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Abstract— This paper investigates the (k, k) fork-join schedul-
ing scheme on a system of n parallel servers comprising both
slow and fast servers. Tasks arriving in the system are divided
into k sub-tasks and assigned to a random set of k servers, where
each task can be assigned independently to a distinct slow or fast
server with selection probability p, or 1 — p,, respectively. Our
analysis demonstrates that the joint distribution of the stationary
workload across any set of k queues becomes asymptotically
independent as the number of servers n grows, with k scaling
as o(n%). Under asymptotic independence, the limiting mean
task completion time can be expressed as an integral. However,
it is analytically challenging to compute the optimal selection
probability p; that minimizes this integral. To address this,
we provide an upper bound on the limiting mean task completion
time and identify the selection probability 5 that minimizes this
bound. We validate that this selection probability p, yields a
near-optimal performance through numerical experiments.

Index Terms— Heterogeneous servers, fork-join scheduling,
asymptotic independence, completion time.

I. INTRODUCTION

N RECENT years, there has been a significant shift towards
horizontal scaling of resources in distributed computing,
driven by the need for improved performance and scalability.
In distributed computing systems, tasks are typically divided
into smaller sub-tasks and distributed across multiple servers to
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leverage parallel processing capabilities. However, the overall
task completion time is inherently limited by the slowest
server in the system. This limitation becomes particularly
challenging in practical scenarios where servers exhibit
heterogeneity, with some servers being faster and others slower
in terms of processing power. Treating all servers equally in
such heterogeneous environments can lead to an imbalanced
utilization of resources, with some servers becoming congested
while others remain underutilized. Consequently, the mean
task completion time increases, resulting in potential revenue
loss for the service provider and a degradation of overall
system performance. Addressing this issue and optimizing task
completion time in heterogeneous distributed computing envi-
ronments is paramount to maximize efficiency and resource
utilization.

In this paper, we focus on optimizing task completion
time in distributed computing systems comprising two distinct
classes of servers: slow servers and fast servers. When a task
arrives, it is divided into k£ sub-tasks and assigned to a set of
k out of n servers. This choice of k servers is referred to as
scheduling. Completing all £ sub-tasks signifies the departure
of the task from the system. Such a system, where a task is
divided (forked) into k sub-tasks and all £ completed sub-tasks
are aggregated (joined) to complete the task, is called a (k, k)
fork-join system.

The (k,k) fork-join system is a critical building block
in the job processing workflow of many data center ser-
vices including web search [2] and big data analytics [3],
which constitutes a significant part of job processing time
and hardware cost, e.g., more than two-thirds of the total
processing time and 90 percent hardware cost for a Web
search engine [4], [5], [6], [7]. For example, in large-scale
data processing frameworks like MapReduce, jobs are split
into multiple tasks during the map phase and assigned to
different servers. The reduce phase follows when these tasks
are completed, imposing synchronization constraints on task
finishing times. Each arriving job is divided into k£ map tasks,
simultaneously sent to k servers. Each task requires a random
service time, reflecting varying execution times on different
servers during the map phase. A job exits the fork-join system
only when all its tasks are served, ensuring that the reduce
phase commences after all map tasks are completed. Further,
fork-join systems have applications in distributed erasure-
coded storage, where the content can be requested from k&
of the servers [8], [9], [10], [11], [12], [13].

Our primary objective is to identify a scheduling policy
that minimizes the mean completion time of incoming tasks.
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However, due to the heterogeneous nature of the servers,
determining the optimal set of k servers for each incoming task
becomes challenging. Achieving optimal mean task comple-
tion time performance necessitates considering the following
key parameters: the arrival rate of tasks, the number of sub-
tasks k, the number of slow and fast servers, and the absolute
speeds of the servers. We introduce a novel probabilistic policy
for task scheduling, which involves assigning sub-tasks to
either slow or fast servers based on a selection probability ps.
Specifically, a sub-task is sent to a slow server with probability
ps and a fast server with probability 1 — ps. Within each class,
the selection is made uniformly at random without replace-
ment. By utilizing this proposed policy, we aim to determine
the optimal selection probability p, that minimizes the mean
task completion time. In essence, finding the optimal policy
reduces to identifying the selection probability that yields the
most efficient distribution of sub-tasks among the servers,
ultimately minimizing the overall mean task completion time.

A. Related Work

Numerous load balancing strategies have been proposed to
minimize the mean task completion time in distributed com-
puting systems. The join shortest queue (JSQ) policy [14], join
smallest work (JSW) policy [15], [16], [17], and water filling
policy [18] are among the commonly studied approaches.

We note that classical load balancing policies such as
JSQ/ISW, for homogeneous parallel server systems, require
queue/workload information from all queues at all arrival
instants. The information overhead in JSQ/JSW can be reduced
by “power-of-d” variants [17], [19], [20], [21], [22], [23] of
these policies, where only d queues are queried.

These variants involve sampling a random subset of d
servers and assigning the job to a server based only on
the state of the queried servers, e.g., the server with the
shortest queue length or workload. Other efficient dispatching
policies for parallel server systems include the size interval
task assignment policy [24], Redundant-to-Idle queue [25],
and load balancing with timed replicas [26]. Power-of-d vari-
ants without subdivision of tasks are akin to (d, 1) fork-join
queue [17], [19], [20], and with subdivision of tasks they are
akin to (d, k) fork-join queues [9], [11], [13]. However, it is
important to note that these policies are primarily designed for
homogeneous server systems, and a direct adaptation of these
strategies to a heterogeneous system may not yield optimal
performance. Please see a detailed discussion in Appendix C
on the classical load balancing policies adapted to our setting.

In [27], a comprehensive comparison of various load balanc-
ing algorithms designed explicitly for heterogeneous systems
is presented. More recent studies have proposed load balancing
strategies tailored for heterogeneous parallel server environ-
ments where join the shortest queue type strategy is studied
in [28] and “power-of-d” type strategies are studied [29],
[30], both without task subdivision. Further, the load balancing
problem of selecting a single server has been studied in [31].
However, it is worth noting that all these studies focus on
load balancing in the context of heterogeneous servers without
explicitly considering the subdivision of tasks into multiple
sub-tasks, which is the primary focus of our research.
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Analysis of power-of-d type strategies involves showing the
statistical independence of marginal stationary workload dis-
tribution of a finite set of queues in the limit of a large number
of queues. This is referred to as asymptotic independence, and
has been shown to hold under various conditions in [18], [19],
[20], [21], [22], and [23] in the homogeneous server settings.
We note that establishing asymptotic independence for the
setting of heterogeneous queues requires non-trivial adaptation
of the existing proof techniques.

B. Our Contributions

The key contributions of this paper can be summarized as
follows.

1) We demonstrate the asymptotic independence of the sta-
tionary workload distribution in a heterogeneous server
system with two classes of heterogeneity. This result
is achieved by implementing a probabilistic policy and
considering a general service distribution for the two
server classes, along with Poisson arrivals. Specifically,
we establish asymptotic independence for k£ out of n
queues, as long as k = o(n).

2) Leveraging the asymptotic independence of the station-
ary workload distribution, we analytically calculate the
limiting mean task completion time for systems with an
arbitrarily large number of servers.

3) The analytical determination of the optimal selection
probability p%, which minimizes the limiting mean task
completion time, poses significant computational chal-
lenges. Consequently, we derive an upper bound on the
limiting mean task completion time and identify the selec-
tion probability p, that minimizes this bound. Although
this obtained selection probability approximates the opti-
mal selection probability, we empirically demonstrate its
accuracy through numerical studies.

4) We adapt classical load balancing policies such as
JSQ/JSW and their power-of-d variants to the setting
of heterogeneous servers with subdivision of tasks in
Appendix C, and compare their performance with the
proposed policy. We note that modified JSQ/JSW has
a large sampling overhead compared to their power-
of-d variants, whereas the proposed policy requires no
sampling of the queues. We observe that the modified
JSQ/JSW outperforms the proposed policy. However, the
proposed policy outperforms power-of-d variants, even
when the number of queried servers d is slightly larger
than the number of sub-tasks k.

Notation: We denote the set of first k& positive integers
by [k] & {1,...,k}, the set of first k¥ + 1 non-negative
integers by [k]o = {0,...,k}, the set of all positive integers
by N, the set of all non-negative integers by Z., the set
of all non-negative reals by R, and the set of all vectors
of length k taking values in a set A by A*. The set of
all probability measures on a countable set X is defined by

M(X) £ {V €0,1]%: erx Vg = 1}.
II. SYSTEM MODEL

We consider a system S of n heterogeneous servers with
two types of heterogeneity. The sets of slow and fast servers
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are denoted by E; C [n] and E; = [n] \ E,, respectively.
We denote the number of slow and fast servers by n, = |E,|
and ny £ |E;| = n — n,, respectively. The fraction of slow
and fast servers are denoted by f, = ~= and fo21—f, = an
respectively.

A. Task Arrival and Completion

Each arriving task is subdivided into & sub-tasks and dis-
patched to k distinct servers selected out of n. The task is
assumed to be completed when all k£ sub-tasks are completed,
and it leaves the system. We assume that each sub-task is
served in a first-come-first-served (FCFS) manner at each
server. For this system, we assume a Poisson arrival of tasks
with homogeneous rate A £ ”)‘ . We assume that k < ™= Anf

B. Sub-Task Service Time

The sub-task service time for task ¢ at server j is denoted by
a random variable X; ;. We assume that (X; ; : i € N, j € [n])
is independent across servers [n] and across tasks ¢ € N. The
sub-task service time distribution at server j is denoted by
Gx, : Ry — [0,1]. We assume this distribution is identical
for servers within each class and has bounded first and second
moments.

Definition 1: The sub-task service time distribution at slow
and fast servers is denoted by Gs and Gy, respectively. That
is,

Gx; = Gslyjepy + Grlijer,-

The service rates of slow and fast servers are denoted by ps
and py, respectively, where pg < pip. That is,

EXij; = 1{JeE y + *l{aeEf}
The second moments of service distributions for slow and fast
servers are denoted by g, 2 and gy o, respectively. That is,

EX?; = gsolijeny + 9721l (cr,)-

C. Server Selection for Sub-Task Completion

We consider a probabilistic selection of k servers out of
n. Servers are selected sequentially to be either slow or fast
with probabilities (ps, 1 — ps) respectively. Once the server is
selected to be slow or fast, it is chosen to be one of the slow
or fast servers uniformly at random without replacement from
the respective pool of servers.

Definition 2: For task 4, let T © be the k-set of probabilis-
tically selected servers, then we denote the random set of
selected slow and fast servers by I £ I'NE, and I; = I'NEj
respectively and denote the random number of slow and fast
servers as K. £ |I!| and K} = k — K respectively.
Denoting py £ 1—p,, we can write the probability of selecting
ks slow servers for task i, as

a i k
a(ks) £ P{K; =k} = < >p§ Py (1)
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D. Sub-Task Arrival Rate

We can compute the probability that a slow server j € E;
is selected by the dispatcher for an incoming task, as

k (n,—l) k’p
ks—1 s
S - Ly -
ke=1 ( ) ng ko=1 nfs
This probability is independent of the incoming task, and
hence the arrival at each slow server is a thinned Poisson
process with an arrival rate

An ( kps APs
A &SR (2R) = 2 @)
k \nfs fs
Analogously, we can compute the probability that a server 7 €

Ey is selected by the dispatcher for an incoming task as ]:L%

independent of the task. Consequently, the arrival process at
each fast server is a thinned Poisson process with arrival rate
2 APr

fs

III. PERFORMANCE METRICS

Ay 2 3)

We denote the marginal workload at server j seen by ith
incoming task by W; ;, and its limiting distribution by Fyy, :
R, — [0, 1] such that

ij (SL) é

Due to symmetry in the system, the marginal workload distri-
bution is identical at all slow servers and all fast servers. The
limiting distribution of the marginal workload at a slow and a
fast server is denoted by F, and F's, respectively. That is,

Fw,(2) = Fy(z)1gjep,y + Fr(z)ljen,)- )

If one of the k£ sub-tasks for the ith task is dispatched to a
server j € I', then the sub-task completion time at this server
is denoted by T; ; £ W; ; + X; ;. Since the sub-task service
times are i.i.d. at each server, W; ; and X, ; are independent
and for any z € R

FTi,j(x) £ P{EJ < .13}
- / P{W,; < —y}dGy, (y).
y<x

We denote the limiting distribution of sub-task completion
time at any server j as Ly, : Ry — [0,1], which can be
written for any x € Ry, as

LTj (.CL‘) = zligloP{le < l‘} = / " FWj (.CL' — y)deJ (y)
yeER

The above equality follows from the dominated convergence
theorem since the integrand is positive and bounded by unity.
It follows that the limiting distribution of sub-task completion
times are identical for slow and fast servers, and we denote
them by Ly and Ly, respectively. That is,

Ly, (z) = Ls(x)1{jep,} + Ly(@)l{jen,)- (©)
The completion time for task ¢ is denoted by 7;, which is the
maximum of the sub-task completion times at the selected I°
servers and written as

T, & max T5 ;.
jeIt
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The equilibrium distribution of task completion times for n
server system is denoted by H,, : Ry — [0, 1], and defined
for all z € Ry as
H,(z) & lim P{T; < z}.

When the number of servers increases, the asymptotic equilib-
rium distribution of task completion times for n server system
is denoted by H,, : Ry — [0,1], and defined for all x € R
as

H(z) = lim H,(x).

n—oo
Remark 1: Consider a system of n homogeneous and inde-
pendent servers with i.i.d. service times having the following
identical bimodal distribution for each server j € [n]

Fx,, £ G8ij+G(1 —Eij),

where Z; ; indicates slow service for the sub-task corre-
sponding to task i at server j, and = : Q — {0, 1}NX ()
is an ii.d. Bernoulli random sequence with EZ;; = p,.
The asymptotic independence for this system follows in a
straightforward manner from [18] and [23]. However, we note
that this is a different system than the one under consideration.
For example, we compare this system to the one we are
considering in our system model with the following coupling.
Arrival instants in both systems are identical, and the k sub-
tasks are sent to the same set of servers. We notice that the
slow servers remain slow for all sub-tasks in our system.
However, each server can be slow or fast in this system for
different sub-tasks. Consequently, the marginal distribution
at each server in this system is identical. Contrastingly, the
marginal distribution at each server is identical only within a
class for our system and is completely different between the
two classes. Even though the proposed system model is a bit
more difficult to analyze, it is a better fit for practical systems.

IV. ASYMPTOTIC INDEPENDENCE

We will consider the system of servers where the number
of sub-tasks k scales with n. However, for ease of exposition,
we will not explicitly mention dependence on the number of
servers n. Apart from the system under consideration S, we
consider two related systems S and S. We assume all three
systems start empty at time 0 and focus on the joint distribution
of queues at the set of first k servers in all three systems. The
set of slow and fast servers in the first k£ servers are denoted
by I, £ [k] N Es and I; = [k] N E respectively, such that
I, U Iy = [k]. The number of slow and fast servers in the
first k servers is denoted by is £ |Is| and iy £ |I;| = k — i
respectively.

Definition 3 (Independent system): System S consists of n
independent M /G /1 queues partitioned into two disjoint sets
of slow and fast servers denoted by F, and E, respectively.
Each server gets an independent Poisson arrival with rates
As and Ay for slow and fast servers respectively, where the
arrival rates A\; and A are defined in (2) and (3) respectively
We denote the marginal workload at server j in the system S
at time ¢ by W (), and as seen by ith incoming task by W; ; j-
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Definition 4 (Coupled system): Recall that I’ is the set of
servers where sub-tasks are dispatched for each arrival 7 in
the system S. We couple systems S and S in the following
way for each arrival i. The sub-tasks are dispatched to the
set of servers I' N ([n] \ [k]) in S with sub-task service times
identical to the corresponding sub-tasks in S. The sub-tasks are
dispatched to the set of servers I*N[k] in the first k servers of
S.If I*N[k] = 0, then there are no sub-tasks dispatched to the
first k servers in both S and S. If I*N[k] # ), we pick exactly
one server for sub-task dispatch in the first k servers of S, and
the rest of the sub-tasks are dropped. We define the number
of selected slow and fast servers as J! £ |I' N E, N [k]| and
J} £ |I' N Ey N [k]] respectively, for sub-task dispatch to the
first k£ servers in S. In the following three cases, we describe
the selection criterion for single sub-task dispatch among the
first k servers of S.

Case 1: J! + Ji 7 =1. The correspondmg server is selected.

Case 2: JUZ =0 and J! + Jz > 2. If Jf 0, then a
slow server is selected umformly at random from
I'NEsN[k]. If Ji = 0, then a fast server is selected
uniformly at random from I N E; N [k].

Case 3: JﬁJ} >1and J! + J} > 2. A slow or a fast server

is randomly selected with probability p, and py,
respectively. If a slow server is chosen for selection,
then a server is selected uniformly at random from
I'N EsN[k]. If a fast server is chosen for selection,
then a server is selected uniformly at random from
I'NnEf N[kl
We dispatch the corresponding sub-task to the selected server
in S, with sub-task service time identical to the corresponding
sub-task in S. We drop the remaining J} + J; — 1 sub-tasks
in S. We denote the marginal workload at server j in the
system Si at time ¢ by Wj(t), and as seen by ith incoming

task by W ;.
Lemma 1: Consider the system S, where the first k servers
have is slow and iy = k — is fast servers. Any arrival i

selects K! out of ng slow servers and ch =k — K! out of
ny slow servers, for scheduling k sub-tasks on these servers.
Further, this arrival selects J! out of is slow and J} out of
iy fast servers, among the first k servers. We can write this
Jjoint probability as

k

(jsajf)} = Z Q(ks)""s(ksajs)rf(k - k'sajf)a

ks=0

P{(J5T}) =

where we define the selection probability of js out of is slow
servers given kg out of ns slow servers were selected, as

i) (Ms—1s
(]s) (ks _]b)
Ns )
(&)
and the selection probability of jr out of iy fast servers given
ks out of ny slow servers were selected, as

LE\(TFTr
(J}:jf|K}:kf):M'
()

Ts(kmjs) £ P(‘]; =Js ‘ K; = ks) = @)

ry(ky,jg) & P (8)

Proof: Please refer to Appendix A-A. [ ]
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Remark 2: We will frequently use the following identity in
the subsequent results given by

() -%0)62)

=> (. ). ©)
k) NI/ \k—

Recall that (}) is the coefficient of 2* in the polynomial (1+
x)"™. Since (1 + z)" = (1 + 2)*(1 + z)"* for any i < n,
the coefficient of z* in the product would be the sum of the
products of the coefficients of 2/ and 2%~/ in the first and the

second polynomial, summed over all j < ¢ A k. In particular,
this remark implies that

ks Nig kyAnig
Z Ts(ksvjs)zla Z Tf(kfvjf)zl'
js:() jfZO

Lemma 2: The workload distribution at first k servers of the
coupled system S defined in Definition 4 are mutually inde-
pendent. Each of them is an M /G /1 queue with independent
Poisson arrivals to slow and fast servers in the first k servers,
having homogeneous rates given by

3 kp,
)\séAf (ps +psry(ky,0)), (10)

)‘f éA]{,:LI):(pf—'_psrs(kst))? (11)
where rate A = "—k)‘, probabilities r4,r; are defined in (7)
and (8) respectively, and ks +ky =15+ iy = k.
Proof: Please refer to Appendix A-B. ]
Lemma 3: Consider the arrival rates A defined in (10) for
slow servers and 5\f defined in (11) for fast servers, in the
first k servers of the coupled system S. Then, we have

(a) s < \s and )\f Ay and
(b) As— A = 0(%), and As = A; = O().
Proof: Please refer to Appendix A-C. ]

Definition 5: For w € R . we define the joint distribution
of workload at first k& servers in systems S, S, S at time ¢ by

w(w) £ Py (W) <wj} ),
7 (w) & P(m;?:l {Wj(t) < wj})

{Wj(t) < wj})

The corresponding equilibrium distributions are denoted by
7k, 7k 7k respectively.
Definition 6: Consider two distributions 7,v : B(X) —

[0, 1]. Then, the total variation distance is defined as

#H(w) 2 P( 0l

drv(mv) 2 sup |r(A) - v(A)].
eB(X)
Remark 3: If w,v are distributions for random variables

W,V : Q — X, then dypvy(m,v) < P{W # V}. To see this,

we observe that for all events A € B(X), we have

T(A) —v(A)=P{W e AW £V} —P{VeEAW#V}
< P{W #V}.

Lemma 4: If T = O(%), then dTv(ﬂf, ﬁ’j) = O(k—2>
Proof: Please refer to Appendix A-D. ]
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Lemma 5: If time 7 = O(%) then we have

k) = O(\Ifﬁ)’ dry (77, 7*) = O(\k/;>’

dpy (75, 7%) = 0(’“—2).

Proof: Please refer to Appendix A-E. [ ]
Lemma 6: The total variation distance between the equilib-
rium distribution of workloads in the first k servers of systems
S and S is dypy (7%, 7%) = O(\’;—i)
Proof: Please refer to Appendix A-F. [ ]
Theorem 1 (Asymptotic independence): Consider the equi-
librium distributions 7, 7% for workloads in the first k servers
of systems S and S, respectively. Then, the total variance

o(%)

dTV (ﬂ-fa

distance drv (7*,7%) = In particular; if k = o(n3),

then
lim dpy (7", #%) = 0.
n—oo
Proof: Let 7 = O(%) Using triangular inequality for
the total variation distance, we can write

drv (7%, 7%) <dpy (7%, %) + dov (nk, 78) + doy (72, 7)
+dTv(7Tk,7Tk).

The result follows from Lemma 4, Lemma 5, and Lemma 6.
|
Remark 4: We have shown asymptotic independence for the
first k out of n queues, so long as k = o(n3). Without any
loss of generality, the asymptotic independence holds for any
set A C [n] of size |A| = o(n) out of n queues.
Remark 5: Denoting the equilibrium distribution for the
workload at servers in a subset A C [n] as 74 : B(RY) —
[0,1], defined for all z € R as

(2) 2 Jim P( Njea {W;(t) <aj} ).

Since the system S has Poisson arrivals, it follows from
PASTA property [32] that for all z € R#

7TA(.’[) = ili>nolop<mj€A {Wi,j < l'j})

From the definition of limiting marginal workload distribution
in (4), the asymptotic independence of the workload distribu-
tion for any finite set of servers in Theorem 1, the definition of
total variation distance, and the fact that the limiting marginal
workload distribution is identical within a class as shown
in (5), we get for all z € R

2
|A]

[T re) I A +o(

JEANE, JEANE;

). (12)

V. MEAN TASK COMPLETION TIME

Recall that task completion time is the maximum of all %
sub-task completion times. From the asymptotic independence
of limiting sub-task completion times in Theorem 1, we can
compute the limiting mean task completion time as the number
of servers grows larger. This allows us to analytically compute
the limiting mean task completion time as an integral. This
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is shown in Section V-A for a general sub-task service time
distribution and specifically computed for the exponential
distribution. One can numerically evaluate this integral to find
the optimal selection probability p? that minimizes the limiting
mean task completion time. We next propose an upper bound
on the limiting mean task completion time in Section V-B for
a general sub-task service time distribution. We analytically
compute the selection probability ps that minimizes this upper
bound for exponential distribution in Section V-B.1 and for
shifted exponential in Section V-B.2. The shifted exponential
distribution is a generalization of the exponential distribution
and is shown to be a better model for service in realistic cloud
computing systems such as Amazon S3 and Tahoe [8], [33],
[34]. The probability ps serves as an approximation for the
optimal selection probability p3.

A. Exact Computation

Theorem 2: Consider the system S with k = o(nt) with
the slow server selection probability ps, and the limiting
distribution of sub-task completion times Ly, Ly : Ry —
[0,1] at slow and fast servers respectively. The asymptotic
equilibrium distribution H : Ry — [0,1] of task completion
time is

H(x) = (poLs(x) +pyLy ()", (13)

Proof: Recall that for ¢th arriving task, the sub-task
completion time at server j is T; ; = W, ; + X, ;, and the task
completion time T; = max,¢s: T;, ;. Using the tower property
of conditional expectation, we can write the probability of task
completion time being less than equal to a threshold z, as

P{Ti < .’L‘} - E[E[H ]l{Wi-,jgx*Xi-,j} ‘ (Xi,jvj € Ii)ali]]'
JErI

.TER+

Since I’ takes finitely many values, we can write the condi-
tional expectation

E I vow.,<omx.y | (Xij i € 1), 1]
jer

>

AC[n]:|A|=k

]]-{I'i:A}E[H ]]‘{Wi.jgx_xi,j} | (Xiijj € A).
jeEA

Taking time equilibrium limit ¢ — oo, exchanging limit

and expectation using the monotone convergence theorem for

non-negative random variables, exchanging finite sum and

limits, and independence of selection set I* and service-time

X ; for each task-arrival i € N, we get

Hy,(z) = ZligloE[H ]]‘{Wi,jgw_xi,j}}

jeri
= Y  P{I®=AErt(z— Xy, :j € A).
AC[n]:|Al=k
From (12) for joint equilibrium workload distribution on
servers A, the fact that Ly, (z) = EFw,(z — X ;) for all
x € Ry, the definition of distribution ¢ € M([k]o) in (1),
and (6) for marginal sub-task completion distribution being
identical within a class, we get
k

@)= 3 gk L) L)+ 02,
@)= 2, alk)Ls Vi
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Result follows from taking limit n — oo on both sides for
k = o(n#), the binomial form of ¢(k,) = (,fs)pff(lfps)k*ka
and the binomial expansion of (a + b)*. [ ]

Corollary 1: The mean task completion time for the hetero-
geneous system under consideration is given by

i BT = [ (1= @uLa(o) + sy )

1—00

If the sub-task completion times are exponentially distributed,
each queue observed in isolation is an M /M /1 queue, and we
get the following proposition.

Proposition 1: Consider the case when sub-task service
times at slow and fast servers are distributed exponentially
with rates pg and iy respectively, such that slow server loads
ps = ;\T < 1 and fast server loads py = ;\Tf < 1. Then,
the limiting marginal workload distribution at slow and fast

servers for w € R, are
Fs(w) =1 pse_(ﬂs—As)'lU, Ff(w) —1_ pfe—(uf—kf)w.

Further, the limiting sub-task completion times for slow and
fast servers are
Le(z) =1—e W22 [o(g) =1— e im0z,
Remark 6: We observe that the slow and fast server queues
are unstable for p; > 1 and py > 1, respectively. It follows
that the stability conditions for all queues in the system are
)‘psg,ufsfsa )\pfgﬂff_sy )‘</~Lsfs+,ufffs~ (14)
We have normalized the arrival rates to be independent of the
system size n and the number of forked sub-tasks k, such that
the stability region only depends on service rates (i, (17 and
the fraction of slow servers fs. In particular, we observe that
the stability region for normalized arrival rate \ is a convex
sum of the fast and slow service rates and reduces linearly
with increased fraction f; of slow servers.
Corollary 2: For stable M /M /1 queues in Proposition I,
the limiting mean task completion time is

/ 11— — pge” (e A)T _ pfe_(“f_kf)"”)k]dx.
z€ER

Remark 7: For stable M /M /1 queues in Proposition 1, the
limiting mean task completion time as

> ()
pEe (1 —ps)i ="
ks (ps — As) + (1 — k) (p — Ap)”

Even for exponentially distributed sub-task completion times,
analytical computation of the optimal selection probability p
that minimizes the limiting mean task completion time seems
intractable for k£ > 1. However, one can numerically evaluate
the optimal selection probability.

X
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B. Upper and Lower Bound

For an M/G/1 queue with Poisson arrivals of rate A\ and
i.i.d. service time sequence X, the system load is p £ \EX].
Using Pollaczek-Khintchine formula [35] e can write the
limiting mean sojourn time as EX; + 3 (1 p) for load p < 1.
In this section, we will provide an upper and lower bound on
the mean task completion time for the heterogeneous system
S with Poisson arrivals and general i.i.d. service times.

Theorem 3: The mean task completion time for the het-
erogeneous system S with Poisson arrivals and general i.i.d.
service times is upper and lower bounded as

h(ps) < kh(ps),

where the mapping h : [0,1] — Ry is defined for p € (1 —
fs fS
NEX; ' AEX,

) as
EX2
2(& - IEXS)>
IEX]% )
2(& —EX;)

hp) £ p(BX, +

+p(EX, +

Proof: The maximum of k random variables is upper
bounded by their sum and lower bounded by their average.
Therefore, we can upper bound the completion time of task @
by the sum of sub-task completion times at k selected servers
I' and lower bound it by their average. That is,

kZT7J\ —maXTH\ZTm‘.

Jjer e
Jer jerIt

Since the marginal sub-task completion times at all slow and
fast servers are identical, we get

k
EY Tiy= alk)(kE[T]1jen,)

JEI* ks=0
+ (k — ks)E[Ti,j]l{jeEf})‘

The result follows by taking limit ¢ — oo on both
sides, applying the Pollaczek-Khintchine formula for stable
M/G/1 queues the definition of s in (2) and Ay in (3), and
theﬁmtﬂmt}jk,o ksq(ks) = kps. |

Remark 8: Recall that the optimal slow server selection
probability p} = argmin,_lim; .., ET; and we can define
ps = argmin, h(p). Since the function h is independent of
k, we observe that the p; minimizes both the lower and the
upper bound on the limiting mean task completion time. Even
though the lower and the upper bound differ by a factor of
k, they have the same minimizer p;. We take this minimizing
probability as an approximation for the optimal slow server
selection probability p}.

1) Exponential Sub-Task Service:

Corollary 3: Consider the stable heterogeneous system S
with exponentially distributed sub-task service times having
rates (i, pip) for slow and fast servers. The limiting mean
task completion time is upper and lower bounded as

9(ps) < lim ET; < kg(ps),
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where g : [0,1] — R is defined for p € (1 — L/\f;, %) as
1 fs fs
glp) & -5 + + )
Y- A=A

Proof: For exponentially distributed service time with
rates (g and p f for slow and fast servers, we have EX2 = 2
and EX? = =

Remark 9: {Ve observe that the upper bound on the mean
task completion time has three terms. The second term is
increasing and the third term is decreasing, both in slow
server selection probability ps. We can verify that g(ps) is
convex in p, and hence has a unique minimum. Accordingly,
we define p, € [0,1] as the minimizing probability for the
upper bound on the limiting mean task completion time for
a stable system. We define o = ;S \/: and two thresholds

71, To on normalized arrival rates as

T2 folpy — Visty)s 12 = folug + isig). (16)
We observe that ; < 79, and verify that o < 1 iff 75 <
Msfs + /J’ffs'

Corollary 4: The upper bound on the limiting mean task
completion time for exponentially distributed sub-task service
times is minimized by the selection probability

07 A< T1,
e Y T <A< psfs + g f.
1 T O[’ 1 X MsJs 12 fJss
for o and T, defined in Remark 9.

Proof: We take the derivative of the upper bound on the
mean task completion time for memoryless sub-task comple-
tion times in Corollary 3 with respect to ps and write it in
terms of thresholds 7y, 75 defined in (16) and constant «, as

§(pe) = L AT (L F 0))(m2 = A+ Ap(1 = @)

7 Aps A
et P20 = 22021 = 222

We observe that the denominator is always positive, and the
numerator is a product of two linear functions fi, fo : R — R,
defined as fi1(p) = 71 — A+ Ap(1 + a) and fo(p) £ 7o —
A+ Ap(1 — «). The roots of the two linear maps fi, fo are
respectively

a7

A — T1 A — T2
AR S AL S 18
From the definition, it follows that p] > 0 for A > 7 and

p; < 1. In addition, the condition pj < “i\fs stabilizes the

slow server queues, and the condition 1 —p} < & RLes I: gtabilizes

the fast server queues. Therefore, the condition on normalized
arrival rate A < g fo+pif fs stabilizes all queues. We observe
that f; < 0 iff p < pj. We next observe that for stable queues,
ps < pj iff a < 1. This is because the condition p5 < pj for
o < 1, is equivalent to the condition p] < p3 for o > 1,
which is equivalent to

TQ]. T11 _
A< Z(41) = 2 (= 1) = fas + Fony.
<5lgt 5 (o fsts + fspis

For normalized arrival rate A < 7, the upper bound g
is always increasing and hence is minimized by ps = 0.
We consider the following three cases for A > 7.
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Case o > 1. In this case, fo > 0 iff p < p3. Thus
g'(ps) < 0 iff py € [0,p]] U [p3, 1]. Hence, the upper bound
g decreases in [0,pj], increases in [p},p3], and decreases
thereafter. Therefore, ¢ is minimized for ps € {pi,1} for
A > 71. We observe that p] satisfies the stability conditions
for slow server in the region A € psfs + [0, 7 fs) and for
the fast server in the region A € puy fo+ [0, pts fs)- In addition,
we observe that g(p}) < g(1) for A € [y, psfs). It follows
that ps = pj for all A € [y, s fs + pf fs).

Case o < 1. In this case, fo < 0 iff p < p3. Thus
g'(ps) = 0 iff ps € [0,p3] U [p}, 1]. Hence, the upper bound
g increases in [0,p3], decreases in [p},pi], and increases
thereafter. Therefore, ¢ is minimized for p, € {0,pj} for
A > 1. In addition, we observe that g(p}) < ¢(0) for all X €
[71, ity fs). It follows that ps = p forall X € [71, ps fs+puyp fs)-

Case o = 1. In this case, fo = To—\ = pus fs +ppfs — A >
0 in the stability region. Further, the upper bound g decreases
in [0,p3] and increases in [p7,1]. Therefore, g is minimized
for ps = p7 for A > 7. ]

Remark 10: From Corollary 4, we observe that the approx-
imately optimal slow server selection probability ps is a
concave increasing function of normalized arrival rate A. The
probability ps = O until a threshold 7 and saturates to
probability #J;ffs at the boundary of the stability region.
In other words, it is best to schedule incoming jobs on fast
servers for sufficiently low normalized arrival rates A < 77.
As the load increases, incoming jobs need to be scheduled on
slow servers, and the probability of selection of slow servers is
a concave increasing function of the normalized arrival rate \.
We also observe that the threshold 7; is an affine decreasing
function of the fraction of slow servers f,. If there is a larger
fraction of slow servers, then ps quickly becomes non-zero.

2) Shifted Exponential Sub-Task Service:

Corollary 5: Consider the heterogeneous system S for
shifted exponentially distributed sub-task service times with
parameters (cs, its) and (cy, ) for slow and fast servers,
respectively, such that

fs fs

s fs
EELEY
EX,” Y S EX,

A .
<Ex, T EX;

Aps < (19)

Then, the mean task completion time is upper and lower
bounded as

h(ps) < lim ET; < kh(p,),

11— 00

where h : [0,1] — Ry is defined for ps € (1 — MEL%, )\]Ef—;(),

as
s (= XC)EX, + 12,
h(ps) = ps( 1= NEX) )
(1 — )\fo)EXf + %C?c/\f
o (I — A\EX) )

Proof: For shifted exponentially distributed service time
with parameters (cs, pt5) and (cy, ) for slow and fast servers
respectively, we have means EX; = ¢, + /% and EX; =
cr+ i, and the second moments EX2 = (EX,)2 + ﬁ and

s

EX? = (EX;)® + 2 [ |

.
e
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Corollary 6: Consider a shifted exponential distribution for
sub-task completion times with parameters (cs, ps) for slow
servers and parameters (cy, py) for fast servers, such that
A< fSEX A fSEXf. The upper bound on the limiting mean
task completion time is minimized by the selection probability
Ps that solves

1 1 4 1.2
s+ 3CaAs i T aCAs
(1—-AEX,) ' (1-A\EX,)?
102y L+ 12
=+ —2 177 w207 ()
(1= AEXy) (1= A/EXf)?

VI. COMPARISON TO DETERMINISTIC SELECTION

We compare the performance of the probabilistic selection
of slow and fast servers to a deterministic selection. Consider
the system S of n servers, partitioned by a set F; C [n] of
slow servers, and remaining set E; C [n] of fast servers such
that ny = |E;|,ny = |Ey|, and a Poisson arrival of tasks with
homogeneous rate A = 7? where n = n, + ny. Service time
at all slow servers is i.i.d. with distribution G, independent
of the service time at all fast servers, which is i.i.d. with
distribution G y. Each incoming task 7 is scheduled on a set
of slow servers I! C E, and I} C Ey, chosen uniformly at

random within the class, where |I!| = k, and I} = ky are
fixed. The task ¢ is assumed to be completed when sub-tasks
scheduled at all servers I} U I get completed.

Each server in this system is an M/G/1 queue, where
one can verify that the arrivals to all servers are Poisson

with homogeneous rates A\, 2 % for slow servers and
Mk ° S .
Ag = Zn L for fast servers. We denote the limiting marginal

workload distribution at slow and fast servers by L, and Ly,
respectively. We observe that these arrival rates are identical
to the ones defined in (2) and (3) for ps, = % and f, = %
Hence the limiting marginal workload distribution at slow and
fast servers is identical to that of the system S. Applying the
techniques developed in [18] and [23], we can show that for
any fixed server subset A C [n], the joint stationary workload
distribution at servers in A grows asymptotically independent
as n — oo. Accordingly, the limiting distribution for task
completion time for this deterministic setup when the number
of servers n grows large can be written for all z € Ry as
Hi (x) = Ly(x)k Ly ()" F. @21)
The limiting mean task completion time can be written as
an integral of limiting complementary distribution of task
completion time. Hence, we define the optimal deterministic
selection of the number of slow servers as
ko / (1 - HY (2))d.
rER

min (22)
ks€(klo

Proposition 2: Consider the heterogeneous system S with
n servers, with constant fractions fs and fs of slow and fast
servers, respectively, and (k, k) fork-join of tasks. Let k’ be
the optimal deterministic selection of slow servers as defined

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:53:36 UTC from IEEE Xplore. Restrictions apply.



4806

in (22). Then, the optimal selection probability of slow servers
converges to

li ==

s T
Further, the binomial probability q*(¢) of choosing ¢ slow and
k—U{ fast servers with the optimal probability p?; of slow server
selection, converges to
lim q*(f) = ]l{Z:kp;‘]w

k—oo

Proof: The proof is provided in Appendix B. ]

VII. NUMERICAL RESULTS

We have computed the mean task completion time under
the regime of an asymptotically large number of servers n,
which yields an asymptotic independence of marginal work-
load distribution at any arbitrary set of & servers. We observe
in Section VII-A that this asymptotic independence seems
to hold for k = o(n?), even though theoretical guarantees
only exist for k = o(ni). We compare the numerically
obtained optimal slow server selection probability p; with its
analytically obtained approximation ps in Section VII-B as
a function of normalized arrival rate in the stability region,
varying the service rates (us,fty), the number of sub-tasks
k, and the fraction of slow servers fs. We compare the
performance of probabilistic and deterministic server selection
in Section VII-C.

A. Asymptotic Independence

We have shown in Theorem 1 that the independence of
marginal workload distribution at individual queues holds
when the number of sub-tasks k(n) = o(ni), for a large
number of servers n. To verify the robustness of this condition,
we conducted numerical and empirical studies to determine
the limiting mean task completion time in n heterogeneous
server systems under the proposed policy as a function of
selection probability p, for different scaling of the number
of sub-tasks k(n). We considered a finite number of servers
n e {107 102, 103}, the fraction of slow servers f; = 0.5, the
number of sub-tasks k(n) = o(n®), the normalized Poisson
arrival rate of tasks to the system A = 0.9, and exponen-
tially distributed sub-task service times with rates (us, py) =
(2,2.5), for the slow and the fast servers respectively. We have
plotted the empirically obtained mean task completion time
against the theoretically computed values from Corollary 2,
as a function of increasing selection probability ps € [0,1]
for exponent v € {1, 3,%,2} in Fig. la, Fig. 1b, Fig. lc,
and Fig. 1d respectively. Interestingly, we observe that the
assumption of independence of marginal workloads remains
robust even for small values of n. As expected, the accuracy
of this independence assumption improves as n grows larger.
Furthermore, we found that the mean task completion time is
a convex function of the selection probability pg, indicating
that it possesses a unique minimum. Even though Theorem 1
demonstrated the asymptotic independence of marginal work-
loads for k(n) = o(n7), the empirical observations suggest
that this assumption continues to hold for a larger scaling.
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Fig. 1. Comparison of mean task completion time obtained theoretically

and empirically as a function of slow server selection probability ps for
the fraction of slow servers fs = 0.5, normalized Poisson task arrival rate
X = 0.9, exponential sub-task service times with rate (us, pr5) = (2,2.5) for
the slow and the fast servers respectively, and the number of sub-tasks k(n).

B. Optimal Selection Probability p}; and Its
Approximation pg

We observed that the limiting mean task completion time
can be uniquely minimized by the optimal selection probability
pi. However, this optimal probability is difficult to compute
analytically, even for the simplest case of exponential service.
As such, we proposed an approximately optimal selection
probability p, that minimizes an upper and lower bound on
the limiting mean task completion time. This approximately
optimal selection probability ps is analytically computable
for many sub-task service time distributions. This subsection
empirically evaluates the approximation error for (1) different
service rate pairs (s, pir), (2) different number of sub-tasks
k, and (3) different fraction f, of slow servers.

1) Varying Service Rate Pairs: We evaluate a heterogeneous
system with the number of servers n = 103 and the fraction
of slow servers f; = 0.5. For the exponential distribution
of sub-task service times with rates (ug, 1) for the slow
and the fast servers, we numerically obtained the optimal
selection probability pZ from Remark 7 and theoretically
obtained the approximately optimal selection probability ps
from Corollary 4. We plotted the comparison of probability p}
and its approximation ps as a function of normalized arrival
rate A for different service rate pairs in Fig. 2.

We repeated this comparison for the shifted exponential
distribution for sub-task service times with rates (u,ps) and
shifts (cs, cs) for the slow and the fast servers. We empirically
obtained the optimal selection probability p? and numerically
obtained the approximately optimal selection probability ps
from Corollary 6. We plotted the comparison of optimal
selection probability p? and its approximation ps as a function
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Fig. 2. Impact of difference in service rates on optimal selection probability
p% and its approximation ps for exponential service. We plot pj and ps as
a function of normalized Poisson arrival rate A, for a heterogeneous system
with the number of servers n = 103, the fraction of slow servers fs = 0.5,
the number of sub-tasks & = 10, and exponential sub-task service times with
rates (us, pug) for the slow and the fast servers respectively.
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Fig. 3. Impact of difference in service rates on optimal selection probability
p% and its approximation ps for shifted-exponential service. We plot p} and
Ps as a function of normalized Poisson arrival rate A, for a heterogeneous
system with the number of servers n = 103, the fraction of slow servers
fs = 0.5, the number of sub-tasks & = 10, and shifted exponential sub-task
service times with rates (us,py) and shifts (cs,cy) = (0.1,0.1) for the
slow and the fast servers respectively.
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of normalized arrival rate A for a fixed shift pair and different
service rate pairs in Fig. 3.

We observe that the approximately optimal selection proba-
bility ps is close to the optimal selection probability p? for all
normalized arrival rates. In addition, we note that the optimal
selection probability of slow servers is concave and increasing
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(@) n =102, k € {3,10,22}. (b) n = 103, k € {10,100, 400}.

Fig. 4. Impact of changing the number of sub-tasks on optimal selection
probability p} and its approximation ps for exponential service. We plot p
and ps as a function of normalized Poisson arrival rate A, for a heterogeneous
system with the number of servers n, the fraction of slow servers fs = 0.5,
the number of sub-tasks k, and exponential sub-task service times with rates
(s, mg) = (2,2.5) for the slow and the fast servers respectively.
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Fig. 5. Impact of changing the number of sub-tasks on optimal selection
probability p} and its approximation ps for shifted-exponential service.
We plot p% and ps as a function of normalized Poisson arrival rate A, for
a heterogeneous system with the number of servers n, the fraction of slow
servers fs = 0.5, the number of sub-tasks k, and shifted exponential sub-task
service times with rates (us, p1f) = (2,2.5) and shifts (cs,cy) = (0.1,0.1)
for the slow and the fast servers respectively.

in the normalized arrival rate A. This suggests that the system
tries to reduce the use of slow servers at low loads to minimize
the limiting mean task completion time. However, when the
load increases, the system is forced to increase the usage of
slow servers.

2) Varying the Number of Sub-Tasks: We plotted the opti-
mal selection probability p} and its approximation ps as
a function of normalized arrival rate A for the number of
servers n € {102, 103}, different number of sub-tasks k, for
exponentially and shifted exponentially distributed sub-task
service times in Fig. 4 and Fig. 5 respectively. From Theorem 3
and Remark 8, we observe that the approximately optimal
selection probability p, is independent of the number of sub-
tasks k. We observe that the optimal selection probability p}
weakly depends on k. However, the approximately optimal
selection probability p, remains close to the optimal selection
probability p} for all normalized arrival rates A and the number
of sub-tasks k.

3) Varying the Fraction of Slow Servers: We plotted the
optimal selection probability p} and its approximation ps as a
function of the fraction of slow servers f, for a fixed number
of servers and sub-tasks, different normalized task arrival rates,
and exponentially distributed sub-task service times with two
different service rate pairs in Fig. 6. We observe that the
optimal slow server selection probability remains close to
its approximation in both cases. The approximation is better
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Fig. 6. Impact of changing the slow server fraction fs on optimal selection
probability p} and its approximation ps. We plot p} and ps as a function of
the fraction of slow servers fs for a heterogeneous system with the number
of servers n = 103, the number of sub-tasks k = 10, different values of
normalized Poisson task arrival rates A, and exponential sub-task service times
with rates (ps, it¢) for the slow and the fast servers respectively.
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Fig. 7. Comparison of mean number of slow servers and mean task
completion time for optimal deterministic choice of slow servers k}, optimal
probabilistic choice of slow servers, and approximately optimal probabilistic
choice of slow servers as a function of normalized Poisson task arrival rate A
for a heterogeneous system with the number of servers n = 103, the fraction
of slow servers fs = 0.5, the number of sub-tasks k = 102, and exponential
sub-task service times with rates (us,pus) = (2,2.5) for the slow and the
fast servers respectively.

when the service rates are closer, and arrival rates are higher.
From (17), we know that the approximately optimal slow
server selection probability p, is an increasing function of
the slow server fraction f,, for a fixed load. This property
is empirically observed to hold for the optimal slow server
selection probability p;. This is due to the need for the
utilization of slow servers to reduce the mean task completion
time. We also observe that when the service rates are close,
the optimal server selection probability depends weakly on the
normalized arrival rate A.

C. Deterministic Versus Probabilistic Selection

Finally, we compare deterministic and probabilistic selec-
tion of slow servers for scheduling k sub-tasks for each
incoming task. To this end, we evaluated a heterogeneous
system with n = 10° servers, the fraction of slow servers
fs 0.5, the number of sub-tasks & = 102, and expo-
nential distribution for the sub-task service times with rates
(s, pbf) = (2,2.5) for the slow and the fast servers respec-
tively. In Fig. 7a, we compare the optimal deterministic choice
of the number of slow servers kJ, the mean number of
optimally selected slow servers kp? and its approximation kps,
as a function of normalized task arrival rate A. In Fig. 7b,
we compare the mean task completion time for the optimal
deterministic choice of the number of slow servers k}, with

s
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the mean task completion time for probabilistic selection
with optimal slow server selection probability p¥ and its
approximation pg, all as a function of normalized task arrival
rate A\. As expected from Proposition 2, we observe that
k¥ =~ kp% =~ kps and the corresponding mean task completion
times remain close for all arrival rates in the stability region.

VIII. CONCLUSION

In conclusion, this study investigates the (k, k) fork-join
scheduling scheme in a system of parallel servers with two sets
of heterogeneous servers, i.e., slow and fast servers. We show
that the joint distribution of the stationary workload across
k queues becomes asymptotically independent as the number
of servers, n, grows and k = o(n3). The limiting mean task
completion time is analytically challenging to compute due
to its integral expression. To address this, an upper bound
on the limiting mean task completion time is derived, and the
selection probability p, that minimizes this bound is identified.
Numerical experiments confirm that the selected probabil-
ity provides near-optimal performance. These results offer
valuable insights into workload distribution and performance
optimization in heterogeneous server environments. Further
research can explore additional system complexities and refine
the proposed approach for enhanced performance.
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