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Abstract—Real-time decision making relies on the availability
of accurate data and, therefore, delivering status updates in a
timely fashion is of paramount importance. The topic of real-
time status updates has received much attention in recent years.
This article contributes new results to this research area by
studying the interplay between average timeliness and design
decisions made at the physical layer, for unreliable commu-
nication channels. Specifically, this study explores the tension
between the fact that more reliable transmissions with lower
probabilities of decoding failure tend to improve timely delivery,
unless these improvements come at the expense of significantly
longer codewords. The average timeliness is adopted as an
evaluation criterion, and a framework to efficiently compute
the performance of various transmission schemes for the binary
erasure channel is developed. We show that the average timeliness
decreases as we increase the feedback rate in a hybrid ARQ
scheme for a range of codeword lengths. This article also
provides design guidelines for the codeword length selection for
an hybrid ARQ scheme to improve the average information
timeliness. Numerical examples are included to further illustrate
the applicability of our findings.

Index Terms—Communication systems, low latency, status
updates, block codes, forward error correction, feedback rate,
hybrid ARQ.

I. INTRODUCTION

The wide availability of wireless sensors, micro-controllers,
and actuators is changing the profile of typical wireless traffic.
The traditional sustained connections attributable to human op-
erators are being supplemented by a myriad of packet updates
produced by machines, thereby creating heterogeneity in flows.
The evolving character of wireless systems is an important
component of the Internet of Things (IoT), a moniker often
employed to describe next-generation networks. As sensing
and actuation progressively expand to the wireless world, they
are imposing new and distinct service requirements on existing
communication infrastructures. For instance, cyber-physical
systems depend on real-time status updates, relying on the
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latest telemetry data acquired by distributed devices for deci-
sion and control. Furthermore, mobile ad hoc networks need
various kinds of status updates to know their neighborhood
status, select routes, and schedule transmissions.

In recent years, researchers have introduced performance
criteria to better understand the interplay between status update
and communication systems. One of the guiding principles
behind these new criteria is the fact that the timely delivery
of information parcels is key in enabling smooth control and
actuation. Stale information, on the other hand, can lead to
incorrect decisions, greater residual errors, and instability. One
specific performance criterion that has received much attention
in the present context is the average age of information at the
destination. This criterion captures the essence of staleness
while admitting tractable problem formulations [2]–[5]. Ow-
ing to its popularity and ease of use, this is the performance
criterion we adopt throughout. Information age is defined as
the difference between current time t, and the time U(t) at
which the most recent status update was observed by the sens-
ing device. Formally, we have the age process A(t) , t−U(t).
For a discrete-time setting, the limiting average of timeliness
is defined as Ā , lim supT→∞

1
T

∑T
t=1A(t).

In this article, we are focussing on timely status updates
over unreliable channels, where the quality of communication
links fluctuates over time. This is typical of several wire-
less settings, common communication medium in IoT, cyber-
physical systems, and mobile ad-hoc networks. Traditionally,
error correcting codes have been employed to protect sent
data against channel impairments. With asymptotically long
block lengths, it is possible to transmit data at rates that
approach the Shannon capacity. Yet, such coding techniques
entail undue delays and, therefore, may not be suitable for real-
time status updates. Consequently, we explore the fundamental
tension between data protection and delay in the context
of real-time status updates, focusing on erasure channels.
We are especially interested in the topic of remote sensing
over wireless communication links. Both the areas of real-
time status updates and coding for short block lengths have
received attention over the past several years [1], [4], [6]–
[14]. Concurrently, delay-sensitive communication has been
investigated under error exponents, the normal approximation
regime, and the moderate deviation regime [15], [16]. This
high activity level points to the timeliness of the topic at hand.

Our aim is to combine results from these two areas by
defining the communication channel at the symbol level and
assessing the performance of the coded status update system
using the average age of information criterion. This perspective
is new; and it provides insight into the design of wireless links
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for status updates.

A. Background

Consider a scenario where a remote sensing device is mon-
itoring a generic physical process Xt. We assume that every
observation takes the form of a digital message containing
exactly K bits of information. We consider a discrete time
setting and assume that the sensor can observe the physical
process at any point in time; and we call the corresponding
sample a status update. The remote sensor must transmit the
collected message to a central entity over an unreliable link
akin to an unreliable channel. To protect the integrity of the
measurements, it is natural to employ forward error correction.
As is customary, suitable coding strategies will improve the
probability of correctly recovering the sent message at the
expense of additional redundancy bits in the transmitted code-
word. Herein, we are especially interested in near real-time
applications where the quality of a data sample is evaluated
based on information staleness. This view point has become
a common setting for real-time status updates.

The need to deliver messages in a timely manner prevents
the use of long codewords. Rather, the problem formulation
demands the application of coding strategies with low latency.
Thus, a natural tension arises between the protection afforded
by longer blocks, which translates into low probabilities of
failure, and the ability of shorter codewords to deliver informa-
tion with less latency when successfully decoded. The balance
between these opposing considerations hinges, partly, on the
character of the underlying channel. We additionally assume
availability of reliable and instantaneous feedback from the
receiver to the transmitter. This idealized assumption offers
us the optimistic gains that can be achieved by feedback.
In particular, we are interested in the impact of feedback on
timeliness of received messages.

We restrict our attention primarily to coding schemes with
finite block lengths. In particular, we explore limited feedback
schemes such as hybrid automatic repeat request (hybrid ARQ)
as a means of gracefully adapting to channel realizations.
These schemes are known to perform well for data transmis-
sion over unreliable channels in the context of delay-sensitive
applications. As such, they form an attractive option for the
problem at hand as well. Figure 1 depicts the basic components
of our envisioned system.

Remote Sensor Destination

Unreliable Channel
Phenomenon

1 1

0 0

ε e

Fig. 1: This notional diagram offers an illustration of the
system model, which is composed of a random phenomenon,
a remote sensing device, a communication channel, and a data
aggregator that receives status updates.

B. Related Work

Our problem formulation differs from previous contributions
on real-time status updates in that it defines the operation of
the channel at the symbol level. This enables us to explore
the impact of physical layer design decisions on the average
age. This framework enables the study of various coding
schemes tailored to this application scenario. Our objective is
to provide guidelines on system parameters for the aforemen-
tioned framework, and to compare the relative performance of
different approaches. The specifics of our mathematical model
are detailed in Section II.

At this point, it is pertinent to note that there is abundant
literature on the analysis of the age of information stemming
from different communication models. The treatment of queu-
ing theoretic models is considered in [5], [9], [12], [17]–[20].
In many cases, transmitting only the latest update can improve
performance in terms of the age of information; accordingly,
enhancements due to finite buffers and packet deadlines are
presented in [21]–[24]. Various service profiles have also been
investigated. For example, the authors study a generalized
gamma service time distribution in [25]. In contrast to these
contributions wherein the arrival of status updates is modeled
by a stochastic process, our work adopts what is called a
generate at will policy [26]–[28] under which the source can
sample the latest status update of the observed phenomenon
at any given time. In this latter setting, the performance of
the age of information under ARQ and hybrid ARQ schemes,
and its characterization from a channel coding perspective, are
studied in [1], [29] and [28], [30]–[32]. Still, the literature on
the age of information under the finite block length regime
is not fully developed [33], [34], with opportunities for new
insights.

C. Main Contributions

We consider a discrete information theoretic binary erasure
channel for age-limited communication. We assume the source
always has packets to send and, thus, system randomness
originates from bit erasures. We consider hybrid ARQ for
the transmission of updates over this unreliable channels, and
characterize timeliness at the receiver. We summarize the main
contributions of this article below.

We analytically show that, in certain regimes, there exists a
natural tradeoff between the average feedback rate and average
timeliness at the receiver. In particular, we show that for
a constrained set of hybrid ARQ codeword lengths, if the
codewords are refined then the average timeliness is improved
at the receiver, at the cost of increased feedback rate.

Finding optimal hybrid ARQ codes is a computationally
challenging problem, because the objective function of average
age is non-convex and the optimizing variables in the form of
codeword lengths are constrained to take on integer values.
Nevertheless, we identify a class of hybrid ARQ codes that
capture this tradeoff, that are shown to be near-optimal in
empirical studies.

We emphasize that the proposed model first appeared in [1],
and is now a customary model for age analysis as evidenced
by subsequent works [33], [35]–[37]. Najm et al. present the
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optimal age for erasure channel without feedback in [37]. Age
with feedback is considered in [1], where the results indicate
that the age performance of ARQ is worse than that of a
fixed length coded update with no-retransmission whenever
ARQ employs the re-transmission of the same codeword.
Contrastingly, in this work, we find that hybrid ARQ can sig-
nificantly outperform the fixed length scheme when the sizes
of incremental redundancy sub-blocks are chosen judiciously.
Thus, we have shown that hybrid ARQ can outperform ARQ
and fixed-length coded update with no retransmission.

Our findings shed new light on hybrid ARQ as it pertains
to the age of information. The ensuing guidelines for system
design constitute a significant departure from previous work.

D. Organization

We introduce the system model in Section II, that
describes in detail the channel model in Section II-A, the
hybrid ARQ scheme in Section II-B, and performance
metrics and the problem statement in Section II-C. Renewal
process associated with the proposed hybrid ARQ scheme
is introduced in Section III, which aids in computing the
corresponding average age and average feedback rate in
Section III-B. We demonstrate in Section III-C that hybrid
ARQ codes have smaller average age than a fixed length
coded update with no retransmission, and reformulate the
problem statement as an integer optimization problem in
Section III-D. We present our main structural results in
Section IV, where we show the impact of hybrid ARQ
refinement on average age in Section IV-A and average
feedback rate in Section IV-B. Numerical results are provided
in Section V, and the article is concluded in Section VI.

II. SYSTEM MODEL

The phenomenon being monitored is modeled as a sequence
of independent and uniformly distributed symbols. The sensing
device is observing a process M(t) ∈

{
0, . . . , 2K − 1

}
for all

t ∈ Z+. The size of an observation is K information bits,
irrespective of the past. After it is acquired, the observation
must be communicated to a central location using a wireless
link. In this paper, we do not consider source coding strategies
such as joint source-channel coding or data compression based
on differential encoding. The design and evaluation of such
advanced schemes are typically tied to specific applications.
The use of a generic source instead enables this work to focus
on the tradeoff we wish to explore. It also offers a suitable
mathematical framework that renders analysis tractable. We
use the notation Z+ for non-negative integers, the notation N
for positive integers, and the notation [m] to represent the set
{1, 2, ...,m} for any positive integer m ∈ N.

A. Channel Model

We adopt a channel model commonly found in the in-
formation theory literature, namely the bit-wise memoryless
binary erasure channel. Additionally, we assume that each bit
transmission over this channel requires one unit of time. The

choice of this channel is motivated by its analytical tractability
for average age analysis, and is a first step in the direction of
more complex physical layer channel models. The channel is
driven by an independent and identically distributed (i.i.d.)
Bernoulli process (ζt ∈ {0, 1} : t ∈ N) with mean Eζt = ε.
In terms of the process sample ζt at time t, we can write
the channel output Yt ∈ {0, 1, e} for binary channel input
Xt−1 ∈ {0, 1} as Yt = Xt−1(1 − ζt) + eζt, where symbol e
denotes an erased bit. Hence, every transmitted bit is received
at the destination with probability 1− ε and it is erased with
probability ε, independently of other bits.

Remark 1. The number of erasures in received bits in time-
slots {t+ 1, . . . , t+ n} is given by

∑n
i=1 ζt+i, and it has a

binomial distribution with parameters (n, ε).

B. Hybrid ARQ

We denote the transmission time of kth source message by
tk, and denote the kth message by Mk ,M(tk). We consider
an incremental redundancy scheme using an (N,K) forward
error correcting block code denoted by the map c : {0, 1}K →
{0, 1}N . We attempt to transmit this encoded message c(Mk)
using at-most m rounds, where we assume an immediate and
error-free single-bit feedback from the receiver to the source
at the end of each round. Bit 0 indicates a decoding failure
or the negative acknowledgment (NACK) and bit 1 indicates
a decoding success or the positive acknowledgment (ACK).
Accordingly, the N -length codeword c(Mk) is divided into
m sub-blocks, each of length `i for potential transmission in
round i ∈ [m]. We use ni to denote the number of encoded
bits transmitted by the end of round i, i.e., ni ,

∑i
j=1 `j for

all i ∈ [m]. This yields `1 = n1 < · · · < nm 6 N . The
encoding structure is depicted in Fig. 2.

We employ ξk,i to indicate decoding success for transmitted
message k in round i or earlier. Equivalently, ξk,i is equal to
one when an ACK regarding message k is received by round i,
and it is zero otherwise. Given receiver feedback from round
i, the source takes one of two possible actions.

1) If ξk,i = 0 and i < m, then the source starts round i+
1 ∈ [m] and transmits an additional sub-block of length
`i+1 corresponding to the kth codeword c(Mk).

2) If either ξk,i = 1 or i = m, then the transmission of
message k halts. The source collects new observation
Mk+1 = M(tk+1). It then encodes this observation
and, subsequently, initiates the transmission of the first
sub-block of length `1 of the corresponding codeword
c(Mk+1).

Remark 2. We recall that at the end of round i for message k,
the receiver has received ni-length channel output correspond-
ing to first ni bits of the codeword c(Mk). We can consider
the trailing N −ni bits of the kth codeword to be erased, and
denote the effective set of erasures until round i for message k,
by Ek,i , {j ∈ [ni] : ζtk+j = 1} ∪ {ni + 1, . . . , N}. Since
ζt 6 1 for all t ∈ N, we have Ek,1 ⊇ · · · ⊇ Em. The received
N -length codeword at time t+ ni is yi ∈ {0, 1, e}N where

yij = c(Mk)1{j /∈Ek,i} + e1{j∈Ek,i}.
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K-bit message

Encoding

`1 symbols `2 `3 · · · `m

n1

n2

n3

nm-length codeword

Fig. 2: In a hybrid ARQ scheme, a K-bit source message is
encoded into a N -length codeword. The codeword is further
divided into sub-blocks of varied lengths, which are sequen-
tially transmitted up to an ACK message from the receiver.

Remark 3. For the erasure channel, the decoder d :
{0, 1, e}N → {0, 1}K∪{f} maps the N -length channel output
to the K-bit transmitted message or declares a failure f . For
message k, the indicator of decoding success after round i
is ξk,i. Recall that the number of erasures as a function of
round i is non-increasing in i. Then, under optimal decoding,
the indicator of decoding success ξk,i is non-decreasing with
round i ∈ [m].
Remark 4. When incremental redundancy is utilized in con-
junction with the binary erasure channel introduced in Sec-
tion II-A, an important quantity is the probability F (ni) =
Eξk,i that the received sequence is decodable in round i or
earlier. Since ξk,i is non-decreasing with round i, it follows
that F (ni) is a non-dcreasing function of i. We also note
that F̄ (nm) = P {ξk,m = 0} is the probability that the kth
transmitted message is not successfully decoded. That is,
the probability of getting a NACK in round i is F̄ (ni) ,
1− F (ni).

C. Performance Metric

Our performance criterion is timeliness or, equivalently,
staleness. This is defined as the difference between current
time t and the time U(t) at which the most recent status update
was observed by the sensing device. Formally, we have the age
process

A(t) , t− U(t). (1)

We can define the limiting average information age as

Ā , lim sup
T→∞

1

T

T∑
t=1

A(t).

We also measure the limiting average feedback rate from the
receiver to the transmitter. Let NF (t) denote the number of
feedback messages until time t, then the limiting average is
given by Z̄ , lim supT→∞

1
TNF (T ). Figure 3 illustrates

a sample path of the age process for a hybrid ARQ incre-
mental redundancy scheme where 3-bit messages are encoded
into 5-bit codewords. Every message transmission attempt
over this channel takes place within at most 3 rounds, with
(n1, n2, n3) = (3, 4, 5).

Our objective is to design the block sizes (`1, . . . , `m) such
that we can minimize the limiting average age subject to keep-
ing the average feedback rate below a certain threshold ρ. In

0 5 10 15 20 25 30 35
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Time t
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Fig. 3: This figure depicts a sample path of the age process
for the incremental redundancy scheme with parameters K =
3, N = 5,m = 3 and (n1, n2, n3) = (3, 4, 5). The parts of the
age trajectory marked in red and green indicates a codeword
failure and success, respectively. The first update is received
at t = 5 but fails to get decoded. Similarly, the second update
leads to a decoding failure. Consequently, the age increases
linearly until a decoding success occurs with the third update.
Notice that the third status update is successfully decoded with
4 bits. The instantaneous age decreases to 4, at time t = 14,
subsequently the fourth update is received and so forth.

practice, we will choose an underlying (N,K)-code to provide
incremental redundancy. Since the probability of success is 0
for any ni < K and the maximum codeword length is N , we
can assume that K 6 n1 < n2 < · · · < nm 6 N . That is, we
restrict our attention to the following set of block assignment
vectors

B0 , {(n1, . . . , nm) : K 6 n1 < · · · < nm 6 N} . (2)

Using B0 and feedback rate threshold ρ, we can formally state
the optimization problem of interest.

Problem 1. Find a finite block assignment vector n ∈ B0 for
the following optimization problem,

minimize
n∈B0

Ā(n)

subject to Z̄(n) 6 ρ.

Our design goal is to select n (or, equivalently, block sizes
(`1, . . . , `m)) as to minimize average age, while maintaining
the average number of feedback messages below a prescribed
threshold ρ ∈ [0, 1]. We note that a threshold set to ρ =
1 essentially means unconstrained feedback. As target ρ is
lowered, the maximum admissible feedback rate decreases. In
the next section, we proceed with the derivation of expressions
for the average age Ā and the average feedback rate Z̄ as
function of assignment vector n.

III. RENEWAL PROCESS AND LIMITING AVERAGES

Let N0 = 0. We can define the number of codeword
receptions until the kth decoding success as Nk , inf{j >
Nk−1 : ξj,m = 1}. Then, we can write the number of
codewords failures between two successful decoding as Rk ,
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Nk−Nk−1− 1. Let Vk denotes the round in which codeword
Nk gets decoded, i.e., Vk , inf{i ∈ [m] : ξNk,i = 1}.

Lemma 2. The random sequences (Rk : k ∈ N) and (Vk :
k ∈ N) are independent, and they are both i.i.d. with respective
distributions

P {Rk = r} = F (nm)F̄ (nm)r, r > 0,

P {Vk = i} =
F (ni)− F (ni−1)

F (nm)
, i ∈ [m].

Proof: See Appendix A.

Corollary 3. The first and the second moments for random
variable Rk are

ERk =
F̄ (nm)

F (nm)
, ER2

k =
F̄ (nm)2 + F̄ (nm)

F (nm)2
.

The pth moment of random variable nVk
for p > 1 is

EnpVk
= npm −

m−1∑
i=1

(npi+1 − n
p
i )
F (ni)

F (nm)
.

Remark 5. Based on the properties of the Geometric distribu-
tion, one can verify that ER2

k − 2(ERk)2 = ERk.

A. Renewal Process

With S0 = 0, we can recursively define the time-instant of
the kth successful reception as

Sk = Sk−1 + nmRk + nVk
. (3)

The time-interval between the (k−1)th and the kth successful
decoding event is denoted by

Tk , Sk − Sk−1 = nmRk + nVk
. (4)

Since the random i.i.d. sequences (Rk : k ∈ N) and (Vk : k ∈
N) are independent and have finite first and second moments,
it follows that the sequence (Tk : k ∈ N) is also i.i.d. with
finite first and second moments and, hence, (Sk : k ∈ N) is
a renewal sequence. We note that the renewals occur at the
instants of successful decoding of a codeword. We present
the first two moments of the inter-renewal times Tk in the
following lemma.

Lemma 4. The first and the second moments of the inter-
renewal time Tk are given by

ETk =
nm

F (nm)
−
m−1∑
i=1

(ni+1 − ni)
F (ni)

F (nm)
,

ET 2
k = −

m−1∑
i=1

F (ni)

F (nm)
(ni+1 − ni)

[
ni+1 + ni + 2nm

F̄ (nm)

F (nm)

]
+
n2m(1 + F̄ (nm))

F (nm)2
.

Proof: This result follows from the independence of the
i.i.d. sequences (Rk : k ∈ N) and (Vk : k ∈ N), and their first
and second moments presented in Corollary 3.

B. Average Age and Average Feedback

The generation time U(t) of the latest successfully decoded
codeword only changes upon decoding success, (Sk : k ∈
N). Furthermore, the kth successfully received codeword was
generated at time U(Sk) = Sk − nVk

. Thus, for any time t in
the kth renewal interval Ik , {Sk−1, . . . , Sk − 1} we have

U(t) = U(Sk−1) = Sk−1 − nVk−1
t ∈ Ik. (5)

Using (5) for the generation time, we write the age at the
receiver as a function of time t as

A(t) = t− U(Sk−1) = t− Sk−1 + nVk−1
t ∈ Ik. (6)

Lemma 5. For the incremental redundancy described in
Section II-B, the limiting empirical average age is almost
surely

Ā =
E
∑
t∈Ik A(t)

ETk
=

ET 2
k

2ETk
+ EnVk

− 1

2
. (7)

Proof: See Appendix B.
Let NF (t) denote the number of feedback messages until

time t. Recall that the receiver sends a one-bit feedback
message per sub-block of the hybrid ARQ codeword. Hence,
the number of feedback messages in kth renewal interval is
NF (Sk)−NF (Sk−1) = mRk + Vk.

Lemma 6. The limiting average number of feedback messages
is Z̄ = mERk+EVk

ETk
almost surely.

Proof: We can write the limiting average of number of
feedback messages as

lim
T→∞

NF (T )

T
= lim
T→∞

(N(T )

T

)∑N(T )
k=1 (NF (Sk)−NF (Sk−1))

N(T )
.

The result follows from an application of strong law of large
numbers.

C. Comparison of hybrid ARQ with Fixed Length Scheme

The fixed length scheme can be regarded as a special case of
the hybrid ARQ scheme, where the number of rounds m = 1
and we denote the codeword length for the fixed-length scheme
by n1 = nm = N . We represent the limiting empirical average
age for a fixed N -length scheme by Āf (N).

Corollary 7. The average age for fixed length scheme with
codeword length N is almost surely

Āf (N) =
N − 1

2
+

N

F (N)
. (8)

Proof: For the fixed length status update Vk = 1 = m,
and hence the block-length at the time of success is nVk

= N .
Therefore, the mean and second moment of the inter-renewal
times reduce to

ETk =
N

F (N)
, ET 2

k =
N2(1 + F̄ (N))

F (N)2
.

The desired result is obtained by substituting these two ex-
pressions in the limiting average age of (7) in Lemma 5.

We first compare the limiting average age performance of
a fixed N -length codeword with an incremental redundancy
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scheme where nm = N . We show that for any given codeword
with N bits employed for both the schemes, the limiting
average age under any hybrid ARQ scheme is lower than that
of the fixed-length scheme.

Lemma 8. Let Āf (N) and Ā(n) be the limiting average age
of the fixed length scheme with codeword length N and of the
hybrid ARQ scheme with block assignment vector n ∈ B0,
respectively. If the hybrid ARQ scheme has m = |n| rounds
with total codeword length nm = N , then Āf (N) > Ā(n)
with equality if and only if n = {N}.

Proof: See Appendix C.

D. Integer Optimization Problem

Given that we have obtained expressions for the limiting
average age and limiting average of feedback rate, we can
rewrite Problem 1 explicitly in terms of the i.i.d. renewal
period length Tk = nmRk + nVk

, the number of codeword
failures Rk, and the round of success Vk.

Problem 9. Find a finite block assignment vector n ∈ B0 for
the following optimization problem,

minimize
n∈B0

Ā(n) = EnVk
+

ET 2
k

2ETk
− 1

2

subject to Z̄(n) =
mERk + EVk

ETk
6 ρ.

The objective and the constraint are both functions of
vector n in Problem 1. This optimization problem is an
integer program with non-convex objective function, and the
optimizing variable n (the codeword block-lengths and rounds)
is constrained to take finitely many values. We note that,
in general, there are no efficient algorithm to solve generic
integer programming problems over the set of all finite integer
sequences.

IV. HYBRID ARQ REFINEMENT

In this section, we derive structural results on the limiting
average of age Ā and limiting feedback Z̄ as functions of
arbitrary block assignment vector n. Based on these general
guidelines, we solve Problem 1 for a constrained set of block
assignment vectors n. We numerically show that this restricted
class of block assignment vectors n is near-optimal, in the
sense that the minimum limiting average age under this class
is close to the one found by searching among all possible
vectors n that ensure the limiting average feedback rate is
below threshold ρ.

To this end, we investigate the impact of refinement of
a block assignment vector n′ on two performance metrics,
average age and average feedback rate. A block assignment
vector n is called the refinement of n′, if n′ ⊆ n with lengths
|n′| 6 |n|. Intuitively, it may seem that a finer block assign-
ment vector n would lead to a lower average age since one
can stop opportunistically, and higher average feedback rate
since one sends a larger number of ACK/NACK messages to
achieve this. However, it turns out that our intuition regarding
the average age is not entirely correct, as is illustrated by
Example 12, where Ā(n′) 6 Ā(n) for a refinement n of

n′. Thus, the intuition that refinement necessarily reduces
age does not hold for all integer sequences n′ and their
refinements. Before presenting Example 12, we introduce
some notation which we use throughout the remainder of the
article in Notation 10, and a specific forward error correction
policy for hybrid ARQ implementation in Example 11.

Notation 10. Recall that for block assignment vector n,
we denote the number of codeword failures before the kth
successful reception by Rk, the number of rounds for the
kth successful reception by Vk, and the time-period between
the (k − 1)th and the kth successful receptions by Tk. The
corresponding notations for the block assignment vector n′

are R′k, V ′k , T ′k. We will adopt this notation throughout the
paper, whenever we compare the performance of two block
assignment vectors n and n′. The codeword length for two
block assignment vectors are denoted by m = |n| and
m′ = |n′|, respectively.

Example 11 (hybrid ARQ using random linear codes). We
assume that the forward error correction is implemented using
a permutation invariant and monotone code. That is, the
conditional probability of decoding failure given a set of
erasures E (denoted by Pf (N,K,E)) depends only on the
number of erasures and not their locations, and it increases
with number of erasures. For an (N,K) permutation invariant
code, the conditional probability of decoding failure given `
erasures in the received codeword is denoted by Pf (N,K, `).
In particular, for an (N,K) random linear code [38], [39], we
have

Pf (N,K, `) =

(
1−

`−1∏
i=0

(
1− 2i−N+K

))
1{`6N−K}.

For incremental redundancy achieved using such codes with
block-length n, the probability of decoding success in round i
is given by F (ni) = EPf (N,K,Li + N − ni), where
Li =

∑ni

j=1 ζt+j is the random number of erased bits in the
ni-length codeword and the N − ni trailing codeword bits
are effectively assumed to be erased. The expectation is taken
over random erasures, where the channel erasure indicators
(ζt ∈ {0, 1} : t ∈ N) are assumed to be i.i.d. Bernoulli with
Eζt = ε and, consequently, Li has a binomial distribution with
parameter (ni, ε).

Example 12 (A case where refinement does not reduce age).
Consider a hybrid ARQ scheme employing an (N,K) =
(200, 10) random linear code over a binary erasure channel
with erasure probability ε = 0.1. We consider two block
assignment vectors n = (n1, n2, n3) = (10, 12, 200) and
n′ = (n2, n3) = (12, 200), such that n is a refinement of
n′. We show that the mean age for the refined block vector n
is larger than the mean age for the block vector n′.

From the decoding success distribution function F (·) for the
block assignment vector n, we define the following variables

α1 , F (n1), α2 , F (n2)− F (n1), α3 , F (n3)− F (n2).

Using Example 11, we can compute (F (ni) : i ∈ [3]) for the
given block vector n = (10, 12, 100) and ε = 0.1, and hence
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we obtain the probabilities (α1, α2, α3) = (0.35, 0.3, 0.35).1

In terms of the values (α1, α2, α3), we can write the decoding
success probability for hybrid ARQ transmissions with both
the block assignment vectors n and n′ as F (n3) =

∑3
i=1 αi.

The mean number of failures in a renewal interval for both the
block assignment vectors remain same, since the probability of
decoding success F (n3) for a single hybrid ARQ transmission
is identical for both options. Specifically, we have

ERk = ER′k =
F̄ (n3)

F (n3)
, ER2

k = E(R′k)2 =
F̄ (n3)2 + F̄ (n3)

F (n3)2
.

The probability mass function for the number of rounds until
success for block assignment vector n is given by PVk

=(
α1∑3
i=1 αi

, α2∑3
i=1 αi

, α3∑3
i=1 αi

)
. The corresponding probability

mass function for the number of rounds until success for block
assignment vector n′ is PV ′k =

(
α1+α2∑3

i=1 αi
, α3∑3

i=1 αi

)
. The first

two moments of number of bits transmitted in a successful
hybrid ARQ transmission, for the block assignment vector n,
are given by

EnVk
=

∑3
i=1 αini∑3
i=1 αi

, and En2Vk
=

∑3
i=1 αin

2
i∑3

i=1 αi
.

Likewise, the values for the block assignment vector n′ are
given by

En′V ′k =
(α1 + α2)n2 + α3n3∑3

i=1 αi
, and

E(n′V ′k
)2 =

(α1 + α2)n22 + α3n
2
3∑3

i=1 αi
.

From the definition of Tk in (4), the fact that first two moments
of Rk and R′k are equal for two block assignment vectors n
and n′, and defining d1 , En′V ′k − EnVk

, we can write

ET ′k = d1 + ETk, and E(T ′k)2 = (n2 + n1)d1 + ETk.

For our choice of system parameters, we observe that d1 =
α1(n2−n1)∑2

i=1 αi
. Using the fact that ER2

k = 2(ERk)2 + ERk and
from the computation of the limiting empirical average age
in Lemma 5, we can compute the difference Ā(n′) − Ā(n)
between the limiting empirical average of age for the two block
assignment vectors n and n′, as

ETk(ETk + d1 + n1 + n2 − nm) + E(nVk
(nm − nVk

))

2ETk(ETk + d1)/d1
.

We see that the denominator is always positive, and it is
possible to make the numerator negative if nm is very large
and n1 and n2 are roughly equal, and much smaller than nm.
In this case, we have F (nm) ≈ 1 and hence ERk ≈ 0 is very
small with

∑m
i=1 αi ≈ 1. Taking n2 = n1 + 1, we can write

the age difference as

Ā(n′)− Ā(n) ≈ EnVk
(α1 + 2n1 + 1)− Var [nVk

]

2(EnVk
+ d1)EnVk

/d1
.

Thus, in this setting of large nm and small n1, n2, if we

additionally have
Var[nVk ]
EnVk

> F (n1) + 2n1 + 1, then it follows

1Note that F (n3) =
∑3

i=1 αi is only approximately 1 since there is a
positive probability of decoding failure at codeword length n3 = 200 albeit
negligibly small.

that A(n′) 6 A(n), and the refinement doe not reduce age. For
our choice of system parameters, we numerically computed the
difference between limiting empirical average age, and found
that Ā(n′)− Ā(n) = −0.18 6 0.

A. Impact of Refinement on Average Age

We have shown that indeed it is not always true that
sending a refined block assignment vector would decrease
the age. This was shown keeping fixed nm, the total number
of bits sent for complete transmission of block assignment
vector n. However, it turns out that refinement can reduce age
under certain sufficient conditions, and we next present such
sufficient conditions.

Theorem 13. Consider two block assignment vectors n′ ⊆ n
with lengths m′ 6 m, respectively, such that nm = n′m′ and
n1 > nm

4 . Then, the limiting empirical average age for the
two block assignment vectors satisfy Ā(n′) > Ā(n).

Proof: See Appendix D.
In the proof of Theorem 13, we see that for any refinement

n′ ⊇ n of the block vector n such that nm = n′m′ , the number
of rounds until success for the refined vector is stochastically
dominated with V ′k 6 Vk. Therefore, for each k ∈ N, we have
En′V ′k 6 EnVk

and E(n′V ′k
)2 6 EnVk

. Furthermore, we observe
that the numbers of decoding failures in a renewal interval
remain identical in distribution for both the refined vector n′

and the original vector n because nm = n′m′ . Consequently,
for each k ∈ N, we have ERk = ER′k and ERk = E(R′k)2.
We also stress that the length of the kth renewal interval Tk =
nmRk + nVk

, where nVk
and Rk are independent random

variables. It follows that ET ′k 6 ETk and E(T ′k)2 6 ET 2
k .

From Lemma 5, we know that the limiting empirical average
of age for a block vector n is given by

Ā(n) = EnVk
+

ET 2
k

2ETk
− 1

2
.

From this expression, it follows that the first term EnVk

decreases with refinement. However, both the numerator and
the denominator in the second term decrease with refinement.
Thus, it is not immediately clear whether the second term in-
creases or decreases with refinement. The condition 4n1 > nm
in Theorem 13 suffices to guarantee that a refinement improves
average age.

B. Impact of Refinement on Feedback Rate

The previous section casts average age minimization as a
constrained optimization problem. Due to the nonlinearity of
the objective function and the discrete nature of the feasible
and constraint sets, the optimal integer solution to Problem 1
remains elusive. Nevertheless, we found that a refinement
of the block assignment vector between its start and end
points always improves average age when n1 > nm/4.
Intuitively, it seems that refining blocks may increase the
average feedback rate, and thence may lead to violation of
feedback rate constraint; this possibility warrants a closer look.
In this section, we examine the impact of refining a block
assignment on average feedback rate. In Lemma 14, we show
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that the average feedback rate can only become larger when
the block assignment vector is refined, while keeping the total
codeword length fixed.

Lemma 14. Consider two block assignment vectors n′ ⊆ n
with lengths m′ and m, respectively, such that nm = n′m′ . The
limiting average feedback rate for the two block assignment
vectors satisfy Z̄(n′) 6 Z̄(n).

Proof: See Appendix E.
In words, Lemma 14 asserts that, given a fixed codeword

length, subdividing hybrid ARQ blocks increases the aver-
age feedback rate. With n1 and nm fixed, the most refined
block assignment vector is n = (n1, n1 + 1, . . . , nm), where
nm = n1 + m − 1. As a related result, Lemma 15 states
that the average feedback rate keeps increasing for such block
assignment vectors with m, for a fixed n1.

Lemma 15. The average feedback rate is monotonically
increasing in codeword length for all sequences n ⊆ N such
that n = n1 − 1 + [m], with given n1 ∈ N.

Proof: See Appendix F.

V. OPTIMAL BLOCK ASSIGNMENT VECTOR

We return to the constrained optimization introduced in
Problem 1. This consists of finding the block assignment
vector n ⊂ N that minimizes average age for a hybrid ARQ
system over an i.i.d. erasure channel, subject to the constraint
that the average feedback rate remains below threshold ρ.
As mentioned before, since the objective and the constraint
are both functions of integer-valued block assignment vector
n, this optimization problem can be viewed as an integer
program. In general, it is computationally challenging to find
the optimal solution to such problems.

However, we were able to derive certain structural properties
for the given integer constrained optimization problem in the
previous two sections. We define the following set of ordered
block assignment vectors

B1 ,
{
n ∈ B0 : n1 >

nm
4
, nm = N

}
.

In Section IV, we concluded that the limiting average age
decreases when we refine any block-assignment vector n ∈
B1. We further concluded in Section IV-B that the average
feedback rate increases when we refine the block-assignment
vector n ∈ B0 ⊃ B1. This implies that, if the feedback rate
constraint ρ is large enough, then the optimal block assignment
vector within B1 is of the form n ∈ B2, where

B2 , {n ∈ B1 : n = n1 − 1 + [m],m = N + 1− n1} .

To find the optimal block assignment vector in the absence of
feedback rate constraint, we must identify the optimal starting
point n1 ∈ N.

Again, for a block assignment vector n = (n1, . . . , nm) ∈
B0, we offer structural results for refinements n′ ⊇ n where
nm = n′m′ and 4n1 > nm. Ideally, we would like to
understand the impact that an extension of the form n′′ =
(n1, . . . , nm, nm+1) ∈ B0 may have on the limiting average
age in the absence of feedback constraints. Unfortunately, this

is a complicated question because extensions do no preserve
the distribution of Rk. Rather, the answer seems to depend
intimately on the code structure and the channel parameters.
This explains, partly, our focus on refinements rather than
extensions. That is, it remains unclear whether the optimal
block assignment vector that is a solution to Problem 1 has
any specific structure. To gain a better understanding, we
numerically study a system where the source has K = 10 bits
of information to send in every time slot. The selected system
employs an hybrid ARQ scheme with random linear codes for
block encoding. We consider the channel to be i.i.d. bit-wise
binary symmetric erasure, and consider two different erasure
probabilities ε ∈ {0.05, 0.4}. We find the optimal solution
to the constrained integer optimization problem defined in
Problem 1 by searching over all possible block assignment
vectors n ∈ B0, where the set B0 is defined in (2). This
solution has the lowest limiting empirical average age for a
fixed limiting empirical average feedback rate. We choose the
starting point for the block assignment vector as n1 > K
because a receiver can never decode a K-bit message with
fewer than K binary symbols. Further, the maximum length of
the random linear code is chosen to be N = 30, due to compu-
tational considerations. These optimal block assignments are
used as benchmarks for our study of structured solutions.

Owing to the vast number of possible refinements to a fixed-
length codewords, we confine our attention to a restricted class
of block assignment vectors B3(c) where c ∈ N and

B3(c) ,
{
n ∈ B0 : ni = n1 + (i− 1)c, i ∈ [m], n1 >

nm
4

}
.

That is, the block assignment vectors depend on the starting
point n1, the periodicity of increase c, and the number of steps
m. We notice that B3(c) is a generalization of class B2, since
the set B3(c) reduces to B2 when the periodicity c = 1 and
nm = N .

Figure 4 plots the limiting average age with respect to
the limiting average feedback rate for the optimal block
assignment vectors found by exhaustive search over the set
B0, for erasure probabilities ε ∈ {0.05, 0.4} in Fig. 4(a) and
Fig. 4(b), respectively. We also show the performance of the
best block assignment vector within the class of periodic block
assignment vectors. Specifically, the graphs include average
age versus average feedback rate curves for periodic block
assignment vectors n ∈ B3(c) where c ∈ {1, 2, 3}.

For the low erasure probability case depicted in Fig. 4(a),
we observe that the initial block is very long and the mes-
sage is decoded successfully with high probability when the
average feedback constraint is very stringent. In this regime,
sub-partitioning beyond the first block is not crucial and.
consequently, several schemes offer comparable performance.
For the high erasure probability case depicted in Fig. 4(b),
we gather that a larger period should be adopted when the
average feedback is very stringent. As the feedback constraint
becomes looser, while keeping the same erasure probability, it
becomes advantageous to switch to smaller periods.

VI. CONCLUSION AND FUTURE WORK

In this article, we have characterized the limiting average
age for hybrid ARQ schemes employed over point-to-point bi-

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on August 14,2020 at 09:19:47 UTC from IEEE Xplore.  Restrictions apply. 



0090-6778 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2020.3006224, IEEE
Transactions on Communications

9

0.08 0.1 0.12 0.14 0.16 0.18
16

18

20

22

Feedback constraint ρ

A
ve

ra
ge

A
ge
Ā
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Fig. 4: Performance of periodic hybrid ARQ schemes com-
pared to optimal allocations when using random linear codes
with N = 30, K = 10

.

nary symmetric erasure channels. We showed that judiciously
chosen incremental redundancy schemes do better than the
fixed length codes when there is feedback from the receiver
to the transmitter in terms of ACK/NACK messages. We
next demonstrated that under certain conditions on the block
assignment vector, refinement reduces the limiting empirical
average age. However, this comes at the cost of increased
feedback from the receiver. In particular, block refinement
increases the limiting average feedback rate.

A natural question for a system designer is to find the block
assignment vector that minimizes the average age given a
constraint on the average feedback rate. However, this discrete
optimization problem is an integer program and finding the
optimal solution remains computationally challenging. Still,
numerical results suggest that it is sufficient to restrict our
attention to the class of periodic block assignment vectors,
as they offer a performance level close to the optimal solu-
tion. Altogether, our work provides pragmatic guidelines for
choosing incremental redundancy schemes for timely commu-
nication.

There are several avenues of future research in this area. We
have adopted a symmetric binary erasure channel model; the
definition of age should be extended to channels with errors.
Further, we have characterized timeliness performance for a

simple i.i.d. channel model. In fact, we anticipate the gains in
average age to be higher for channels with memory. The quest
for additional algorithmic structures and the characterization
of timeliness gains for correlated channels are other interesting
potential research directions for future work.

APPENDIX A
PROOF OF LEMMA 2

We can write the event consisting of r decoding fail-
ures before the kth decoding success as {Rk = r} =
{ξNk,m = 1} ∩rj=1

{
ξ(Nk−1+j),m = 0

}
. This expression fol-

lows from the i.i.d. structure of the erasure channel and the
fact that the probability of a codeword failure is 1− F (nm).
Accordingly, we can write the probability of the event that the
kth successfully decoded word was decoded in round i by

P {Vk = i} =
P ({ξNk,m = 1, ξNk,i = 1} ∩i−1j=1 {ξNk,j = 0})

P {ξNk,m = 1}
.

From the monotonicity of indicators (ξk,i : i ∈ [m]), it
follows that {ξNk,i = 1} ⊆ {ξNk,m = 1} for i 6 m and
{ξNk,i−1 = 0} ⊆ {ξNk,j = 0} for all j 6 i−1. Further, we can
write the set {ξNk,i = 1} as a disjoint union {ξNk,i = 1} =
{ξNk,i = 1, ξNk,i−1 = 0} ∪ {ξNk,i−1 = 1} . Summarizing the
above results, we get

{ξNk,m = 1, ξNk,i = 1} ∩i−1j=1 {ξNk,j = 0}
= {ξNk,i−1 = 0, ξNk,i = 1} = {ξNk,i = 1} \ {ξNk,i−1 = 1} ,

where the event {ξNk,i−1 = 1} ⊆ {ξNk,i = 1}. The result
follows from evaluating the probability of the events on both
sides.

APPENDIX B
PROOF OF LEMMA 5

We can write the cumulative sum of age in the kth renewal
interval Ik as Ck ,

∑
t∈Ik A(t). Using the expression for age

A(t) at time t in (6), along with the definition for the kth
renewal interval Ik, we obtain the cumulative sum of age

Ck =

Sk−1∑
t=Sk−1

(t−Sk−1+nVk
) =

Tk(Tk − 1)

2
+nVk−1

Tk. (9)

Since Vk−1 is independent of Vk and Rk, it is also inde-
pendent of Tk. Therefore, we can write the mean cumula-
tive sum of age in the kth renewal interval Ik as ECk =
1
2ET

2
k + ETk

(
EnVk−1

− 1
2

)
. Let N(T ) be the number of

renewals until time T . Then, we have the following upper and
lower bounds for the empirical average age 1

T

∑N(T )
k=1 Ck 6

1
T

∑T
t=0A(t) 6 1

T

∑N(T )+1
k=1 Ck. To decouple the summands,

we can partition the sum
∑N(T )
k=1 Ck into odd and even

renewals, such that

N(T )∑
k=1

Ck =

bN(T )/2c∑
k=1

C2k +

bN(T )/2c+1∑
k=1

C2k−1.
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Dividing both sides by the aggregate time T and taking the
limit T →∞, we get

lim
T→∞

1

T

N(T )∑
k=1

Ck = lim
T→∞

N(T )

2T

(
lim
T→∞

2

N(T )

bN(T )/2c∑
k=1

C2k

+ lim
T→∞

2

N(T )

bN(T )/2c+1∑
k=1

C2k−1

)
.

From the strong law of large numbers, we gather that
limT→∞N(T )/T = 1/ETk almost surely. Further, since
(C2k : k ∈ N) and (C2k−1 : k ∈ N) are i.i.d. sequences2,
applying the strong law of large number, we get the following
almost sure equality

lim
T→∞

1

T

N(T )∑
k=1

Ck = lim
k→∞

1

2ETk
(EC2k + EC2k−1) .

We can similarly partition the sum 1
N(T )+1

∑N(T )+1
k=1 Ck to

analyze the limiting behavior of the upper bound on the
empirical average age. The result follows from the fact that
EC2k = EC2k−1 for k > 2.

APPENDIX C
PROOF OF LEMMA 8

Let |n| = m, then the block assignment vector n =
(n1, . . . , nm) is an ordered sequence of m positive integers,
with total codeword length nm = N . Denoting n0 = 0,
we recall that the number of bits sent in the ith round is
`i = ni − ni−1 for round i ∈ [m]. For i ∈ [m − 1], we
denote the scaled number of bits sent in the (i + 1)th round
as di , `i+1

F (ni)
F (N) > 0.

We can rewrite EnVk
and ETk in terms of the scaled number

of bits (di : i ∈ [m− 1]) and the total codeword length N as
EnVk

= N −
∑m−1
i=1 di, and ETk = N

F (N) −
∑m−1
i=1 di. The

second moment of inter-renewal time becomes

ET 2
k =

N2(1 + F̄ (N))

F (N)2
−
m−1∑
i=1

di

(
ni+1 + ni + 2N

F̄ (N)

F (N)

)
.

We obtain the limiting empirical average age for the hybrid
ARQ scheme with the block assignment vector n by sub-
stituting the above expressions for EnVk

, ETk, and ET 2
k in

Lemma 5. Further, we can get the limiting empirical age for
fixed length codeword N from Corollary 7. Therefore, we can
write the difference as

Āf (N)− Ā(n) =
m−1∑
i=1

di +

∑m−1
i=1 di

(ni+1+ni−N)
2

N
F (N) −

∑m−1
i=1 di

.

Denoting F (n0) = 0, we recall that nVk
is a random variable

with probability mass function PVk
(i) = P {nVk

= ni} =
F (ni)−F (ni−1)

F (N) for each i ∈ [m]. We can verify that

m−1∑
i=1

di = N − EnVk
,

m−1∑
i=1

di(ni+1 + ni) = N2 − En2Vk
.

2Note that C2k and C2k−1 are dependent, however we only need the
individual sequences to be i.i.d. and not the two sequences to be independent.

Therefore, we can write
∑m−1
i=1 di(ni+1 + ni − N) =

E[nVk
(N − nVk

)] > 0. Hence, it follows that the difference
Āf (N) − Ā(n) > 0 from the positivity of scaled differences
di and the positivity of denominator ETk for the second term.

APPENDIX D
PROOF OF THEOREM 13

For the block assignment vectors n and n′ defined in the
Theorem 13, we use the notation Rk, Vk, Tk and R′k, V ′k , T ′k
respectively, as defined in Notation 10.

Step 1. Rk = R′k in distribution. We note that F (nm) =
F (n′m′) because nm = n′m′ . Therefore, the distribution of Rk
and R′k are identical. From Corollary 3, it follows that the first
two moments of Rk and R′k are identical for every k ∈ N.

Step 2. Reduction to single refinement. Let n =
(n1 . . . , nm) and t ∈ [m− 1], then it suffices to show that for
n′ = (n1, . . . , nt−1, nt+1, . . . , nm), we have Ā(n′) > Ā(n).

Step 3. Relation between nVk
and n′V ′k

. We de-
note the probability mass function of Vk by PVk

=(
F (ni)−F (ni−1)

F (nm) : i ∈ [m]
)

. Since n is a one-level refinement
of n′, we can write

n′i = ni1{i6t−1} + ni+11{i>t}, i ∈ [m− 1]. (10)

We can express the probability mass function of V ′k ∈ [m−1]
in terms of PVk

, for i ∈ [m− 1], as

PV ′k(i) =


PVk

(i), i 6 t− 1,

PVk
(t+ 1) + PVk

(t), i = t,

PVk
(i+ 1), i > t+ 1.

(11)

From the definition of moments, the form of the probability
mass functions, and the order on n; we get the differences

d1 , E[n′V ′k
− nVk

] = (nt+1 − nt)PVk
(t) > 0 (12)

d2 , E[(n′V ′k
)2 − n2Vk

] = (n2
t+1 − n2t )PVk

(t) > 0 (13)

for this specific choice of block assignment vectors n, n′.
Step 4. Relation between the two limiting empirical

average ages Ā(n) and Ā(n′). From Lemma 5, we can
write the difference between the empirical averages for two
block assignment vectors n′ and n as

Ā(n′)− Ā(n) = d1 +
ET 2

k + 2nmERkd1 + d2
2(ETk + d1)

− ET 2
k

2ETk
.

Since d2 = (nt+1 +nt)d1, we can write the scaled difference

(Ā(n′)− Ā(n))
ETk
d1

(ETk + d1)

= ETk(2ETk + 2d1 + 2nmERk + nt+1 + nt)− ET 2
k .

From Remark 5, we have ER2
k − 2(ERk)2 = ERk and,

therefore, ET 2
k = 2nmERkETk + nm(ETk − EnVk

) + En2Vk
.

It follows that the scaled difference

(Ā(n′)− Ā(n))
ETk
d1

(ETk + d1) = ETk(2ETk + 2d1

+ nt+1 + nt − nm) + EnVk
(nm − nVk

).
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Furthermore, we have d1 > 0, nm > nVk
> n1, ETk >

EnVk
> n1, and nt > n1 for all t ∈ [m− 1]. Consequently, it

follows that

(Ā(n′)− Ā(n))
ETk
d1

(ETk + d1) > ETk(2n1 + 2n1 − nm).

That is, under the hypothesis 4n1 > nm, we have the desired
relation between the two limiting empirical average ages.

APPENDIX E
PROOF OF LEMMA 14

For the block assignment vectors n and n′ defined in
Lemma 14, we use the notation Rk, Vk, Tk, m and R′k,
V ′k , T ′k, m′ respectively, as defined in Notation 10. Since the
block assignment vectors n, n′ defined in Theorem 13 and
Lemma 14 are identical, steps 1,2, and 3 in the proof of
Theorem 13 in Appendix D follow.

From step 1, we have Rk = R′k in distribution, and therefore
the first two moments of Rk and R′k are equal for each k ∈ N.
From step 2, it suffices to show that, for n = (n1, . . . , nm) and
n′ = (n1, . . . , nt−1, nt+1, . . . , nm) for some t ∈ [m− 1], we
have Z̄(n) > Z̄(n′). From step 3, we can write the probability
mass function for V ′k in terms of the probability mass function
PVk

, as in (11). Thus, the difference in the first moments of
Vk and V ′k is given by

d0 , E[Vk − V ′k] =

m∑
i=t+1

PVk
(i) =

(F (nm)− F (nt))

F (nm)
> 0.

From (12), we recall that d1 = E[n′V ′k
− nVk

] = (nt+1 −
nt)PVk

(t) > 0. Furthermore, since n′m′ = nm and R′k = Rk
in distribution, we gather that E[T ′k − Tk] = d1.

Using the expression for limiting average feedback rate in
Lemma 6 for a fixed block assignment vector, we can write the
difference between limiting empirical average feedback rates
for two block assignment vectors n′ and n as

Z̄(n′)− Z̄(n) 6
m′ER′k + EV ′k

ET ′k
− mERk + EVk

ETk

=
−ETk(ERk + d0)− d1(mERk + EVk)

ETk(ETk + d1)
6 0.

APPENDIX F
PROOF OF LEMMA 15

This result follows from mathematical induction on the
codeword length m. Hence, it suffices to show that, for block
assignment vectors n = n1−1+[m] and n′ = n1−1+[m+1],
the corresponding feedback rates satisfy Z̄(n′) > Z̄(n). For
such block assignment vectors n and n′, we use the notation
Rk, Vk, Tk, m and R′k, V ′k , T ′k, m′, respectively, as defined in
Notation 10. We observe that the block assignment vectors are
contiguous in this case and differ only in codeword lengths,
in contrast to the refinement considered in Lemma 14. That
is, the incremental difference at each sub-block i > 1 is
`i+1 = ni+1 − ni = 1.

Since m′ = m + 1, we can write the probability mass
function for V ′k in terms of the probability mass function PVk

as

PV ′k(i) =
PVk

(i)F (nm)1{i∈[m]}

F (nm + 1)
+
F (nm + 1)− F (nm)

F (nm + 1)
1{i=m′}.

We will denote PV ′k(m+ 1) by α ∈ [0, 1] in the following for
simplicity. We can write

d3 , E[Rk −R′k] =
α

F (N)
= α(1 + ERk) > 0.

From the probability mass function for V ′k , in terms of that
for Vk, we can write the difference between the means of V ′k
and Vk as

d0 , E[V ′k − Vk] = α(m+ 1− EVk) > 0.

Similarly, we can also find the difference between the means
of nVk

and n′V ′k as

d1 , E[n′V ′k
− nVk

] = (nm + 1− EnVk
)α > 0.

Recall that ETk = nmERk+EnVk
and T ′k = n′m′ER′k+En′V ′k .

Therefore, using the expressions for individual terms, we can
write

E[T ′k − Tk] = ERk − (nm + 1)d3 + d1.

Using the expression for limiting average feedback rate in
Lemma 6 for a fixed block assignment vector, we can write
the difference between limiting empirical average feedback
rate for two block assignment vectors n′ and n as

Z̄(n′)− Z̄(n) =
m′ER′k + EV ′k

ET ′k
− mERk + EVk

ETk
.

Substituting for ET ′k and ER′k in the above equation from
steps 1–3, and simplifying the above terms, we obtain

Z̄(n′)−Z̄(n) =
(1− α)ERk((nm −m)ERk + E(nVk

− Vk))

ETkET ′k
.

Since n1 > 1, we have nm − m = n1 − 1 > 0 and nVk
=

n1 − 1 + Vk > Vk. Therefore, the difference between the
feedback rates Z̄(n′)−Z̄(n) > 0, and hence the desired result
holds.
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