)^j \left(1 - \frac{1}{L}\right)^{i-j} \quad (33)$$

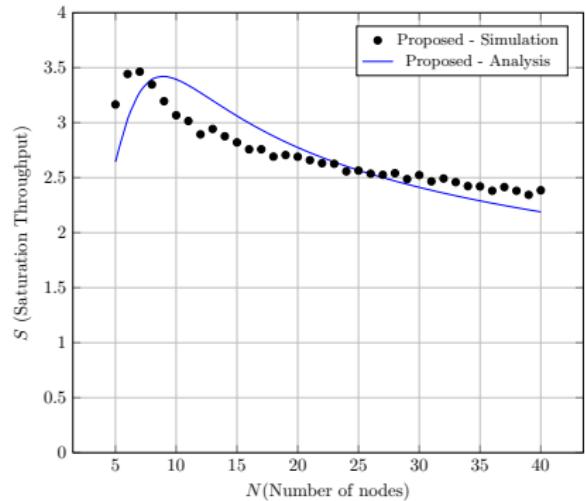
$\tau(i)$

If we define, $\tau(K-1) = \tau_0$ then

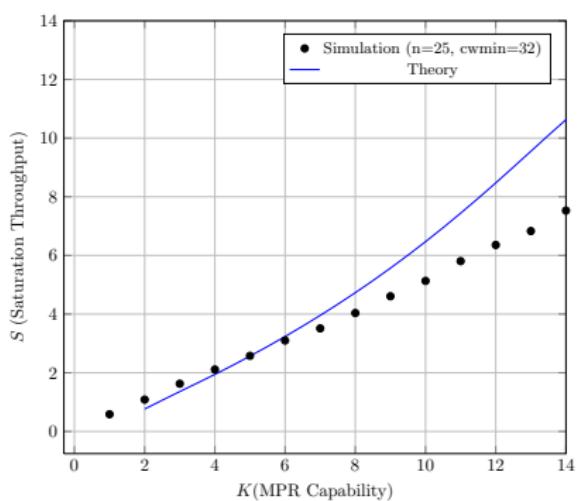
$$\tau(i) = (K-i)\tau_0$$

$$\tau = \sum_{i=0}^{K-1} \pi_i \tau(i) \quad (34)$$

Proposed Protocol: Analysis vs Simulation



(a) Throughput vs number of nodes
 N (Params: $K = 5, CW_{min} = 32$)



(b) Throughput vs MPR capability K
(Params: $N = 30, CW_{min} = 32$)

Figure: Proposed protocol performance: theory vs simulation

- ▶ Enhancement to the IEEE 802.11ac EDCA protocol
- ▶ For MPR, in addition to CWmin, CWmax, and AIFSN, two more parameters namely (i) threshold and (ii) Counter decrementation value offers service differentiation

Adaptive Backoff Algorithm for IEEE 802.11ac - MPR

Table: Access categories and service differentiation

Access Category	Parameters
AC ₀ Real time Voice	$K_t = K-1$, Adaptive count down $K - L$
AC ₁ Video playback	$K_t = \lceil K/2 \rceil$, Adaptive count down $K - L$
AC ₂ Best effort	$K_t = \lceil K/4 \rceil$, Non-adaptive count down, Always decrement by 1
AC ₃ File transfer	$K_t = 1$, Non-adaptive count down, Always decrement by 1

where K_t is threshold, K is MPR limit and L is estimated no.of transmission

Adaptive Backoff Algorithm for IEEE 802.11ac - MPR

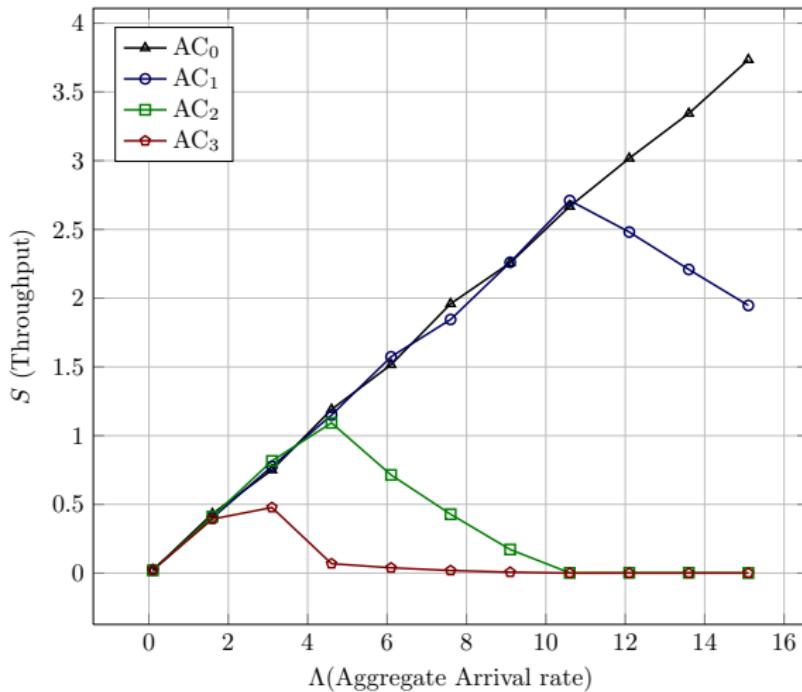


Figure: The throughput against offered traffic for different access categories (Params: Number of stations $N = 40$, $K = 8$, $m = 7$, $CW_{min} = 256$)

Adaptive Backoff Algorithm for IEEE 802.11ac - MPR

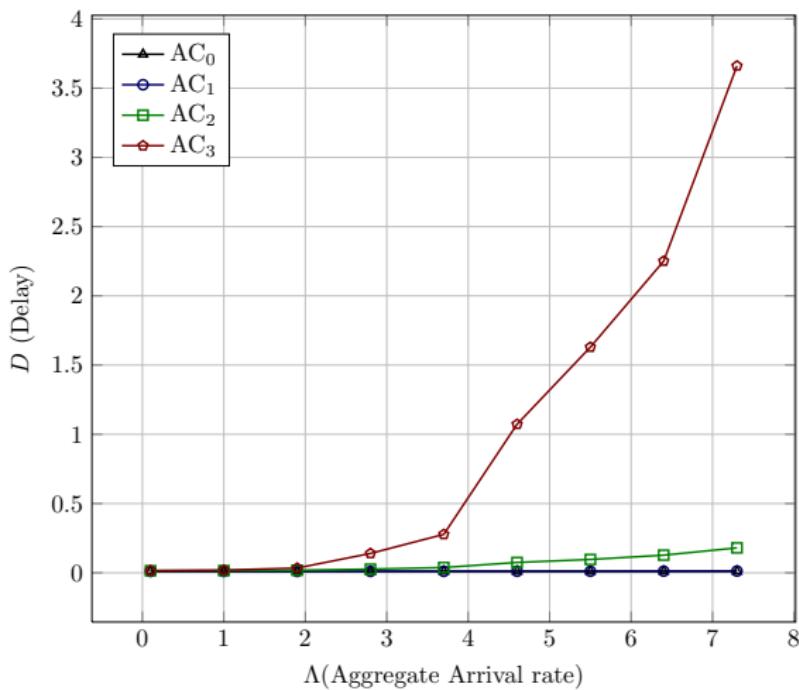


Figure: The MAC delay against offered traffic for different access categories (Params: Number of stations $N = 40$, $K = 8$)