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Overview of Datacenters

* Infrastructure behind the “Cloud”, large-scale data warehouse
* Massive number of servers (compute and storage nodes)
* Connected via a network of switches: Datacenter Network

Google’s Datacenter lowa, US [1]

[1] https://datacenters.google/discover-more/photo-gallery/
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Datacenter Network (DCN) Architectures

* Hierarchical network topology with Ethernet packet switches
* Top-of-rack switch (ToR), Aggregate switch (Aggr), Core switch (Core)
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DCN Applications are Diverse

8

%
.
= g "/\\‘l
o § rddB
= § Jo” T
o g - rddA T T e ]
SRS ‘\ rddB is small. rddB is broadcast
3 20 4 SN to each partition of rddA.
— 10
Mapside Combine
| : 8 ‘ 8 8 Each partiti is joi
Dita o Data Dita ich partition of rddA |s‘jomed
20 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Local model Local model Localmodel with the relevant value in rddB
Sea surface temperature (deg C)
Worker 1 Worker2 Worker3
High Performance Computing [1] Distributed ML/ DNN training [2] Distributed Database Queries [3]

e Stringent performance requirements: High throughput + Low latency
* Advent of domain-specific accelerators, non-volatile memory

e Shifting major bottleneck from computation to network IO

e Super fast scale-up of network capacity is necessary

[1] https://sites.uci.edu/zlabe/arctic-sea-ice-visualizations/
[2] https://www.mdpi.com/2076-3417/12/1/292
[3] https://learning.oreilly.com/library/view/spark-the-definitive/9781491912201/
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Challenges of Post Moore’s Law Era

Electrical Packet Switches (EPS) are not sustainable

* Increasing gap: Electrical switch capacity vs power/cost/port density
* Broadcom Tomahawk-5 ASIC requires 45% more power w.r.t previous Gen [1]
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[1] Qian, Kun, et al. "Alibaba HPN: A Data Center Network for Large Language Model Training." ACM SIGCOMM, 2024.



Packet-switched DCN Consumes Excessive Power

* DCN architecture with 65k servers + 64x400G switches

 The network power consumption can shoot up to 48.8 MW [1]
* 52.5% more than the energy budget of the DCN operator

* Critical for Al clusters as network utilization is very high
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[1] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.
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 The network power consumption can shoot up to 48.8 MW [1]
* 52.5% more than the energy budget of the DCN operator

* Critical for Al clusters as network utilization is very high

Low-Power Optical Circuit Switch (OCS): Promising Alternative
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[1] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.



Basic Building Block: Optical Circuit Switch (OCS)

Features

* Physically steer light, programmable A = C
* Circuits can be configured at runtime

e Reconfiguration downtime (6) B — D

OCS Technology m 2D MEMS, Rotor m

~ 10 msec ~ 10 usec ~ 100 nanosec

Advantages
* Agnostic to data rate

* No packet processing, negligible forwarding latency
* Negligible/zero power consumption

Change of philosophy: cannot reconfigure circuits per-packet
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Optical Circuit Switching in DCN is Real

* Industry is adopting OCS in production-scale DCN clusters
* Google’s Lightwave [1], Microsoft’s Sirius [2] fabrics
e Saving power and CapEx (as OCS can serve multiple generations)
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[1] Liu, Hong, et al. “Lightwave Fabrics: At-Scale Optical Circuit Switching for Datacenter and Machine Learning Systems”, ACM SIGCOMM, 2023.

[2] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.
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Existing Design Paradigm: Traffic Agnostic OCS cores

OCS cycles through that predefined set of circuit configurations [1,2]
lllusion of any-to-any connectivity among ToRs over time
Round-Robin Circuit Scheduling: Traffic Agnostic, Open loop control
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[1] Mellette, William, et al. "RotorNet: A Scalable, Low-complexity, Optical Datacenter Network." ACM SIGCOMM, 2017.
[2] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.



Existing Design Paradigm: Traffic Agnostic OCS cores

 OCS cycles through that predefined set of circuit configurations [1,2]
* |llusion of any-to-any connectivity among ToRs over time
 Round-Robin Circuit Scheduling: Traffic Agnostic, Open loop control
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[1] Mellette, William, et al. "RotorNet: A Scalable, Low-complexity, Optical Datacenter Network." ACM SIGCOMM, 2017.
[2] Ballani, Hitesh, et al. "Sirius: A Flat Datacenter Network with Nanosecond Optical Switching." ACM SIGCOMM, 2020.

11



Challenges of All-Optical Circuit-Switched Cores

Challenge 1: Lacks native multicast capability
 No point to multipoint circuit: Fundamental to the OCS hardware
* How to enable low-energy high-performance multicast? [TON’22]

Challenge 2: Cannot efficiently handle traffic skewness

* Lack of path diversity: Fundamental to the round-robin abstraction
* How to compensate for the lack of path diversity? [INFOCOM’24, NSDI’22]

Challenge 3: Terrible tail latency performance
* Physical circuit downtime: Fundamental to the OCS hardware + architecture
e How to minimize the impact of OCS downtime under diverse workloads? [In progress]

How to solve these challenges while preserving
most of the energy-saving benefit of OCS cores?
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Theme of my Thesis: Holistic DCN Architecture

Two components: Combination of Enhanced optical core and Optical edge
Separate optical core enables low-energy and high-performance multicast
Flexible optical edge handles traffic skewness and improves tail performance

Round-robin OCS core for Separate optical core Component 1
unicast traffic for multicast traffic TON’22

/
ToR To ToR Component 2

4 'Y INFocoM’24 (Today)
[ Optical edge [ Optical edge [ Optical edge [ Optical edge NSDI"22

55 5 56 5 55 5 56 5 More to come !!

Server

=
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Anatomy of Round-Robin Circuit Scheduling

* Uniform distribution of bandwidth across the node pairs
* For uniform traffic, fair utilization of all circuits Ei-i--nﬂ

D E A

Realistic DCN workloads are not ideal T2C D E A B

. T3 D E A B C
High Skewness Eor I D e e

* Most of the traffic is confined within hot rack pairs
 Microsoft DCN trace: 80% of traffic between 0.03-0.4% of rack-pairs [1]
* Disaggregated workload: 84% of flows between 33% nodes [2]

High Inter-rack Traffic Volume

* Most of the traffic crosses the rack boundary
* Facebook Frontend trace: 96.26% Inter-rack traffic [3]
* Facebook Database trace: 92.89% Inter-rack traffic [3]

[1] Ghobadi, Monia, et al. "ProjecTOR: Agile reconfigurable data center interconnect." ACM SIGCOMM, 2016.

[2] Shrivastay, Vishal, et al. "Shoal: A network architecture for disaggregated racks." USENIX NSDI, 2019.

[3] Wang, Weitao, et al. "RDC: Energy-Efficient Data Center Network Congestion Relief with Topological Reconfigurability at the Edge." USENIX NSDI, 2022.
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Avg. Flow Completion Time

Realistic Workloads: Poor Performance

e Realistic workloads (Cache): a) heavily skewed, b) high inter-rack volume
* Round-robin OCS-based core (Sirius) vs Non-blocking network
* Skewness (x, y): x fraction of hot-rack pairs exchange y fraction of traffic

(FCT) In microsec

B OCS core (1:1)
B Nonblocking

Impact of skewness and high inter-rack volume
* Average FCT Slowdown up to 7.2x

Hot rack circuit pairs heavily utilized

Cold rack circuit pairs remain underutilized
Cannot leverage the full core bandwidth

(0.05,0.2) (0.05,0.4) (0.05,0.6) (0.05,0.8)
Traffic skewness
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State-of-the-art Technique to Improve Performance

e Valiant Load Balancing (VLB): Each ToR sends packets via an intermediate ToR
 Phase 1: ToR A sends traffic to an intermediate ToR X now (current slot)
* Phase 2: ToR X forwards traffic to destination ToR B later (future slot)

T1 T2 T3 T4
A A ls lc o e
B T1C D E A
| - T2 g.@E A B
E T3!DIE A B C
T4 E A B C D
e e Path: A->B->D
~ ~t ] ~? | | * Leverage indirect hop to
OO0 OO0 000 00O 000 reduce latency

. . . servers
Source Intermediate Destination
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FCT slowdown
w.r.t. non-blocking

VLB Helps but Not Enough to Unlock Full Potential

Packet-level simulation
e VLB atop round-robin OCS core (Sirius) vs Non-blocking network
* High skewness (0.05,0.8) and vary oversubscription ratio (os)
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OCS core + VLB
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oversubscription ratio
Traffic skewness (0.05,0.8)

os 1:1: Impact of traffic skewness

* Average FCT slowdown by 33%
* 99% FCT slowdown by 74.1%

Higher os: Impact of inter-rack traffic
* Performance degrades rapidly
e 8:1 os: Average FCT slowdown by 13.6x

Root Cause
* Congestion at the intermediate hop
e Cannot reduce inter-rack traffic

How to efficiently support highly skewed + inter-rack traffic?
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Our Proposal: Intelligent Traffic Regrouping at Edge

 OSSV [1]: Optical Substrate for Skewness and Volume Minimization
* Traffic agnostic core + Traffic adaptive reconfigurable edge

All-optical Round-robin core

Shaped Traffic
a) Low skewness
b) Low inter-rack volume

R R A o i N N . /\ Traffic Regrouping
[
| Y T | Through OSSV edge
0SSV | "0CS ’0’0’ - {OCS "‘g'. L : SV Minimization
- 2 “‘ A’ .L 2 I

_____________________________ / /\ Incoming Traffic

a) High skewness
>ervers 5 5 5 5 5 5 5 5 b) High inter-rack volume
e Localize most of the traffic within a rack: Minimize inter-rack volume

* Remaining inter-rack traffic close to uniform: Minimize inter-rack skewness

[1] Das, Sushovan, et al. “Rearchitecting Datacenter Networks: A New Paradigm with Optical Core and Optical Edge." IEEE INFOCOM, 2024. 18



Skewness and Volume (SV) Minimization: Intuition

e Skewnhess minimization and traffic localization are inter-twined
* Naive traffic localization can make skewness worse

@ N
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Config (a): Initial server-to-ToR mapping  JFl of inter-rack: 0.18

JFI: Jain’s Fairness Index
Higher is better



Skewness and Volume (SV) Minimization: Intuition

e Skewness minimization and traffic localization are inter-twined
 Naive traffic localization can make skewness worse

/ \ All-optical circuit- R ‘};'
f1:0->1 100000 SW|tched core . >

f2: 0->4 1000
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;::2_:3 500 ToR 0 \ ‘ ToR 1 \ ‘ ToR 2 \ ‘ ' fﬁ_‘t.fs ; f2+f3
fs:3->2 500 fo + fr
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Skewness and Volume (SV) Minimization: Intuition

e Skewness minimization and traffic localization are inter-twined
e Naive traffic localization can make skewness worse

/ \ All-optical circuit- . ‘};'
f1: 0->1 100000 SW|tched core .
f>:0->4 1000 ToR O
f3:1->5 1000 oy
£ 253 500 ToR 0 \ ‘ ToR 1 \ ‘ ToR 2 \ H fou /
fs:3->2 500 . f4_+_{7
fs: 4->5 500 "ur... "
D = P
Traffic demand Localized traffic: 100000

JFI of inter-rack: 0.67

JFI: Jain’s Fairness Index
Higher is better

Goal: Jointly optimize to find the right balance

Config (c): SV minimization
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SV Minimization: Designing Suitable Cost Function

L Rt anw
L3 "%
- - *
r s = fi s

Config (b) ‘ﬁ Config (c)
, 01,
AT VAP [ i U7

L - * .
f> and f3 both inter-rack 3 - fe ¥ 17 S Ay f> and f3 both inter-rack
but under same rack pair @ . o but under different rack pairs
‘.: ) !5 + f?‘,
Localized traffic: 102000 Localized traffic: 100000
JFI of inter-rack: 0.17 JFI of inter-rack: 0.67

Linear cost function is not suitable
* Can’tdistinguish between Config (b) and Config (c) in terms of f, and f5

* Inboth cases, costis f, + f3 =1000 + 1000 = 2000
* Only penalizes sum of inter-rack traffic, NOT the variance

Intuitively, cost function (®) should satisfy:
e ®(1000) + ®(1000) < ®(2000)

We need super-linear and strictly increasing cost function
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Exponential Cost Function: Achieve the Right Balance

i x: traffic load between a rack pair
CI)(x) = € —1 m: Tunable parameter controlling
skewness-volume trade-off

2 'T‘ 3 T‘
S® pox) = em™ — 1 S3 po0) = e™ — 1
2% 2%
29 ! 29 !
§ g / § *g d(2x1) + ..................... l
$ HE + .............. // P(xz2) > P(x1) $ E //E ¢(2x1) > 2¢p(xq)
33 P (x2) s if Xz > xq 5 8 2¢0x) et
o X, )9 > E o' PR\ ALELELLLL P .
e R b at S A R
X1 X2 X1 2x1
Inter-rack traffic (x) Inter-rack traffic (x)
Higher penalty for high inter-rack traffic value Higher penalty for high inter-rack variance
(Minimize inter-rack Volume) (Minimize Skewness)

Find optimal server-to-ToR configuration to minimize cost
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SV Minimization: Problem Definition

Input: N: Number of ToRs , M: servers per ToR, f: server level traffic matrix

Find optimal server-to-ToR configuration (/) to minimize cost

Cost (f,B,®,I) = zzq’u( ij» Bij) Fij

j=1i=
: : MN MN =1 i :
F: rack-level traffic matrix si = 1,if server s belongs to ToR ¢
Fi; = Z Z I Iy fssr  Ig; =1, if server s’ belongs to ToR j
s=1s'=
®: cost functhn per unllt flow size mF;; B;; = Inter-rack bandwidth
between rack i to rack j dj=e Bij _1 m =2

A variant of the Balanced Graph Partitioning (BGP) problem
NP-Hard !l



Hill-climbing Based Randomized Heuristic

* Accept swap
e Update ToR
assignment

. ° \ /

Candidate solution: Evaluate swap by

e Select random ToRs (7, 1) - computing cost

e Select random servers (s, s’) differr)enceg(A' )
SS

9 from (r,7")

v (8

If 4 Reject swap

Ss’SO

Repeat until convergence

Naive Evaluation of A/ Efficient Evaluation of A .
 Computing F from scratch e Avoid Redundant Computation
e Complexity O(M?N?)  Complexity O(MN)

* Total servers = MN * Inspired by Kernighan-Lin Algorithm
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Evaluation in Detail

Baseline Architectures
* OCS round-robin core
* OCS core + Valiant Load Balancing (VLB)
* Packet-switched cores

Performance Simulation Framework

e 32 servers per ToR, 16 ToRs, 512 servers, 100 Gbps
e Core OCS 6 =100 nanosec (AWGR), duty cycle 99%
 Edge OCS 4 =10 usec (2D MEMS)

* Trace-based traffic (Cache) synthesized for different
Ablation Study skewness and network load

* Impact of skewness
* Impact of network load
* Impact of network oversubscription

* Impact of edge reconfiguration epoch
e SV-minimization benchmark
* Impact of multiple edge OCS with different cost function

Practical Viability
* Prototype implementation on testbed
 Power and cost analysis



Results: High Performance at Scale

_ 107 8000
) I OCS core —_
g @ OCS core + VLB b
E 106 | :Iopera 8
o I Packet-switched core 5
E [ OSSV (500 microsec, 1 OCS)L ___ ] =
= | N
= 105} i =
- pm———— I o
O i ) | L
| | | q,)
g) 1041 I I 11 g e ]
S I I 1 O T OSSV (SV minimization)
= : : P2 I OSSV (Traffic localization)
é I [ 1 < I Non-blocking
103 ! - : EEEN | EEmws 1 s |
o1 2 41 V. 81 ocs=1 ocs=2 ocs=4 ocs=8
~ """ Toversubscription ratio”~ No. of edge ocs in OSSV (500 microsec)
Traffic skewness (0.05,0.8) Skewness (0.05,0.8), os = 1:1

OSSV (green bar) vs. Packet-switched core (purple bar)
* Atos 1:1: Avg FCT gap is within 6.4% of non-blocking
* At os 8:1: Avg FCT gap is within 47% of non-blocking

OSSV (one edge OCS) vs. OSSV (multiple edge OCS)
e OSSV (SV Min) 8-OCS vs. 1-OCS: degrades by 2.19% (green bar)
* Aggressive traffic localization harms inter-rack traffic fairness
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Results: Power and Capital Cost Analysis

3x | | OCS core BW 1.5x [N OCS core BW 2.5x i N OCS core BW 1.5x [N OCS core BW 2.5x
=5 o A I
— 8 - g 8x II \
s = O
—_ A 3 (7)) I
g3 =Q I
; 0 Q o I
oc =
o'~ = .E 4)( B I
e Qg 1
» = » O
U - N > |
O = [T . |
x S o e
w3 X 5 |
|
|
|
1x 2x 3x 4x 5x 6x 7x
Ratio of tunable and fixed transceiver power 3% 25% 50% 75% 100%
400 Gbps data rate OCS cost as % of 400 Gbps packet switch

Power analysis: OSSV (orange bar) vs. OCS core
* Packet switch power = 23.5 Watt/port vs. MEMS OCS power = 0.14 Watt/port
* Keep most of core energy-saving benefit (20-50% excess)

Cost analysis: OSSV (orange bar) vs. OCS core
* Less expensive than overprovisioned OCS cores for realistic OCS cost range
* Inlonger term, OCS will cost will be amortized across generations



Summary of OSSV

All-optical DCN core: Saves power but

cannot support diverse network traffic All-optical
Round-robin core

OSSV: Traffic agnostic core + Traffic
adaptive reconfigurable edge

Novel SV Minimization: jointly optimize
skewness and inter-rack traffic volume

High Performance: Enables OCS core to
perform close to non-blocking network

Power and Cost Saving: deployable as servers 5 6 5 5 6 6 5 5

next-gen cloud infrastructure
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