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• Infrastructure behind the “Cloud”, large-scale data warehouse
• Massive number of servers (compute and storage nodes)
• Connected via a network of switches: Datacenter Network

Overview of Datacenters

Google’s Datacenter Iowa, US [1] 

[1] https://datacenters.google/discover-more/photo-gallery/ 

https://datacenters.google/discover-more/photo-gallery/
https://datacenters.google/discover-more/photo-gallery/
https://datacenters.google/discover-more/photo-gallery/
https://datacenters.google/discover-more/photo-gallery/
https://datacenters.google/discover-more/photo-gallery/
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• Hierarchical network topology with Ethernet packet switches 
• Top-of-rack switch (ToR), Aggregate switch (Aggr), Core switch (Core) 

Datacenter Network (DCN) Architectures

Optical transceiver Optical fiberServer (CPU/GPU/TPU)

Packet-switched
Network core

Packet 
Switches 

Pod

ToR ToR ToR ToR ToR ToR ToR ToR

Aggr Aggr Aggr Aggr

Core Core

Direct Attached Cable (DAC)

Network edge



DCN Applications are Diverse

• Stringent performance requirements: High throughput + Low latency 
• Advent of domain-specific accelerators, non-volatile memory
• Shifting major bottleneck from computation to network IO 
• Super fast scale-up of network capacity is necessary

High Performance Computing [1]   Distributed ML/ DNN training [2] Distributed Database Queries [3] 
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[1] https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/ 
[2] https://www.mdpi.com/2076-3417/12/1/292 
[3] https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/ 

https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/
https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/
https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/
https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/
https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/
https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/
https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/
https://www.mdpi.com/2076-3417/12/1/292
https://www.mdpi.com/2076-3417/12/1/292
https://www.mdpi.com/2076-3417/12/1/292
https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/
https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/
https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/
https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/
https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/


Challenges of Post Moore’s Law Era
Electrical Packet Switches (EPS) are not sustainable
• Increasing gap: Electrical switch capacity vs power/cost/port density
• Broadcom Tomahawk-5 ASIC requires 45% more power w.r.t previous Gen [1] 

5[1] Qian, Kun, et al. "Alibaba HPN: A Data Center Network for Large Language Model Training." ACM SIGCOMM, 2024.
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Packet-switched DCN Consumes Excessive Power
• DCN architecture with 65k servers + 64x400G switches 
• The network power consumption can shoot up to 48.8 MW [1]
• 52.5% more than the energy budget of the DCN operator
• Critical for AI clusters as network utilization is very high

6
[1] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.
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[1] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.
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Basic Building Block: Optical Circuit Switch (OCS)

A

B

C

D

Features
• Physically steer light, programmable
• Circuits can be configured at runtime
• Reconfiguration downtime (𝛿)

Advantages
• Agnostic to data rate
• No packet processing, negligible forwarding latency
• Negligible/zero power consumption

8

OCS Technology 3D MEMS 2D MEMS, Rotor AWGR

𝛿 ≈ 10 msec ≈ 10 𝜇sec ≈ 100 nanosec 

Change of philosophy: cannot reconfigure circuits per-packet



Optical Circuit Switching in DCN is Real
• Industry is adopting OCS in production-scale DCN clusters
• Google’s Lightwave [1], Microsoft’s Sirius [2] fabrics
• Saving power and CapEx (as OCS can serve multiple generations) 
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Google’s Lightwave [1] 
MEMS based (136 x 136)

Microsoft’s Sirius [2]
AWGR based

[1] Liu, Hong, et al. “Lightwave Fabrics: At-Scale Optical Circuit Switching for Datacenter and Machine Learning Systems”, ACM SIGCOMM, 2023.
[2] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.
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• OCS cycles through that predefined set of circuit configurations [1,2]
• Illusion of any-to-any connectivity among ToRs over time 
• Round-Robin Circuit Scheduling: Traffic Agnostic, Open loop control

servers

ToR A ToR B ToR C ToR D ToR E

Existing Design Paradigm: Traffic Agnostic OCS cores
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[1] Mellette, William, et al. "RotorNet: A Scalable, Low-complexity, Optical Datacenter Network." ACM SIGCOMM, 2017.
[2] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.

Core OCS round-robin schedule
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servers
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[1] Mellette, William, et al. "RotorNet: A Scalable, Low-complexity, Optical Datacenter Network." ACM SIGCOMM, 2017.
[2] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.
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Challenges of All-Optical Circuit-Switched Cores
Challenge 1: Lacks native multicast capability
• No point to multipoint circuit: Fundamental to the OCS hardware
• How to enable low-energy high-performance multicast? [TON’22]

Challenge 2: Cannot efficiently handle traffic skewness
• Lack of path diversity: Fundamental to the round-robin abstraction
• How to compensate for the lack of path diversity? [INFOCOM’24, NSDI’22]

Challenge 3: Terrible tail latency performance 
• Physical circuit downtime: Fundamental to the OCS hardware + architecture
• How to minimize the impact of OCS downtime under diverse workloads? [In progress]
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How to solve these challenges while preserving 
most of the energy-saving benefit of OCS cores? 



Theme of my Thesis: Holistic DCN Architecture 
• Two components: Combination of Enhanced optical core and Optical edge
• Separate optical core enables low-energy and high-performance multicast
• Flexible optical edge handles traffic skewness and improves tail performance

Component 1
TON’22

Component 2
INFOCOM’24 (Today)
NSDI’22 
More to come !! 

ToR ToR ToR ToR ToR ToR ToR ToR

Server

Round-robin OCS core for 
unicast traffic

Separate optical core 
for multicast traffic

Optical edgeOptical edgeOptical edge Optical edge
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Anatomy of Round-Robin Circuit Scheduling
• Uniform distribution of bandwidth across the node pairs
• For uniform traffic, fair utilization of all circuits

[1] Ghobadi, Monia, et al. "ProjecTOR: Agile reconfigurable data center interconnect." ACM SIGCOMM, 2016. 
[2] Shrivastav, Vishal, et al. "Shoal: A network architecture for disaggregated racks." USENIX NSDI, 2019.
[3] Wang, Weitao, et al. "RDC: Energy-Efficient Data Center Network Congestion Relief with Topological Reconfigurability at the Edge." USENIX NSDI, 2022.
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Realistic DCN workloads are not ideal

High Skewness 
• Most of the traffic is confined within hot rack pairs 
• Microsoft DCN trace: 80% of traffic between 0.03-0.4% of rack-pairs [1]
• Disaggregated workload: 84% of flows between 33% nodes [2]

High Inter-rack Traffic Volume 
• Most of the traffic crosses the rack boundary 
• Facebook Frontend trace: 96.26% Inter-rack traffic [3]
• Facebook Database trace: 92.89% Inter-rack traffic [3]

A B C D E

T1 B C D E A

T2 C D E A B

T3 D E A B C

T4 E A B C D



Realistic Workloads: Poor Performance
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Impact of skewness and high inter-rack volume
• Average FCT Slowdown up to 7.2x
• Hot rack circuit pairs heavily utilized
• Cold rack circuit pairs remain underutilized
• Cannot leverage the full core bandwidth 

• Realistic workloads (Cache): a) heavily skewed, b) high inter-rack volume
• Round-robin OCS-based core (Sirius) vs Non-blocking network
• Skewness (𝑥, 𝑦): 𝑥 fraction of hot-rack pairs exchange 𝑦 fraction of traffic



State-of-the-art Technique to Improve Performance 
• Valiant Load Balancing (VLB): Each ToR sends packets via an intermediate ToR
• Phase 1: ToR A sends traffic to an intermediate ToR X now (current slot)
• Phase 2: ToR X forwards traffic to destination ToR B later (future slot)

• Path: A->B->D
• Leverage indirect hop to 

reduce latency
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VLB Helps but Not Enough to Unlock Full Potential 
Packet-level simulation
• VLB atop round-robin OCS core (Sirius) vs Non-blocking network
• High skewness (0.05,0.8) and vary oversubscription ratio (os) 

os 1:1: Impact of traffic skewness
• Average FCT slowdown by 33% 
• 99% FCT slowdown by 74.1%
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OCS core + VLB Higher os: Impact of inter-rack traffic 
• Performance degrades rapidly 
• 8:1 os: Average FCT slowdown by 13.6x

How to efficiently support highly skewed + inter-rack traffic?

Root Cause
• Congestion at the intermediate hop
• Cannot reduce inter-rack traffic



Our Proposal: Intelligent Traffic Regrouping at Edge
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• OSSV [1]: Optical Substrate for Skewness and Volume Minimization
• Traffic agnostic core + Traffic adaptive reconfigurable edge

Traffic Regrouping
Through OSSV edge

SV Minimization

ToR ToR ToR ToR

All-optical Round-robin core

OCS OCS

servers

OSSV

Shaped Traffic
a) Low skewness
b) Low inter-rack volume

Incoming Traffic
a) High skewness
b) High inter-rack volume

• Localize most of the traffic within a rack: Minimize inter-rack volume
• Remaining inter-rack traffic close to uniform: Minimize inter-rack skewness

[1] Das, Sushovan, et al. “Rearchitecting Datacenter Networks: A New Paradigm with Optical Core and Optical Edge." IEEE INFOCOM, 2024.



Skewness and Volume (SV) Minimization: Intuition
• Skewness minimization and traffic localization are inter-twined
• Naïve traffic localization can make skewness worse
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𝑓1: 0->1  100000
𝑓2: 0->4  1000
𝑓3: 1->5  1000
𝑓4: 2->3  500
𝑓5: 3->2  500
𝑓6: 4->5  500
𝑓7: 5->4  500

Traffic demand

JFI: Jain’s Fairness Index 
Higher is better

ToR 2

All-optical circuit-
switched core 
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ToR 1ToR 0

32 54

Config (a): Initial server-to-ToR mapping

ToR 0

ToR 1 ToR 2
1 2 𝑓4

𝑓1

𝑓5

3

0 5

4

𝑓2 + 𝑓7
𝑓6

𝑓3

Localized traffic: 0
JFI of inter-rack: 0.18
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𝑓1: 0->1  100000
𝑓2: 0->4  1000
𝑓3: 1->5  1000
𝑓4: 2->3  500
𝑓5: 3->2  500
𝑓6: 4->5  500
𝑓7: 5->4  500

Traffic demand

JFI: Jain’s Fairness Index 
Higher is better

ToR 2

All-optical circuit-
switched core 
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ToR 1ToR 0

32 54

ToR 0

ToR 1 ToR 2
2 3

𝑓6 + 𝑓7

𝑓1

4

0 1

5

𝑓4 + 𝑓5 𝑓2 + 𝑓3

Config (b): Naïve traffic localization
Localized traffic: 102000
JFI of inter-rack: 0.17





Skewness and Volume (SV) Minimization: Intuition
• Skewness minimization and traffic localization are inter-twined
• Naïve traffic localization can make skewness worse

21

𝑓1: 0->1  100000
𝑓2: 0->4  1000
𝑓3: 1->5  1000
𝑓4: 2->3  500
𝑓5: 3->2  500
𝑓6: 4->5  500
𝑓7: 5->4  500

Traffic demand

JFI: Jain’s Fairness Index 
Higher is better

Goal: Jointly optimize to find the right balance 

ToR 2

All-optical circuit-
switched core 
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ToR 0

ToR 1 ToR 2
2 5

𝑓4 + 𝑓7

𝑓1

3

0 1

4𝑓5 + 𝑓6

𝑓3 𝑓2

Config (c): SV minimization

Localized traffic: 100000
JFI of inter-rack: 0.67

✓
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SV Minimization: Designing Suitable Cost Function 

Linear cost function is not suitable 
• Can’t distinguish between Config (b) and Config (c) in terms of 𝑓2 and 𝑓3

• In both cases, cost is 𝑓2 + 𝑓3 = 1000 +  1000 =  2000
• Only penalizes sum of inter-rack traffic, NOT the variance 

𝑓2 and 𝑓3 both inter-rack 
but under same rack pair

𝑓2 and 𝑓3 both inter-rack 
but under different rack pairs

Intuitively, cost function (Φ) should satisfy:  
• Φ 1000 + Φ 1000 < Φ 2000

Config (b) Config (c)

We need super-linear and strictly increasing cost function
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Exponential Cost Function: Achieve the Right Balance

Φ 𝑥 = 𝑒𝑚𝑥 − 1
𝑥: traffic load between a rack pair
𝑚: Tunable parameter controlling 
skewness-volume trade-off

Find optimal server-to-ToR configuration to minimize cost 

𝑥1 2𝑥1

𝜙(2𝑥1)

𝜙(𝑥1)
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Higher penalty for high inter-rack variance 
(Minimize Skewness) 
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𝜙 𝑥 = 𝑒𝑚𝑥 − 1

𝝓 𝒙𝟐 > 𝝓(𝒙𝟏)
if 𝒙𝟐 > 𝒙𝟏

𝑥2

Higher penalty for high inter-rack traffic value 
(Minimize inter-rack Volume)



24

SV Minimization: Problem Definition

𝐶𝑜𝑠𝑡 𝑓, 𝐵, Φ, 𝐼 = ෍

𝑗=1

𝑁

෍

𝑖=1

𝑁

Φ𝑖𝑗 𝐹𝑖𝑗 , 𝐵𝑖𝑗  𝐹𝑖𝑗

𝐹𝑖𝑗 = ෍

𝑠=1

𝑀𝑁

෍

𝑠′=1

𝑀𝑁

𝐼𝑠𝑖  𝐼𝑠′𝑗 𝑓𝑠𝑠′  

Φ𝑖𝑗 = 𝑒

𝑚𝐹𝑖𝑗

𝐵𝑖𝑗 − 1 

Input: 𝑁: Number of ToRs , 𝑀: servers per ToR, 𝑓: server level traffic matrix

Find optimal server-to-ToR configuration (𝐼) to minimize cost 

𝐹: rack-level traffic matrix 𝐼𝑠𝑖 = 1, if server 𝑠 belongs to ToR 𝑖

𝐼𝑠′𝑗 = 1, if server 𝑠′ belongs to ToR 𝑗

Φ: cost function per unit flow size 
between rack 𝑖 to rack 𝑗

𝐵𝑖𝑗 = Inter-rack bandwidth

𝑚 = 2

A variant of the Balanced Graph Partitioning (BGP) problem

NP-Hard !!!



Hill-climbing Based Randomized Heuristic

Candidate solution: 
• Select random ToRs (𝑟, 𝑟′)
• Select random servers (𝑠, 𝑠′) 

from (𝑟, 𝑟′)

Evaluate swap by 
computing cost 
difference (Δ𝑠𝑠

′ )

• Accept swap
• Update ToR 

assignment

Reject swap

Repeat until convergence

25

Efficient Evaluation of Δ𝑠𝑠′  
• Avoid Redundant Computation
• Complexity 𝑂(𝑀𝑁)
• Inspired by Kernighan-Lin Algorithm

Naïve Evaluation of Δ𝑠𝑠′  
• Computing 𝐹 from scratch
• Complexity 𝑂(𝑀2𝑁2)
• Total servers = 𝑀𝑁
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Evaluation in Detail

Performance
• Impact of skewness
• Impact of network load
• Impact of network oversubscription

Ablation Study
• Impact of edge reconfiguration epoch
• SV-minimization benchmark
• Impact of multiple edge OCS with different cost function

Practical Viability
• Prototype implementation on testbed 
• Power and cost analysis

Baseline Architectures
• OCS round-robin core 
• OCS core + Valiant Load Balancing (VLB)
• Packet-switched cores

Simulation Framework
• 32 servers per ToR, 16 ToRs, 512 servers, 100 Gbps
• Core OCS 𝛿 = 100 nanosec (AWGR), duty cycle 99% 
• Edge OCS 𝛿 = 10 𝜇sec (2D MEMS)
• Trace-based traffic (Cache) synthesized for different 

skewness and network load
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Results: High Performance at Scale

OSSV (one edge OCS) vs. OSSV (multiple edge OCS) 
• OSSV (SV Min) 8-OCS vs. 1-OCS: degrades by 2.19% (green bar)
• Aggressive traffic localization harms inter-rack traffic fairness

OSSV (green bar) vs. Packet-switched core (purple bar)
• At os 1:1: Avg FCT gap is within 6.4% of non-blocking 
• At os 8:1: Avg FCT gap is within 47% of non-blocking
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Results: Power and Capital Cost Analysis

Power analysis: OSSV (orange bar) vs. OCS core
• Packet switch power = 23.5 Watt/port vs. MEMS OCS power = 0.14 Watt/port 
• Keep most of core energy-saving benefit (20-50% excess)

Cost analysis: OSSV (orange bar) vs. OCS core
• Less expensive than overprovisioned OCS cores for realistic OCS cost range
• In longer term, OCS will cost will be amortized across generations



Summary of OSSV

• OSSV: Traffic agnostic core + Traffic 
adaptive reconfigurable edge
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• Novel SV Minimization: jointly optimize 
skewness and inter-rack traffic volume

• High Performance: Enables OCS core to 
perform close to non-blocking network  

• All-optical DCN core: Saves power but 
cannot support diverse network traffic

• Power and Cost Saving: deployable as  
next-gen cloud infrastructure

Q&A
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