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ABSTRACT
Heterogeneous computing involves CPU architectures that sup-
port more than one core type, and it aims to achieve energy effi-
ciency while meeting the performance guarantees. This aim can be
achieved by the operating system or the on-chip driver by exploiting
the differential power-performance trade-off that heterogeneous
cores offer. We characterize the power-performance trade-off for
an Intel CPU with heterogeneous cores and provide a mathematical
framework to study heterogeneous computing. In particular, we
provide probabilistic workload split and operating frequency for all
active cores that allow workload execution with minimal carbon
emissions. We support the analytical findings with experimental
evaluations for a few representative workloads. As compared to
the default Linux frequency governors, our scheme can reduce the
energy-delay product by up to 80%.

CCS CONCEPTS
• Computer systems organization → Heterogeneous (hybrid)
systems; •Hardware→ Platform power issues; • Software and
its engineering→ Scheduling; • Computing methodologies
→Modeling and simulation.
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1 INTRODUCTION
The Information and Communications Technology (ICT) sector’s
current energy usage is close to 10% of global electricity consump-
tion and is projected to increase to 20% by 2030 [21]. A significant
fraction of ICT energy consumption is by data centers [8]. To com-
bat the adverse impact on environmental sustainability caused by
the above growth in energy demand, novel solutions are being
proposed and developed by different players targeting different
parts of the ICT space. While data center providers attempt to com-
pensate for their carbon footprint through alternative targets such
as Net-Zero, which focuses on the use of renewable energy, chip
and server manufacturers are exploring energy-efficient hardware
architectures. Despite efficiency improvements in CPU power, it is
the most dominant components of the total server power consump-
tion. It accounts for 58% of dynamic server power and 33% of total
server power [11, 19, 29]. Further, cooling and provisioning costs
are proportional to the total server power. Therefore, we focus on
ways to reduce CPU power in this work. We note that memory
power consumption is another important contributor to the server
energy consumption. However, memory frequency and voltage are
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constants during operation and are not load-dependent. Therefore,
we do not consider energy consumption due to memory usage.

Computational workloads are time-varying and the service re-
quirements are seldom constant [38]. Therefore, CPUs are rarely
used at maximum utilization [11]. CPUs consume power when
idling between busy phases, leading to energy wastage and lack
of energy proportionality1 that has become a key design goal for
energy-efficient computing. Though it is possible to work around
the lack of energy proportionality by putting CPUs to sleep when
idle, low-power CPU sleep states are useful only to an extent. As ob-
served in [39], CPUs need to be awakened quite often, and there is
latency and power cost involved in the transitions to and from sleep
states. Another approach to get better energy proportionality in
modern CPUs is via using Dynamic Voltage and Frequency Scaling
(DVFS) [44]. Using DVFS, one can dynamically slow down the clock
frequency and supply voltage to reduce energy consumption. This
can also reduce idle times, by reducing the intervals when the CPU
is idle. However, reducing clock frequency can increase task com-
pletion times and there is latency involved with dynamic frequency
switching. Further, frequent changes in voltage and frequency can
be significantly detrimental to hardware reliability [51].

Fundamentally, there are two sources of non-proportionality: (a)
CPUs consume static power primarily corresponding to leakage
power [27], when CPUs are idle and not asleep, and (b) CPUs’
dynamic power consumption while active is non-linear in the core
frequency, especially at low utilization of 10-50% [11]. In order to
improve power efficiency at all utilization levels of practical interest,
servers offering high dynamic range and linear deviation (with
workload) are desired. One proposed approach [56] for extending
the dynamic range while maintaining high linearity is through
computing architectures consisting of CPUs with heterogeneous
cores having different power-performance trade-offs. A multi-core
CPU with functionally non-identical cores is called a heterogeneous
or hybrid multi-core processor (HMP). A HMP typically has more
than one core micro-architecture in a single die, allowing distinct
sets of cores to operate at different processing speeds, while sharing
the same ISA, thus enabling performance and energy efficiency.
Intel Core Processors, 12th generation onward [2], are examples
of HMP CPUs, combining performance and efficiency cores (P-
cores and E-cores) in the same package. P-cores support high clock
speeds to maximize single-thread performance and responsiveness
for compute-intensive workloads. E-cores are slower, consume less
power, and are meant for background tasks. These Intel CPUs also
support DVFS for both core types.

Realizing the energy-saving potential of HMPs requires a joint
allocation and scheduling of workloads to all the cores. This en-
tails (a) finding the workload allocation to the cores and (b) core
frequency selection for each of the active cores. The overall objec-
tive is to meet the workload service level objectives (SLO’s) while
minimizing the energy consumption. Such an allocation scheme
needs to be aware of the power-performance trade-off for the CPU
cores being used, and the workload characteristics including arrival
rate and service requirements. This can be achieved by (a) CPU
characterization preferably through an analytical model for power

1Energy proportionality implies that the system’s energy consumption should remain
proportional to the utilization.

as a function of frequency, supply voltage, and utilization, and (b)
workload characterization through an analytical model for inter-
arrival times and service requirements. Together these two models
can predict the power-performance trade-off and help in making
fast scheduling decisions. In this work, we focus on workloads that
do not change considerably during one scheduling span and focus
on determining (a) the number of sleeping and active cores, (b) the
operating frequency selection at active cores, and (c) the workload
split on active cores through thread assignments, such that service
level objectives are met while minimizing power consumption.

Energy and performance-aware scheduling for hybrid cores can
become significant in cloud environments due to the increasing
adoption of serverless computing. Serverless systems are evolving to
support heterogeneous workloads with varying processing charac-
teristics and performance requirements. Efforts are already under-
way to instantiate such platforms over heterogeneous computing
systems for improving performance and reducing resources, energy,
and cost [20, 34]. Intel also recently announced plans for a mod-
ular SoC architecture that can support both P and E cores using
compute chiplets for cloud workloads that need more than one
CPU design [22]. The scheduling policies derived in this work can
be extended to determine the right number of container replicas
to enable different services on the right type of hardware based
on the characteristics of the incoming workload. Our focus is on
predictable workloads that remain unchanged for one scheduling
span, e.g. modern batch processing workloads in cloud [36] that can
consist of data and image analytics tasks as part of application work-
flow orchestration frameworks [23] and in HPC environments [55].
We note that our approach can be extended to dynamic, real-world
scenarios by learning the changes to the workload at runtime, and
this study can guide the design of efficient heuristics. We also note
that our study can be utilized on public clouds, where workloads
with similar characteristics can be aggregated and scheduled.

1.1 Related Work
The benefit of single-ISA heterogeneous multi-core architecture
for energy optimization was first established in [33] by switching a
multi-phased application with different phase execution character-
istics among cores of a heterogeneous multi-core system composed
of different generations of Alpha ISA processors. Heterogeneous
scheduling has been studied in a variety of other across-chip het-
erogenic contexts. CPU-GPU collaboration for high-performance
computing is explored in [18, 38, 41]. Multiple layers of parallelism
exposed in modern hardware with symmetric multi-core processors
are exploited in [14]. Maximizing the average instructions per cycle
of a set of applications running simultaneously on an asymmetric
multi-core processor system is studied in [45]. The tradeoff between
average power reduction and SLA degradation is studied in [24]
when a higher fraction of incoming tasks are scheduled on less per-
formant but more power-efficient servers while letting idle servers
sleep. In contrast, this work focuses on heterogeneity within a chip.

Theoretically, it has been shown that classical load-balancing
policies designed for homogeneous servers perform poorly in the
heterogeneous setting [10, 50, 54]. Existing work on scheduling over
heterogeneous servers considers fixed service rates [15, 35, 37, 52].
Probabilistic splitting of workloads for performance optimization in
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the heterogeneous setting was considered in [52]. These works did
not consider service rate control and energy consumption. Energy-
aware scheduling in Linux kernels using DVFS for multiple CPUs
was proposed in [3]. The proposed scheduling was shown to be
sub-optimal for a heterogeneous multi-core architecture [48, 49].
To the best of our knowledge, ours is the first work to combine
scheduling on multicore CPUs with intra-chip heterogeneity and
DVFS for optimizing power while meeting latency guarantees.

1.2 Key contributions
The key contributions of this work are as follows.

(1) We propose a power and performance model for CPUs with
heterogeneous cores that is consistent with the CMOS CPU
architecture of current generations in Section 2.

(2) We validate the system model through experimental char-
acterization on an Intel X86-64 CPU (core i9-13900) with 8
P-cores and 16 E-cores in Section 4.1.

(3) We formulate the configuration problem of (a) the workload
distribution among the cores, and (b) their operating fre-
quencies in Problem 1 that minimizes the aggregate power
consumption while meeting a mean sojourn time guarantee
for the workload at each core.

(4) We propose HEMP—Heterogeneity enabled Energy-Minimizer
with Performance constraints—an optimal analytical solution
to the configuration problem in Theorem 3 which has strong
theoretical guarantees, and is easily implementable in prac-
tical systems.

(5) We present numerical results in Section 4.2, and validate
HEMPwith experiments on a CPUwith heterogeneous cores
in Section 4.3.

(6) We compare the performance of HEMPwith Linux frequency
governors combined with the default CPU scheduler in Sec-
tion 4.3.3 for image-processing and machine-learning infer-
ence workloads.

Notation: We denote the set of all positive integers by N, the
set of first 𝑛 positive integers by [𝑛], the set of non-negative reals
by R+, the set of probability measures on a finite set 𝐴 by M(𝐴) ≜{
𝑝 ∈ [0, 1]𝐴 :

∑
𝑎∈𝐴 𝑝𝑎 = 1

}
.

2 SYSTEM MODEL
We consider a compute system with a single class of computational
tasks, that can be offloaded to one of the𝑁 available cores.Wemodel
the arrival of computational tasks as a Poisson process with an
aggregate arrival rate 𝑁𝜆. We consider a simple probabilistic load-
balancing scheme where each arriving task is randomly assigned
by the OS scheduler to one of the cores independently with an
identical distribution (i.i.d. ) where the common probability mass
function (PMF) is denoted by 𝛾 ∈ M( [𝑁 ]). It follows that 𝛾𝑛 is the
thinning probability for arrivals to core 𝑛. If a core is busy, the task
is queued in a per-core buffer2 at the OS scheduler. We assume an
arbitrarily large buffer serviced on a first come first served (FCFS)
basis.

2In practice, the OS scheduler may have a common priority queue per CPU with a
sophisticated priority scheme. However, modeling such queues is complex, and hence
we assume a per-core queue for analytical tractability.

We consider the case of heterogeneous cores of two classes. The
mutually exclusive sets of performance and efficiency cores are
denoted by N𝑝 ⊆ [𝑁 ] and N𝑒 = [𝑁 ] \N𝑝 respectively. Since each
core is of type performance or efficiency, we denote the type of
core 𝑛 by

𝑐𝑛 ≜ 𝑝1{𝑛∈N𝑝 } + 𝑒1{𝑛∈N𝑒 } . (1)

We denote the number of performance and efficiency cores by
𝑁𝑝 ≜

��N𝑝
�� and 𝑁𝑒 ≜ |N𝑒 | = 𝑁 − 𝑁𝑝 , respectively.

2.1 Service time and requirement
We model the service requirements for computational tasks as an
i.i.d. random sequence with a common exponential distribution
having unit mean on a core with a unit task service rate. The
task service rate 𝜇𝑛 at a core 𝑛 ∈ [𝑁 ] for a given workload is
proportional to the core frequency 𝑓𝑛 ∈ F𝑐𝑛 , where F𝑐𝑛 is the set
of allowable frequencies for a core 𝑛. Hence the task service time
is distributed exponentially, the service rate is proportional to the
frequency, and the proportionality relation is given by

𝜇𝑛 ≜ 𝛼𝑐𝑛 𝑓𝑛 . (2)

The heterogeneity of the cores is reflected in the proportionality
constant 𝛼𝑐𝑛 that depends on the core type 𝑐𝑛 . The performance
cores have a larger proportionality constant for the task completion
rate, i.e. 𝛼𝑝 > 𝛼𝑒 . That is, a performance core works faster than an
efficiency core for the same operating frequency. Under this model,
the service time distribution for computational tasks on core 𝑛 with
frequency 𝑓𝑛 is exponential with a rate 𝜇𝑛 . We denote the limiting
average of sojourn time by𝑊̄𝑛 averaged over all tasks joining a core
𝑛, and consider the guarantee that the mean sojourn time doesn’t
exceed a threshold𝑤 at any core 𝑛.

2.2 Power consumption
The average power consumption at a core in a time duration de-
pends on whether the core was idle or working during this duration.
If the core is idle for the entire time duration, then the average power
consumed by the core 𝑛 working at frequency 𝑓𝑛 , is obtained by
adapting the results of [47] and is denoted by

𝑃sta (𝑐𝑛, 𝑓𝑛) ≜ 𝑎𝑐𝑛𝑉𝑛 (𝑒𝑏𝑐𝑛𝑉𝑛 − 1), (3)

for positive core-dependent constants 𝑎𝑝 , 𝑏𝑝 , 𝑎𝑒 , 𝑏𝑒 > 0. If the core
𝑛 operating at frequency 𝑓𝑛 is working for the entire time duration,
then the additional average power consumed is similarly adapted
from the results of [47],

𝑃dyn (𝑐𝑛, 𝑓𝑛) ≜ 𝛽𝑐𝑛𝑉
2
𝑛 𝑓𝑛, (4)

for positive proportionality constants 𝛽𝑝 and 𝛽𝑒 which represent
the effective capacitance of the CMOS system. We note that the
two powers at core 𝑛 are functions of the operating frequency 𝑓𝑛 .
However, these functions include undetermined variable voltage𝑉𝑛 .
This is because voltage 𝑉𝑛 is set by the CPU’s internal governor to
meet stability criteria depending on the operating frequency 𝑓𝑛 . The
exact voltage-frequency map is discussed in detail in Section 4.1.
We note the following property.

Property 1. The operating voltage 𝑉𝑛 = 𝑉𝑐𝑛 (𝑓𝑛) at any core 𝑛 is a
convex non-decreasing function of operating frequency 𝑓𝑛 .
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CPU architectures also define sleep power states {𝐶1, . . . ,𝐶𝑘 }
as described in Section A. For simplicity of presentation, we fo-
cus on a single sleep state—the deepest sleep state 𝐶𝑘 with the
average power consumption denoted by 𝑃sleep (𝑐𝑛) for a core 𝑛.
Typically, 𝑃sleep (𝑐𝑛) is significantly lower than the static power
𝑃sta (𝑐𝑛,minF𝑐𝑛 ). However, the core can’t immediately start work-
ing when in a sleep state, and there is a non-negligible delay in
waking a core from deep sleep. In the rest of the manuscript, we
will assume that the cores that are sent to sleep state are decided
at the beginning of the schedule, and the sleeping cores are not
woken up for the duration of the schedule. In contrast, we note that
an idling core can start working as soon as a task arrives.

We denote the limiting time average of power consumption at
core 𝑛 by 𝑃𝑛 . We have assumed that a sleeping core is never woken
up, and hence 𝑃𝑛 = 𝑃sleep (𝑐𝑛) implies that the thinning probability
𝛾𝑛 = 0. Further, if thinning probability 𝛾𝑛 = 0 for a core 𝑛, then
the power consumption is minimized when it is asleep and hence
𝑃𝑛 = 𝑃sleep (𝑐𝑛). Thus, we assume that the thinning probability
𝛾𝑛 = 0 for a core 𝑛 if and only if 𝑃𝑛 = 𝑃sleep (𝑐𝑛).

2.3 Problem formulation
We are interested in finding the thinning probability mass function
𝛾 ∈ M( [𝑁 ]) and the sequence of operating frequencies 𝑓 ≜ (𝑓𝑛 :
𝑛 ∈ [𝑁 ]) ∈ F

N𝑝

𝑝 × F
N𝑒
𝑒 for all cores that minimizes the average

power consumption aggregated over all cores while meeting the
service requirement on limiting average of sojourn time at each
core 𝑛.

Problem 1. Consider the set of feasible allocations

𝐴 ≜
{
(𝛾, 𝑓 ) ∈ M( [𝑁 ]) × (FN𝑝

𝑝 × F
N𝑒
𝑒 ) : 𝑊̄𝑛 ⩽ 𝑤

}
.

Find the optimal allocation

(𝛾∗, 𝑓 ∗) ≜ arg min


∑︁
𝑛∈[𝑁 ]

𝑃𝑛 : (𝛾, 𝑓 ) ∈ 𝐴

 . (5)

3 ANALYTICAL RESULTS
For a given allocation (𝛾, 𝑓 ), we note that the task arrival process
at each core 𝑛 is a thinned version of the aggregate homogeneous
Poisson task arrival process of homogeneous rate 𝑁𝜆 and thinning
probability 𝛾𝑛 . It follows that at each core 𝑛, the task arrival process
is an independent Poisson process with a homogeneous rate 𝜆𝑛 ≜
𝑁𝜆𝛾𝑛 . If the thinned Poisson arrival rate 𝜆𝑛 = 0 for any core 𝑛, then
the power consumption is minimized when it is in sleep state, i.e.
𝑃𝑛 = 𝑃sleep (𝑐𝑛). We first focus on the non-sleeping cores.

Definition 1. For any thinning PMF 𝛾 ∈ M( [𝑁 ]), we define the
set of non-sleeping or active cores with N1 ≜ {𝑛 ∈ [𝑁 ] : 𝛾𝑛 ≠ 0}.
Similarly, we define the set of active performance and efficiency
cores as
N𝑝,1 ≜

{
𝑛 ∈ N𝑝 : 𝛾𝑛 ≠ 0

}
, N𝑒,1 ≜ {𝑛 ∈ N𝑒 : 𝛾𝑛 ≠ 0} . (6)

The number of active cores is denoted by 𝑁1 ≜ |N1 |, and the
corresponding notation for active performance and efficiency cores
are 𝑁𝑝,1 ≜

��N𝑝,1
�� and 𝑁𝑒,1 ≜

��N𝑒,1
��.

The service time for each task at an active core 𝑛 is an indepen-
dent exponential random variable with rate 𝜇𝑛 = 𝛼𝑐𝑛 𝑓𝑛 . It follows

that each active core 𝑛 has an independent𝑀/𝑀/1 queue of tasks
with the limiting average of task sojourn time [9] averaged over all
incoming tasks

𝑊̄𝑛 (𝑐𝑛, 𝑓𝑛, 𝛾𝑛) = 1
𝜇𝑛 − 𝜆𝑛

=
1

𝛼𝑐𝑛 𝑓𝑛 − 𝑁𝜆𝛾𝑛
. (7)

The mean load on this core is 𝜌𝑛 ≜ 𝜆𝑛
𝜇𝑛

, and the limiting average of
idle time for this core is 1 − 𝜌𝑛 . Hence, the limiting average power
consumption is

𝑃𝑛 (𝑐𝑛, 𝑓𝑛, 𝛾𝑛) =
[
𝑃sta (𝑐𝑛, 𝑓𝑛) + 𝑁𝜆𝛾𝑛

𝛼𝑐𝑛 𝑓𝑛
𝑃dyn (𝑐𝑛, 𝑓𝑛)

]
1{𝑛∈N1 }

+ 𝑃sleep (𝑐𝑛)1{𝑛∉N1 } . (8)

3.1 Optimal frequency selection
We first focus on solving the following sub-problem. Given a thin-
ning probability mass function 𝛾 ∈ M( [𝑁 ]), find the optimal fea-
sible frequency allocation3 𝑓 ∈ F

N𝑝

𝑝 × F
N𝑒
𝑒 that minimizes the

average power consumption aggregated over all cores.

Problem 2. Consider a fixed thinning probability mass function
𝛾 ∈ M( [𝑁 ]) and the set of feasible frequencies

𝐴(𝛾) ≜
{
𝑓 ∈ F

N𝑝

𝑝 × F
N𝑒
𝑒 : (𝛾, 𝑓 ) ∈ 𝐴

}
.

Find the optimal feasible frequency 𝑓 ∈ 𝐴(𝛾) that solves

𝑓 ∗ (𝛾) ≜ arg min


∑︁
𝑛∈[𝑁 ]

𝑃𝑛 : 𝑓 ∈ 𝐴(𝛾)
 . (9)

Lemma 1. For a given thinning probability mass function 𝛾 ∈
M( [𝑁 ]) and any active core 𝑛 ∈ N1, the optimal feasible operating
frequency that minimizes the average power consumption at each
core 𝑛 is given by

𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛) ≜ inf
{
𝑓𝑛 ∈ F𝑐𝑛 : 𝑓𝑛 ⩾

1
𝛼𝑐𝑛

(
𝑁𝜆𝛾𝑛 + 1

𝑤

)}
. (10)

Proof. See Appendix C.2. □

Remark 1. From Lemma 1, we observe that the optimal frequency
selection 𝑓 ∈ F

N𝑝

𝑝 × F
N𝑒
𝑒 is completely determined for any given

thinning probability mass function 𝛾 ∈ M( [𝑁 ]).
Definition 2. We define theminimum average power consumption
given a fixed thinning PMF 𝛾 as

𝑃𝑛 (𝑐𝑛, 𝛾𝑛) ≜ 𝑃𝑛 (𝑐𝑛, 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛), 𝛾𝑛), (11)

where optimal frequency allocation 𝑓 ∗ (𝛾) given 𝛾 is defined in (10)
for all active cores 𝑛 ∈ N1.

Assumption 1. The sets of feasible frequencies for both types of
cores are typically different; both are sets of discrete frequencies.
We will assume both sets to be continuous for the simplicity of
analysis.

3Setting frequency of each core individually is not supported on all CPU architectures.
However, frequency setting per core type for active cores suffices for optimality, as
established in Theorem 2.
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Remark 2. Under Assumption 1, the optimal frequency at core 𝑛
with positive thinning probability 𝛾𝑛 that minimizes average power
consumption while satisfying the mean sojourn time guarantee𝑤
at this core, is

𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛) = 𝑓𝑐𝑛 (𝛾𝑛) ≜
1
𝛼𝑐𝑛

(
𝑁𝜆𝛾𝑛 + 1

𝑤

)
. (12)

We observe that 𝑓𝑐𝑛 (𝛾𝑛) is affine in thinning probability 𝛾𝑛 , and
increasing in 𝛾𝑛 since 𝑁𝜆

𝛼𝑐𝑛
> 0.

3.2 Optimal workload splitting
Thus, to find the optimal allocation (𝑓 ∗, 𝛾∗), we need to find the
thinning feasible PMF 𝛾 that minimizes the average of aggregate
power consumption at all cores.

Problem 3. Consider the optimal operating frequency 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛)
defined in (12), and feasible thinning PMF set

Γ ≜
{
𝛾 ∈ M( [𝑁 ]) : 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛) ∈ F𝑐𝑛 for all 𝑛 ∈ N1

}
.

Find the optimal thinning PMF that solves

𝛾∗ ≜ arg min


∑︁
𝑛∈[𝑁 ]

𝑃𝑛 (𝑐𝑛, 𝛾𝑛) : 𝛾 ∈ Γ

 , (13)

where the minimum average power consumption 𝑃𝑛 (𝑐𝑛, 𝛾𝑛) at each
core 𝑛 that meets the mean sojourn time guarantee 𝑤 is defined
in (11).

Remark 3. From Lemma 1, we observe that the optimal allocation
(𝑓 ∗, 𝛾∗) that solves Problem 1 is given by (𝑓 ∗ (𝑐,𝛾∗), 𝛾∗), where

𝑓 ∗ (𝑐,𝛾) ≜ (𝑓𝑐𝑛 (𝛾𝑛) : 𝑛 ∈ N1) (14)

is the optimal frequency allocation that solves Problem 2 for any
thinning PMF 𝛾 and the optimal thinning PMF 𝛾∗ solves Problem 3.

We next discuss how to solve Problem 3, i.e. how to optimally
split the workload in order to minimize average aggregate power
consumption while meeting the mean sojourn time guarantee at
each core.

3.2.1 When all cores are homogeneous and active.

Theorem 1. Consider the case whenN𝑐𝑛,1 = [𝑁 ] and Assumption 1
holds. Then, the optimal allocation for all cores 𝑛 ∈ [𝑁 ] is

𝛾∗𝑛 =
1
𝑁
, 𝑓 ∗𝑛 = 𝑓𝑐𝑛

( 1
𝑁

)
=

1
𝛼𝑐𝑛

(
𝜆 + 1

𝑤

)
. (15)

The minimum power consumption for 𝑁 active homogeneous cores is

𝑃𝑐𝑛 (𝑁𝜆, 𝑁 ) ≜ 𝑁𝑃sta

(
𝑐𝑛, 𝑓𝑐𝑛

( 1
𝑁

))
+ 𝑁𝜆

𝛽𝑐𝑛
𝛼𝑐𝑛

[
𝑉𝑐𝑛

(
𝑓𝑐𝑛

( 1
𝑁

))]2
.

(16)

Proof. See Appendix C.4. □

3.2.2 When all cores are homogeneous but not necessarily active.

Theorem 2. Let 𝑐 ∈ {𝑝, 𝑒} be the core type. Consider the case when
N𝑐 = [𝑁 ], and Assumption 1 holds. There exists an optimal number
of active cores 𝑁 ∗

𝑐,1 such that an optimal allocation (𝛾∗, 𝑓 ∗) is

𝛾∗𝑛 =
1

𝑁 ∗
𝑐,1

1{𝑛∈N𝑐,1}, 𝑓 ∗𝑛 =
1
𝛼𝑐

( 𝑁𝜆

𝑁 ∗
𝑐,1

+ 1
𝑤

)
, 𝑛 ∈ N𝑐,1, (17)

for any subset N𝑐,1 ⊆ [𝑁 ] of size 𝑁 ∗
𝑐,1.

Proof. See Appendix C.6. □

Assumption 2. Wewill assume real number of active performance
cores 𝑁𝑝,1 ∈ [0, 𝑁𝑝 ] and active efficiency cores 𝑁𝑒,1 ∈ [0, 𝑁𝑒 ] to
simplify the problem.

Definition 3. Given aggregate arrival rate 𝑁𝜆 at 𝑁𝑝 performance
cores, the minimum average power consumption aggregated over
all performance cores is defined as

𝑃tot (𝑝, 𝑁𝜆, 𝑁𝑝 ) ≜ inf
𝑥𝑝 ∈[0,𝑁𝑝 ]

𝑃tot (𝑝, 𝑁𝜆, 𝑁𝑝 , 𝑥𝑝 ) .

Similarly, for the aggregate arrival rate 𝑁𝜆 at 𝑁𝑒 efficiency cores,
the minimum average power consumption aggregated over all effi-
ciency cores is defined as ‘

𝑃tot (𝑒, 𝑁𝜆, 𝑁𝑒 ) ≜ inf
𝑥𝑒 ∈[0,𝑁𝑒 ]

𝑃tot (𝑒, 𝑁𝜆, 𝑁𝑒 , 𝑥𝑒 ).

Remark 4. Since 𝑃tot (𝑝, 𝑁𝜆, 𝑁𝑝 , 𝑥) and 𝑃tot (𝑒, 𝑁𝜆, 𝑁𝑒 , 𝑥) are jointly
convex functions of 𝑁𝜆 and 𝑥 (see Lemma 5 in Appendix C.5) and
[0, 𝑁𝑝 ], [0, 𝑁𝑒 ] are convex sets, it follows from Lemma 2 part 2 that
𝑃tot (𝑐, 𝑁𝜆, 𝑁𝑐 ) is convex in 𝑁𝜆 for 𝑐 ∈ {𝑝, 𝑒}.
3.2.3 Heterogeneous cores. We now return to the optimal alloca-
tion in the case of heterogeneous cores. For any thinning PMF
𝛾 ∈ M( [𝑁 ]), we can find the sets of active performance cores N𝑝,1
and active efficiency cores N𝑒,1 defined in Definition 1.

Theorem 3. Under Assumption 1 and Assumption 2, there exists
a unique split (𝛿∗𝑝 , 𝛿∗𝑒 ) ∈ M({𝑝, 𝑒}), and optimal number of active
cores 𝑁 ∗

𝑝,1, 𝑁
∗
𝑒,1 that determine the optimal allocation (𝛾∗, 𝑓 ∗) that

minimizes the aggregate power consumption while meeting the mean
sojourn time guarantees at all 𝑁 cores. The optimal thinning proba-
bility for all active cores is

𝛾∗𝑛 ≜
𝛿∗𝑝
𝑁 ∗
𝑝,1

1{𝑛∈N𝑝,1} +
𝛿∗𝑒
𝑁 ∗
𝑒,1

1{𝑛∈N𝑒,1}, (18)

where N𝑝,1 ⊆ N𝑝 and N𝑒,1 ⊆ N𝑒 are active cores of size 𝑁 ∗
𝑝,1 and

𝑁∗𝑒,1 respectively. The operating frequency at each active core is

𝑓 ∗𝑛 ≜
1
𝛼𝑝

(𝑁𝜆𝛿∗𝑝
𝑁 ∗
𝑝,1

+ 1
𝑤

)
1{𝑛∈N𝑝,1}+

1
𝛼𝑒

(𝑁𝜆𝛿∗𝑒
𝑁 ∗
𝑒,1

+ 1
𝑤

)
1{𝑛∈N𝑒,1} . (19)

Proof. See Appendix C.7. □

Definition 4. We can define the following minimizers for any core
𝑛 and type 𝑐𝑛 ∈ {𝑝, 𝑒}

𝑓 ∗𝑐𝑛 ≜ inf
𝑓 ∈F𝑐𝑛

𝑃sta (𝑐𝑛, 𝑓 ) − 𝑃sleep (𝑐𝑛)
𝛼𝑐𝑛 𝑓 − 1

𝑤

+ 𝛽𝑐𝑛
𝛼𝑐𝑛

𝑉𝑐𝑛 (𝑓 )2 + 𝑁𝑐𝑛𝑃sleep (𝑐𝑛).
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We can write the minimum values for core 𝑛 and type 𝑐𝑛 ∈ {𝑝, 𝑒}

𝑐∗𝑐𝑛 ≜
𝑃sta (𝑐𝑛, 𝑓 ∗𝑐𝑛 ) − 𝑃sleep (𝑐𝑛)

𝛼𝑐𝑛 𝑓
∗
𝑐𝑛 − 1

𝑤

+ 𝛽𝑐𝑛
𝛼𝑐𝑛

𝑉𝑐𝑛 (𝑓 ∗𝑐𝑛 )2 + 𝑁𝑐𝑛𝑃sleep (𝑐𝑛).

Remark 5. We observe from Definition 4 that the minimizing fre-
quencies 𝑓 ∗𝑝 , 𝑓 ∗𝑒 do not depend on the normalized arrival rate 𝜆.
Further, these frequencies do not depend on the number of cores if
the sleep powers are negligible.

Theorem 4. Consider the case when Assumption 1 and Assumption 2
hold, and 𝑓 ∗𝑝 , 𝑓 ∗𝑒 , 𝑐∗𝑝 , 𝑐∗𝑒 be as defined in Definition 4. We define

𝜆𝑝,0 ≜
𝑁𝑝

𝑁

(
𝛼𝑝 𝑓

∗
𝑝 − 1

𝑤

)
, 𝜆𝑒,0 ≜

𝑁𝑒

𝑁

(
𝛼𝑒 𝑓

∗
𝑒 − 1

𝑤

)
. (20)

Then for all normalized arrival rates 𝜆 < 𝜆0 ≜ 𝜆𝑝,0∧𝜆𝑒,0, the optimal
workload split is 𝛿∗𝑝 = 1{

𝑐∗𝑝<𝑐∗𝑒
} .

Proof. See Appendix C.8. □

Remark 6. Theorem 4 provides an arrival rate region, in which
only one type of core is selected for the entire workload. Further,
we know the identical optimal frequency to be used on the active
cores as given in Definition 4 which is independent of workload.
We also know the number of active cores is 𝑥∗𝑝 if 𝑐∗𝑝 < 𝑐∗𝑒 and 𝑥∗𝑒
otherwise. For sufficiently large mean sojourn time guarantees, we
empirically observe that 𝑐∗𝑒 < 𝑐∗𝑝 for the CPU we study.

4 EVALUATION
In this section, we describe the CPU characterization conducted
for validating (a) linearity of service rate with core frequency, (b)
convexity of operating voltage as a function of core frequency, and
(c) dependence of static and dynamic power on the operating volt-
age. Further, we compute (a) the voltage-frequency relationship,
and (b) the model parameters for power-frequency curves for both
static and dynamic power. We next conduct numerical studies to
obtain the optimal workload split 𝛿∗ between P and E cores, and
correspondingly, the optimal number of active cores 𝑁 ∗

𝑝,1, 𝑁
∗
𝑒,1.We

conduct experiments on a heterogeneous CPU to show that un-
der the probabilistic workload splitting, the aggregate power is
minimized by HEMP. Finally, a comparison with common Linux
frequency governors is presented.

4.1 CPU characterization
The test system’s CPU was an Intel Core i9 13900K processor (Rap-
tor Lake series) with two types of cores: eight P-cores and sixteen
E-cores. Its P cores have a base frequency of 3GHz and a maximum
turbo frequency of 5.6GHz. Its E cores have a base frequency of
2.2GHz and a maximum turbo frequency of 4.3GHz. In the absence
of server-class processors with HMP yet, we consider the i9-13900K
desktop CPU to be a suitable demonstrator of HMP capabilities.

4.1.1 System settings. The operating system on the system was
Ubuntu 23.10with Linux 6.5 kernel.We disabled simultaneousmulti-
threading (SMT) (also called hyper-threading) on the CPU to ensure
performance and power predictability. Evaluations of SMT on real-
world applications have been mixed [42, 46]. While the maximum
benefits can be up to 15% on a dual-socket system [28], these vary
by applications [26], sometimes adversely [31], and require separate

characterization to adjust model parameters, which we plan to do
as future work. Further, we disabled the intel_pstate driver to
bypass the processor’s Energy-Performance Preference (EPP) logic
and hardware-managed P-states, and enabled overclocking to turbo
frequencies. This enabled setting specific core frequencies (beyond
the base frequencies) from our scripts through ACPI driver and the
userspace frequency governor. One disadvantage of using the ACPI
driver is the limit of 15 on the number of frequency steps reported
by the ACPI interface, hence the ACPI driver reports only a subset
of the feasible frequencies to the userspace governor. To ensure
steady-state thermal and power stability, we evaluated the system
between 0.8–4.3 GHz frequencies. The available CPU frequencies
presented by the ACPI driver in this range are as per the frequency
set4 listed in Table 1.

Core type Frequency set4F in GHz
P or E {0.8, 1, 1.3, 1.5, 1.8, 2, 2.3, 2.5, 2.8, 3, 3.3, 3.5, 3.8, 4, 4.3}

Table 1: Feasible frequency set for both types of cores.

The core 13900K processor does not allow sending cores individ-
ually to deep sleep states {𝐶6,𝐶8,𝐶10} and those can be invoked
at package level only [5]. These are not under the direct control
of our scheduler, hence we disabled the package and core C-states
through the BIOS for controlled experiments5. We left the core
voltages untouched, to be determined as per CPU’s internal VID
table for each given frequency.

4.1.2 Workload benchmarks. Each computational task comprises
of the execution of specified number of iterations of a given work-
load. We perform characterization, numerical, and experimental
evaluation for two representative workloads:
(a) Image manipulation: We use the image manipulation bench-
mark (538_imagick_r) included in the SPECrate2017 floating-point
benchmark suite under the SPEC-2017 benchmark package [17].
It uses Imagemagick [16], a commonly used batch image process-
ing tool, in a single-threaded configuration. We execute the SPEC
suite’s imagick binary in a stand-alone mode without invoking it
through runcpu to avoid the benchmark instrumentation overheads
for short job runs.
(b) Machine Learning inference: As a machine learning inference
workload, we use the TFLite Model Benchmark Tool [4] in a single-
threaded CPU-only execution mode. The specific model used was
‘NASNet mobile’, a convolution neural network of size 21MB. A
small model was chosen so that the inference iterations could be
repeated for a desired number of times to compose tasks matching
a given size distribution. The current section contains a detailed
analysis and results for the image manipulation benchmark. Due
to space limitations, we only provide the performance comparison
with Linux governors in Section 4.3.4 for the machine learning
inference benchmark.

4 Although 2.2GHz is the base frequency for E-cores in i9-13900K processor, this
frequency step did not appear on the subset reported by the ACPI driver for the given
frequency range.
5However, the𝐶1 (active standby) state cannot be disabled. An idle cores are automat-
ically sent by the CPU to𝐶1 state when it is not executing any instructions.
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4.1.3 Measurement setup. CPU package power consumption is
measured every 100𝑚𝑠 through the RAPL mechanism [30] that
reports accurate energy reading through the CPU’s model-specific
registers (MSR). RAPL is shown to accurately measure CPU package
and core power [43]. CPU package power includes the core power,
and the power consumption at the common components within the
CPU, such as cache, internal bus, etc., shared between the cores [12].
The individual power consumption at these components is not
directly measurable. Our estimated aggregate of static power at all
cores includes the static core power and the power consumption at
the shared components so that the total power estimate is closer to
the real power consumed by the CPU. Core voltage values (common
for all cores in i9-13900K CPU) are similarly measured through
a corresponding MSR. We repeat the following characterization
experiments for every frequency in F (Table1). To compute power
characterization for each core type 𝑐 ∈ {𝑝, 𝑒}, the frequency for all
cores of this type 𝑐 is set at the given frequency. The frequency of the
other core type is set to 800MHz. To measure static power, all cores
are left idle. The measure the dynamic power, workload iterations
are run in a loop pinned to each core of type 𝑐 . Thus, the dynamic
power characterization is performed at 100% core utilization for
used cores, with unused cores idling in 𝐶1 state6. Each data point
was obtained by running the workload for 2 minutes.

4.1.4 Service rate and core voltage versus operating frequency. We
plot the iteration completion rate (iterations/sec) as a function of
core frequency in Fig. 1a. The plot validates (2), where the service
rate at a core 𝑛 is 𝜇𝑛 = 𝛼𝑐𝑛 𝑓𝑛 proportional to the core frequency 𝑓𝑛 ,
and the proportionality constant 𝛼𝑐𝑛 depends on the core type 𝑐𝑛 .

Next, we plot the variation of core voltage as a function of core
frequency in Fig. 1b. The voltage-frequency map for core 𝑛 depends
only on the core type 𝑐𝑛 ∈ {𝑝, 𝑒}. Performance and efficiency cores
have different sets of feasible frequencies denoted by F𝑝 and F𝑒
respectively. The minimum operating voltages for performance and
efficiency cores are 𝑉𝑝,0 and 𝑉𝑒,0, respectively. The corresponding
minimum operating frequencies for performance and efficiency
cores are defined as 𝑓𝑝,0 ≜ inf F𝑝,0 and 𝑓𝑒,0 ≜ inf F𝑒,0. For core
𝑛 operating at frequency 𝑓 ∈ F𝑐𝑛 , the operating voltage 𝑉𝑛 =

𝑉𝑐𝑛 (𝑓 ) is experimentally observed to be the following function of
frequency,

𝑉𝑐𝑛 (𝑓 ) ≜ 𝑉𝑐𝑛,0 + 𝑟𝑐𝑛 𝑓 𝑠𝑐𝑛 (21)
We note that the voltage of E-cores is higher than that of P-cores at
identical frequencies. The proportionality constants𝛼𝑝 , 𝛼𝑒 , linearity
constants 𝑟𝑝 , 𝑟𝑒 , exponents 𝑠𝑝 , 𝑠𝑒 , minimum voltages 𝑉𝑝,0,𝑉𝑒,0, and
minimum feasible frequencies 𝑓𝑝,0, 𝑓𝑒,0 are listed in Table 2.

Type 𝛼 𝛽 𝑎 𝑏 𝑟 𝑠 𝑉0 𝑓0
P 0.0022 0.0014 0.1935 2.2703 8.67𝑒−9 2.08 0.722 800
E 0.0017 0.0008 0.1966 1.4789 5.29𝑒−9 2.23 0.722 800

Table 2: CPU model parameters from empirical characteriza-
tion for Intel Core i9 13900K processor.

6except when the core is executing OS background tasks. The percentage of time spent
executing OS background tasks in our test setup was observed to be below 0.02%.
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Figure 1: Service rate and operating voltage.

4.1.5 Static and dynamic power. We note that the power consump-
tion at a core consists of two components. Static power 𝑃sta mea-
sured at zero utilization, and an additional dynamic power 𝑃dyn
when a core is working at full utilization. We plot the two empirical
power measurements (dots) and the curve-fitted values (lines) in
Fig. 2, for both core types. We plot the static power 𝑃sta as a function
of operating voltage 𝑉 in Fig. 2a and observe that it closely follows
the analytical expression in (3). Similarly, the plot of dynamic power
𝑃dyn with respect to the product 𝑉 2 𝑓 in Fig. 2b closely follows the
analytical expression in (4).
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Figure 2: Static and dynamic components of CPU power.

4.1.6 CPU power versus core frequency and core service rate. We
plot the per-core CPU power as a function of core frequency in
Fig. 3a and as a function of workload service rate in Fig. 3b. As
expected, total core power is a convex increasing function of core
frequency. In fact, P-cores have higher power draw than E-cores
for all frequencies. However, as the service rate for a P-core is
higher than an E-core for the same core frequency, E-cores are
more efficient at low service rates while P-cores become more
efficient beyond the crossover point at 5.8 iterations/sec.

4.2 Numerical results
We validate the analytical results through numerical studies, using
the parameters obtained through characterizations in Section 4.1.
We assume the mean sojourn time guarantee at each core is𝑤 = 4
seconds. This is roughly one standard deviation from the mean
service time for the slowest type of core at base frequency (E-cores
at 2.2 GHz). In practice, workloads may specify a stricter latency
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Figure 3: CPU package power per core.

bounds that can be incorporated in HEMP.We conducted numerical
studies for the system parameters obtained by the power and the
performance characterization of the heterogeneous core CPU in
Section 4.1. In particular, we consider the number of efficiency and
performance cores as 𝑁𝑒 = 16 and 𝑁𝑝 = 8 respectively. Therefore,
the total number of cores 𝑁 = 𝑁𝑝 + 𝑁𝑒 = 24. We assume that the
static power follows (3) and the dynamic power follows (4) and the
constant service rates at both core types follow (2), where constants
𝛼𝑝 , 𝛼𝑒 , 𝑎𝑝 , 𝑎𝑒 , 𝑏𝑝 , 𝑏𝑒 , 𝛽𝑝 , 𝛽𝑒 are tabulated in Table 2.

The workloads under consideration comprise of discrete number
of iterations of a benchmark (e.g., imagick image manipulation
on a reference input image). Hence, the service requirement for
tasks (number of iterations) was generated from an exponential
distribution rounded to the nearest integer, with a mean of 8. We
recall that the base frequencies for P-cores and E-cores are 𝑓𝑝 =

3GHz and 𝑓𝑒 = 2.2GHz respectively. For the given workload, the
effective service rates for P and E cores are 𝜇𝑝 = 0.84 and 𝜇𝑒 = 0.47
tasks per second. For 16 E cores and 8 P cores, this implies the
maximum base capacity of the system to be 8𝜇𝑝 + 16𝜇𝑒 = 14.286
tasks per second. We normalize the arrival rate in terms of this base
capacity and denote this normalized arrival rate by 𝜆norm.

In all of our theoretical studies, we have assumed the feasible set
of frequencies to be continuous in Assumption 1, and the availability
of a fractional number of cores in Assumption 2. These assumptions
enabled a tractable analysis and proposal of theoretically optimal
solutions. To align with the system reality, we remove both of these
assumptions in our numerical studies. We numerically determined
the optimal solution without these assumptions and found that the
numerical solutions are close to the theoretically obtained solutions
under the two assumptions. In the following discussion, we con-
sider discrete set of frequencies F𝑝 ,F𝑒 (tabulated in Table 1), the
number of active cores 𝑁𝑝,1 ∈ {

0, . . . , 𝑁𝑝
}
, 𝑁𝑒,1 ∈ {0, . . . , 𝑁𝑒 }, and

workload split 𝛾 ∈ M( [𝑁𝑝 ]) or 𝛾 ∈ M( [𝑁𝑒 ]).
4.2.1 Homogeneous cores. We have plotted the total power aggre-
gated over all cores of a single type as a function of the number of
active cores for different normalized arrival rates 𝜆norm in Fig. 4,
where each core has an identical feasible frequency at all active
cores specified by (10) that meets the mean sojourn time guarantee
𝑤 = 4 seconds at each core as prescribed by Theorem 1. We plot the
power curve for expression obtained in Section 4.1 under Assump-
tion 1 in solid lines and empirical values as squares, for P-cores in
Fig. 4a and E-cores in Fig. 4b. Empirically obtained curves fit the

predicted curves and validate our claims made in Lemma 5 and The-
orem 2 regarding the convexity of aggregate power for each core
type in the number of active cores for a fixed aggregate workload.
In particular, we observe the existence of a unique optimal number
of active cores to use for any given aggregate workload sent to that
class of cores.
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Figure 4: Aggregate power.

We observed in Fig. 4 that for a fixed aggregate workload 𝑁𝜆
over a fixed core type, there exists an optimal number of active
cores 𝑁 ∗

𝑝,1, 𝑁
∗
𝑒,1. We plot the optimal allocation for homogeneous

cores in Fig. 5 under Assumption 1 and Assumption 2 in solid lines
and without these assumptions in dashed lines. In Fig. 5a we plot
the variation of the optimal number of active cores with different
normalized arrival rates 𝜆norm. We observe that the number of ac-
tive cores increases almost linearly with the normalized arrival rate
𝜆norm for both core types until they saturate to their maximum
value. From Theorem 2, we know that the optimal frequency at
homogeneous cores is identical at all active cores such that they
meet the mean sojourn time guarantee𝑤 . We plot the optimal fre-
quency for both types of cores assuming the total workload is over a
homogeneous set of cores in Fig. 5b. However, Theorem 4 suggests
that the optimal frequencies are 𝑓 ∗𝑝 , 𝑓 ∗𝑒 and remain unchanged for
low arrival rates 𝜆 < 𝜆𝑝,0 for P-cores and 𝜆 < 𝜆𝑒,0 for E-cores. We
observe this phenomenon in Fig. 5b.
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Figure 5: Optimal allocation of active cores and frequency.

4.2.2 Heterogeneous cores. For each workload split 𝛿 ∈ M({𝑝, 𝑒}),
we have independent aggregate Poisson arrival of tasks with rates
𝑁𝜆𝛿𝑝 and 𝑁𝜆𝛿𝑒 at P-cores and E-cores respectively. For different
values of split probability 𝛿𝑝 ∈ [0, 1], we have plotted the minimum
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power consumption aggregated over all cores in Fig. 6 for two
different values of normalized arrival rates 𝜆norm ∈ {0.210, 0.596}.
We chose two nominal values of normalized arrival rate which were
(a) in the feasibility region for the mean sojourn time guarantees
and (b) sufficiently far apart to understand the behavior of optimal
solutions under different loads.

As predicted by Theorem 5, the total aggregate average power
is convex in the split probability 𝛿𝑝 for a fixed normalized arrival
rate 𝜆norm. Further, as predicted by Theorem 4, we observe that at
a low normalized arrival rate of 𝜆norm = 0.210, the total average
power is affine in the split probability 𝛿𝑝 following (24).
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Figure 6: Minimum power consumption vs. split probability.

We plot the optimal solution to Problem 1 with heterogeneous
cores in Fig. 7. Dotted lines are numerical results in continuous val-
ues of number of cores and frequencies while squares correspond
to results in discrete settings of the same. We plot the optimal work-
load split probability to P-core and E-cores in Fig. 7a as a function of
increasing normalized arrival rate 𝜆norm. We numerically observe
that 𝑐∗𝑝 > 𝑐∗𝑒 in our case, for 𝑐∗𝑝 , 𝑐∗𝑒 defined in Definition 4. Thus,
as predicted by Theorem 4, we observe that at low arrival rates
𝜆 < 𝜆0 = 0.06, i.e. normalized arrival rates 𝜆norm < 𝜆norm,0 = 0.1,
all the workload is split among the E-cores. i.e. 𝛿∗𝑝 = 0. Beyond this
threshold, the optimal split is non-zero for P-cores and is concave
increasing in normalized arrival rate 𝜆norm. That is, at low loads
all the work is done at efficiency cores, and performance cores are
woken up when the workload increases. As the workload keeps
increasing, the optimal split saturates to the point where all cores
are active and operating at their optimal frequencies. Fig. 7b shows
the corresponding optimal number of active cores of each type
given the optimal split 𝛿∗ = (𝛿∗𝑝 , 1 − 𝛿∗𝑝 ). We observe that for the
normalized arrival rate 𝜆 < 𝜆0, no P-cores are active, and the num-
ber of active cores increases linearly with the normalized arrival
rate until the saturation. Fig. 7c shows the optimal operating fre-
quency at each active core for both core types. When the workload
increases beyond 𝜆 > 0.12 i.e. 𝜆norm > 0.2 , all the cores get active,
and the core frequency has to be increased to accommodate the
mean sojourn time guarantee𝑤 . We observe that these frequencies
are in accordance with Theorem 1, and are identical for all cores of
a particular type.

4.3 Experimental validation
We validate HEMP by implementing and experimentally evaluating
its performance on Linux OS, and comparing its performance with

that obtained in default Linux DVFS settings. We used the same
test system, BIOS settings, and measurement setup as that used
for empirical characterization in Section 4.1. HEMP performs the
following tasks:
1. For a Poisson arrival of tasks with aggregate arrival rate 𝑁𝜆
having exponential service requirements and mean sojourn time
guarantee𝑤 , it numerically obtains the optimal thinning probabil-
ities 𝛾∗ and the optimal core frequency 𝑓 ∗. For all P and E cores
with 𝛾∗ > 0, it sets their frequency at 𝑓 ∗𝑝 and 𝑓 ∗𝑒 respectively and it
sets the frequency of idle cores (𝛾∗ = 0) at the lowest frequency.
2. For every incoming task arrival, it randomly assigns the task to
one of the active P or E cores with probability mass function 𝛾∗.
3. If the assigned core is already busy running a task, hold the task
assigned to a core in that individual core’s virtual queue, to be
executed when the queue becomes idle.
Workload generator: To experimentally evaluate HEMP, we also
need to implement a task generator that generates realistic work-
loads matching the task distributions assumed in our model. The
workload generator is designed to produce task arrivals matching
the workload model described in Section 2 and Section 4.2. The
tasks thus generated are submitted to whichever scheduler (e.g.,
HEMP or Linux’s default Completely Fair Scheduler (CFS) [6] is
being used in the experiment run.

4.3.1 Homogeneous cores. In Fig. 8, we experimentally validate
the theoretical results which were validated numerically in Sec-
tion 4.2.1. Again the curves experimentally confirm our claimsmade
in Lemma 5 and Theorem 2 about the convexity of the total power
in the number of active cores for a fixed aggregate workload and a
single core type.

4.3.2 Heterogeneous cores. We now experimentally validate the
numerical results for the heterogeneous setting as described in
Section 4.2.2, with the same incoming workload and scheduling
policy. In Fig. 9, we have plotted the total power aggregated over
all cores as a function of split probability 𝛿𝑝 as in Fig. 6. We observe
that the experimental curves are close to the theoretical curves,
which validates the claims made in Section 4.2.2.

In Fig. 7 we have plotted the optimal solutions obtained ex-
perimentally and numerically as a function of normalized arrival
rates. Dotted lines are numerical results from continuous settings,
squares correspond to numerical results in discrete settings, and
circles correspond to the experimental results. The experimental
results validate the numerical studies plotted in Fig. 7 described
in Section 4.2.2. We see that the scheduling policy obtained theo-
retically and numerically by HEMP is close to the experimentally
obtained policy, which justifies our policy.

4.3.3 Comparison with Linux frequency governors. Next, we com-
pare HEMP’s performance with Linux frequency governors [7],
namely powersave, performance, and schedutil, wherein HEMP
and Linux governors received identical workload (SPEC-2017 im-
age manipulation) task arrival patterns. For Linux governor exper-
iments, no core pinning or frequency selection was applied, and
the Linux OS’s CFS [6] controlled the scheduling and allocation
of tasks to cores. Both P and E cores were allowed to operate be-
tween 800−4300MHz under ACPI cpufreq driver control; rest of the
system settings were identical to the CPU characterization setup.
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Figure 7: Optimal workload split between P and E cores.
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Figure 8: Aggregate power vs the number of active cores.
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Figure 9: Aggregate power versus split probability 𝛿𝑝 .

We note from Fig. 10a and Fig. 10b that performance and schedu-
til are aggressive in selecting higher frequencies at the cost of
higher power while powersave prioritizes energy saving at the cost
of higher sojourn time. HEMP, on the other hand, achieves CPU
power close to powersave, while delivering stable sojourn time close
to the set threshold𝑤 at all values of task arrival rate. Energy-delay
product (EDP) [25] is often cited [32, 40] as a combined metric to
quantify the performance-energy trade-off. Fig. 10c plots the EDP
among the schemes compared. HEMP is more efficient than Linux
governors at normalized arrival rate 𝜆norm > 0.25 and achieves up
to 45% reduction at 𝜆norm > 0.45.

Disabling C-states may seem to constrain Linux frequency gover-
nors unfairly by limiting the available optimizations. Therefore, we
repeated the Linux governor experiments after enabling C-states

from BIOS7. The EDP plots in Fig. 10d for this scenario indicates
that HEMP offers up to 35% reduction in EDP above 𝜆norm = 0.45. It
should be noted that HEMP would similarly benefit from enabling
C-states below 𝜆norm = 0.2 wherein P-cores are unused.

4.3.4 Machine learning workloads (TensorFlow Lite): Comparison
with Linux frequency governors. Finally, we present the comparison
of HEMP with Linux governors for a different workload—the Ten-
sorFlow Lite inference benchmark [4] running the NASNet Mobile
model. CPU characterization with this workload yielded model
parameters similar to Table 2 which were used for numerically
obtaining the optimal thinning probabilities 𝛾∗ across all cores and
the optimal core frequency 𝑓 ∗ for active P and E cores. The service
requirement for each task, which is supplied as an input to the
workload generator as the number of runs of NASNet inference
to execute, is computed similar to the image manipulation work-
load 4.2. The sojourn time guarantee𝑤 is taken to be 1.3 seconds,
following the same logic as described in Section 4.2.

The plots for measured CPU power, sojourn time, and EDP are
presented in Fig. 11. We note that HEMP is able to provide stable
sojourn time guarantee 1.3s while consuming power closer to pow-
ersave governor. Similarly, HEMP offers 33-80% reduction in EDP
for 𝜆norm ∈ [0.2, 0.8]. Even when C-states are enabled for Linux
governor experiments, HEMP offers 30-73% improvement in EDP.

5 CONCLUSION AND FUTUREWORK
We have provided a power and performance model for a computer
system with multi-core CPUs consisting of heterogeneous cores
(HMP) that implement a given instruction set architecture (ISA).
Using this, we analytically find the optimal allocation of the number
of active cores, workload split across all the heterogeneous cores,
and the operating frequency at each core. Due to the convexity of
power functions, the optimal solution for cores of a fixed type is
an equal division of workload among all active cores, with iden-
tical frequency for all. Thus, one only needs to find the optimal
workload split between the core types and the number of active
cores for each type. We conducted experiments on a HMP to find
that the empirically found optimal solution to the static workload
configuration is close to the analytically predicted optimal solution.

7Experiments for HEMP could not be repeated with C-states enabled due to paucity of
time.

317



Energy-minimizing heterogeneous scheduling E-Energy ’24, June 04–07, 2024, Singapore, Singapore

0 0.2 0.4 0.6 0.8
0

50

100

150

200

Normalized Arrival Rate

Av
er
ag
e
CP

U
Po

w
er

(W
) PF

SU
HEMP
PSV

(a) Total power.

0 0.2 0.4 0.6 0.8

100

101

102

Normalized Arrival Rate

So
jo
ur
n
tim

e
(s)

PF
SU

HEMP
PSV

(b) Sojourn Time.

0 0.2 0.4 0.6 0.8

102

103

Normalized Arrival Rate

En
er
gy

-d
el
ay

pr
od

uc
t(
Jo
ul
e
se
c) PF

SU
HEMP
PSV

(c) Energy-delay product.

0 0.2 0.4 0.6 0.8

102

103

Normalized Arrival Rate

En
er
gy

-d
el
ay

pr
od

uc
t(
Jo
ul
e
se
c) PF

SU
HEMP
PSV

(d) EDP with C-states enabled.

Figure 10: Comparison with Linux frequency governors: powersave (PSV), performance (PF), and schedutil (SU).
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Figure 11: Comparison with Linux frequency governors For TensorFlow Lite workload.

Our system model and corresponding analytical results may
apply with minor enhancements to the ARM big.LITTLE architec-
ture [1], which brings two different processors with similar ISA
together to simulate a single CPU with heterogeneous cores by
allowing only one of these processors to be active at any time. Our
work will also be applicable to future HMPs as long as convexity of
power functions holds true.

There are multiple future research directions. One direction
is to study other possible and more flexible service guarantees
with the potential to increase power savings. Examples include
statistical service guarantees averaged over all tasks, guarantees
on the variance of sojourn times, or on the tail of the sojourn
time distributions. A second direction is the design of randomized
solutions in which frequencies and core counts are modeled as
random variables and the optimal allocation selects probability
mass functions for these. This can eliminate discontinuities due to
the discrete nature of these quantities.

Extensions to support dynamic workloads is another interesting
direction. Workload-dependent splits like joining the core with the
least workload or power-of-d variants of such splits, inclusion of
multiple sleep states with different wake-up times, and on-demand
changes to core frequencies can be considered here. In the absence
of workload models, OS’es use system metrics such as task ready
queue size, cache misses, core utilization, etc., as feedback signals
to make heuristic scheduling decisions [48, 49]. A very interest-
ing direction is to design data-driven adaptive approaches to learn
workload configurations at runtime and adapt the scheduling poli-
cies gracefully to the changing environments.

With the increasing adoption of GPUs in large computing clus-
ters, computing power would be an evenmore dominant percentage

of energy consumption. GPU architectures are still evolving and
power and performance measurements are either not available or
not very accurate. Part of our study can be extended to the case of
GPUs.
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A CPU POWER-SAVING STATES
The ACPI specification [53] defines common vendor-agnostic inter-
faces enabling robust operating system (OS) directed power man-
agement of devices and systems. The ACPI specification defines
a few common system power states as shown in Fig. 12. They are
classified as global (G), sleep (S), and CPU (C) states, numbered
from 0 (no power-saving) in increasing order of power-saving. We
focus on the ‘𝐺0 − 𝑆0: working’ state of the CPU, within which
the CPU can be in one of {𝐶0,𝐶1, . . . ,𝐶𝑘 } states. Contained within
the 𝐶0 state are several performance states {𝑃0, . . . , 𝑃𝑘 } that define
the voltage and frequency supplied to the CPU. A vendor-specific
CPU architecture (e.g., [5]) determines the number of such states
supported, physical parameters, and the control primitives for these
states. Recent CPUs allow control of the C and P states on a per-core
basis. Some of the C and P states are under the control of the OS
although the CPU hardware/firmware may override them due to
thermal or interrupt servicing considerations.

Global working state 𝐺0

Active power state 𝐶0Perf. state 𝑃𝑥 Throttling

Sleep state 𝐶1 Sleep state 𝐶𝑘

enable

change freq/disable

HLT

Interrupt

Interrupt

Power level 𝑛

Figure 12: Power states of a working CPU

B CONVEX FUNCTIONS
Lemma 2. [13, Chapter 3.2] Assume that 𝑓 , 𝑔 : R+ → R+ are convex
increasing functions, then we have the following

a) Affine functions in one variable are convex.
b) 𝑓 𝑔 is also convex and increasing.
c) 𝑓 (𝑥) +𝑔(1−𝑥) is also a convex function over the domain [0, 1].
d) 𝑓 ◦ 𝑔 is also convex and increasing.
e) 𝑎𝑓 + 𝑏𝑔 is also convex and increasing for any 𝑎, 𝑏 ∈ R+.
f) If ℎ(𝑥, 𝑡) = 𝑡 𝑓 ( 𝑥𝑡 ), then ℎ : (R+)2 → R+, called the perspec-

tive of 𝑓 is also a convex function on (R+)2. Consequently, for
any fixed (𝑥, 𝑡) → ℎ(𝑥, 𝑡) is convex on R+.

g) If 𝑓 : R2 → R is jointly convex in both arguments, and𝐶 ⊆ R
is a convex non-empty set, then 𝑔(𝑥) ≜ inf𝑦∈𝐶 𝑓 (𝑥,𝑦) is a
convex function.

Proof. Part 2, 2, and 2 can be verified directly. Convexity of
resulting functions in parts 2, 2, 2, and 2 follow directly from [13,
Chapter 3.2]. The fact that the resulting functions are increasing
is immediate for parts 2 and 2, and for part 2 it follows from the
additional assumption of non-negativity. □

C PROOFS
C.1 Convexity of static and dynamic power
Lemma 3. For any active core 𝑛 ∈ N1, the following are convex
increasing functions of frequency 𝑓𝑛 .

a) The static power 𝑃sta (𝑐𝑛, 𝑓𝑛),
b) the dynamic power per frequency 𝑃dyn (𝑐𝑛, 𝑓𝑛)/𝑓𝑛 , and
c) the average power consumption 𝑃𝑛 (𝑐𝑛, 𝑓𝑛, 𝛾𝑛).

In addition, the average power consumption 𝑃𝑛 (𝑐𝑛, 𝑓𝑛, 𝛾𝑛) is affine
and increasing in thinning probability 𝛾𝑛 .

Proof. Let 𝑛 be an active core. From Eq. (3) and Eq. (4) for static
and dynamic power respectively, it follows that 𝑃sta and 𝑃dyn/𝑓𝑛
are convex increasing functions of voltage𝑉𝑛 . From Property 1, the
operating voltage 𝑉𝑛 (𝑐𝑛, 𝑓𝑛) at core 𝑛 is a convex non-decreasing
function of frequency 𝑓𝑛 .

a) Since 𝑃sta (𝑐𝑛, 𝑓𝑛) is the composition of 𝑃sta (𝑉𝑛) and the volt-
age function 𝑉𝑛 (𝑐𝑛, 𝑓𝑛), the result follows from Lemma 22.

b) Since 𝑃dyn (𝑐𝑛, 𝑓𝑛)/𝑓𝑛 is the composition of 𝑃dyn (𝑉𝑛 )
𝑓𝑛

and the
voltage function𝑉𝑛 (𝑐𝑛, 𝑓𝑛), the result follows fromLemma 22.

c) From (8) for any active core 𝑛, it follows that the average
power consumption 𝑃𝑛 (𝑐𝑛, 𝑓𝑛, 𝛾𝑛) at node 𝑛 is a positive
linear combination of 𝑃sta (𝑐𝑛, 𝑓𝑛) and 𝑃dyn (𝑐𝑛, 𝑓𝑛)/𝑓𝑛 . Thus,
it is also convex and increasing from Lemma 22.

From (8) for any active core 𝑛, it follows that average power con-
sumption 𝑃𝑛 (𝑐𝑛, 𝑓𝑛, 𝛾𝑛) at node 𝑛 is affine in 𝛾𝑛 , and increasing
from the positivity of the other terms. □

C.2 Proof of Lemma 1
From Eq. (7), it follows that for a fixed thinning probability 𝛾𝑛
the mean sojourn time 𝑊̄𝑛 at any core 𝑛 is decreasing function
of frequency 𝑓𝑛 . Therefore, we have 𝑊̄𝑛 ⩽ 𝑤 for any frequency
𝑓𝑛 ⩾ 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛). For any core 𝑛 with non-zero thinning probability
𝛾𝑛 > 0, the average power consumption is an increasing function
of frequency 𝑓𝑛 from Lemma 3, and hence the result follows.

C.3 Convexity of static and dynamic power
under optimal frequency allocation

Lemma 4. Under Assumption 1, an active core 𝑛 operating at a
frequency 𝑓𝑐𝑛 (𝛾𝑛) defined in (12) satisfies the mean sojourn time
constraint𝑤 while minimizing the average power consumption for
a given thinning probability 𝛾𝑛 . The following powers at core 𝑛 are
convex increasing in the positive thinning probability 𝛾𝑛 .

a) The static power 𝑃sta (𝑐𝑛, 𝑓𝑐𝑛 (𝛾𝑛)),
b) the scaled dynamic power 𝛾𝑛𝑃dyn (𝑐𝑛, 𝑓𝑐𝑛 (𝛾𝑛))/𝑓𝑐𝑛 (𝛾𝑛), and
c) the power consumption 𝑃𝑛 (𝑐𝑛, 𝛾𝑛) at core 𝑛 defined in (11).

Proof. Let 𝑛 be an active core.
Under Assumption 1, it follows from Remark 2, that the optimal

operating frequency 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛) = 𝑓𝑐𝑛 (𝛾𝑛) for an active core 𝑛 is an
affine increasing function of positive thinning probability 𝛾𝑛 .

a) Since 𝑃sta (𝑐𝑛, 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛)) is the composition of two convex
increasing functions 𝑃sta (𝑐𝑛, 𝑓𝑛) and 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛), it is convex
increasing in 𝛾𝑛 from Lemma 22.

b) Since 𝑃dyn (𝑐𝑛, 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛))/𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛) is the composition of
two convex increasing functions 𝑃dyn (𝑐𝑛, 𝑓𝑛)/𝑓𝑛 and 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛),
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it is convex increasing in 𝛾𝑛 from Lemma 22. Since 𝛾𝑛 is lin-
ear non-negative and increasing, it follows from Lemma 22
that the scaled dynamic power 𝛾𝑛

𝑓 ∗𝑛 (𝑐𝑛,𝛾𝑛 ) 𝑃dyn (𝑐𝑛, 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛))
is also convex increasing in positive thinning probability 𝛾𝑛 .

c) The average power consumption at core 𝑛 with a positive
thinning probability𝛾𝑛 > 0 and operating frequency 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛)

𝑃𝑛 (𝑐𝑛, 𝛾𝑛) = 𝑃sta (𝑐𝑛, 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛)) + 𝑁𝜆𝛾𝑛
𝛼𝑐𝑛

𝑃dyn (𝑐𝑛, 𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛))
𝑓 ∗𝑛 (𝑐𝑛, 𝛾𝑛) ,

is a positive linear combination of two convex increasing
functions of 𝛾𝑛 , and hence is convex increasing in 𝛾𝑛 from
Lemma 22.

□

C.4 Proof of Theorem 1
We show the result holds when all cores are of performance type. In
this case, N𝑝,1 = [𝑁 ] and 𝑐𝑛 = 𝑝 for all active cores 𝑛. Further, the
minimum power consumption at core 𝑛 while meeting the mean
sojourn time guarantee of 𝑤 is ensured by setting the operating
frequency at 𝑓 ∗𝑛 (𝑝,𝛾𝑛) = 𝑓𝑝 (𝛾𝑛). The minimum power consumption
at performance core 𝑛 for a given positive thinning PMF𝛾 is written
as

𝑃𝑛 (𝑝,𝛾𝑛) = 𝑃sta (𝑝, 𝑓𝑝 (𝛾𝑛)) + 𝑁𝜆𝛾𝑛
𝛼𝑝

𝑃dyn (𝑝, 𝑓𝑝 (𝛾𝑛))
𝑓𝑝 (𝛾𝑛) .

From the convexity of 𝑃𝑛 (𝑐𝑛, 𝛾𝑛) in 𝛾𝑛 from Lemma 4 for a fixed
𝑐𝑛 , we obtain that

1
𝑁

𝑁∑︁
𝑛=1

𝑃𝑛 (𝑝,𝛾𝑛) ⩾
𝑁∑︁
𝑛=1

𝑃𝑛 (𝑝, 1
𝑁
).

This implies that 𝛾∗𝑛 = 1
𝑁 for all active performance cores 𝑛 ∈ [𝑁 ].

We can repeat the proof when all cores are of efficiency type.

C.5 Joint convexity of aggregate power under
optimal frequency allocation

Lemma 5. Let 𝑐 ∈ {𝑝, 𝑒} be the core type. Consider a fixed number
𝑁 of 𝑐 type cores with a given set of non-sleeping cores N𝑐,1 and
continuous operating frequency F𝑐 . The minimum aggregate power
that satisfies the mean sojourn time guarantee𝑤 at each active core
𝑛 ∈ N𝑐,1 is 𝑃𝑐 (𝑁𝜆, 𝑁𝑐,1), where 𝑃𝑐 (𝑁𝜆, 𝑥) : R+×R+ → R+ is jointly
convex in 𝑁𝜆 and 𝑥 .

Proof. We show the result holds when all cores are of perfor-
mance type. From Theorem 1, the optimal thinning probability for
non-sleeping cores 𝑛 ∈ N𝑝,1 is 𝛾∗𝑛 = 1

𝑁𝑝,1
. Thus, we can write the

optimal operating frequency for all non-sleeping cores 𝑛 ∈ N𝑝,1 as

𝑓 ∗𝑛 (𝑝,𝛾∗𝑛) ≜
1
𝛼𝑝

( 𝑁𝜆

𝑁𝑝,1
+ 1
𝑤

)
.

The minimum aggregate power consumption 𝑃𝑝 (𝑁𝜆, 𝑁𝑝,1) at all
𝑁𝑝,1 non-sleeping cores can be written as

𝑁𝑝,1𝑃sta

(
𝑝,

1
𝛼𝑝

( 𝑁𝜆

𝑁𝑝,1
+ 1
𝑤

))
+ 𝑁𝜆

𝛼𝑝
𝛽𝑝𝑉𝑝

(
1
𝛼𝑝

( 𝑁𝜆

𝑁𝑝,1
+ 1
𝑤

))2

. (22)

We observe that the average power consumption at each active
performance core 𝑛 ∈ N𝑝,1 is given by

𝑃𝑛 (𝑐𝑛, 𝛾∗𝑛) = 𝑃sta (𝑝, 𝑓 ∗𝑛 (𝑝,𝛾∗𝑛)) +
𝑁𝜆𝛾∗𝑛
𝛼𝑝

𝑃dyn (𝑝, 𝑓 ∗𝑛 (𝑝,𝛾∗𝑛))
𝑓 ∗𝑛 (𝑝,𝛾∗𝑛)

.

Thus, 𝑃𝑝 (𝑁𝜆, 𝑁𝑝,1) = 𝑁𝑝,1𝑃𝑛
(
𝑐𝑛,

𝑁𝜆
𝑁𝑝,1

)
. From Lemma 44, it fol-

lows that 𝑃𝑛 (𝑝,𝛾𝑛) is a convex function of 𝛾𝑛 . We observe that
𝑃𝑝 (𝑁𝜆, 𝑁𝑝,1) is the perspective of 𝑃𝑛 (𝑝,𝛾𝑛), hence jointly convex
in 𝑁𝜆 and 𝑁𝑝,1 from Lemma 2, part (2). We can repeat the proof
when all cores are of efficiency type. □

C.6 Proof of Theorem 2
We show the result holdswhen all cores are of performance type.We
observe that N𝑝 = [𝑁 ] and the set of sleeping cores are [𝑁 ] \N𝑝,1.
We can apply Theorem 1 to active cores N𝑝,1 to obtain the optimal
allocation in (17) for any set of active cores N𝑝,1. We can find the
aggregate average power consumption for all 𝑁 cores

𝑃tot (𝑝, 𝑁𝜆, 𝑁, 𝑁𝑝,1) ≜ 𝑃𝑝 (𝑁𝜆, 𝑁𝑝,1) + (𝑁 − 𝑁𝑝,1)𝑃sleep (𝑝). (23)

We observe that 𝑃tot (𝑝, 𝑁𝜆, 𝑁, 𝑥) is the sum of affine function (𝑁 −
𝑥)𝑃sleep (𝑝) and convex function 𝑃𝑝 (𝑁𝜆, 𝑥) for 𝑥 ∈ R+. Thus, the
aggregate average power consumption 𝑃tot (𝑝, 𝑁𝜆, 𝑁, ·) : [0, 𝑁 ] →
R+ is a convex function, and the minima is achieved at some unique
𝑥∗𝑝 ∈ [0, 𝑁 ]. Since the number of cores 𝑁𝑝,1 is not a real number, (a)
we can find the ceiling and the floor of the optimal real number 𝑥∗𝑝 ,
and (b) compare the two power consumptions to find an optimal
number of cores 𝑁 ∗

𝑝,1. This optimal number is unique if the power
consumption at the ceil and the floor of 𝑥∗𝑝 are not identical. We
can repeat the proof when all cores are of efficiency type.

C.7 Proof of Theorem 3
We assume that 𝛿 ≜ (𝛿𝑝 , 𝛿𝑒 ) ∈ M({𝑝, 𝑒}) is the thinning PMF
across performance and efficiency cores. This implies that the ag-
gregate arrival rate to 𝑁𝑝 performance and 𝑁𝑒 efficiency cores
are 𝑁𝜆𝛿𝑝 and 𝑁𝜆𝛿𝑒 respectively. For these fixed aggregate arrival
rates, the minimum aggregate average power consumption at per-
formance and efficiency cores are given by 𝑃tot (𝑝, 𝑁𝜆𝛿𝑝 , 𝑁𝑝 ) and
𝑃tot (𝑒, 𝑁𝜆𝛿𝑒 , 𝑁𝑒 ) respectively, as defined in Definition 3.

These power consumptions are achieved at performance and
efficiency cores by letting some of the cores sleep, thinning the
aggregate arrivals equally among all active cores of each type, and
operating all active cores 𝑛 at an identical frequency for each core
type. Thus, for a fixed splitting 𝛿 , the minimum aggregate average
power consumption at all 𝑁 cores is achieved when each core
𝑛 operates at frequency 𝑓 ∗𝑛 (𝑐𝑛, 𝛿𝑐𝑛

𝑁𝑐𝑛,1
) that minimizes the average

power consumption at each core type while satisfying the mean
sojourn time guarantee𝑤 at each active core 𝑛. For each core type,
the number of active cores is optimized to minimize this power
consumption.

It suffices to show that there is an optimal split 𝛿 among the two
core types. From Remark 4, both 𝑃tot (𝑝, 𝑁𝜆, 𝑁𝑝 ) and 𝑃tot (𝑒, 𝑁𝜆, 𝑁𝑒 )
are convex in 𝑁𝜆 under Assumption 2, and since 𝛿𝑝 + 𝛿𝑒 = 1, it
follows from Lemma 22 that the total aggregate power in convex
in 𝛿𝑝 . Thus, there exists a unique 𝛿∗𝑝 ∈ [0, 1] that minimizes the
aggregate power consumption.
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C.8 Proof of Theorem 4
For a given workload split 𝛿 ∈ M({𝑝, 𝑒}) and denoting the number
of active performance and efficiency cores by 𝑥𝑝 , 𝑥𝑒 , we can write
the optimal identical operating frequencies at the two types of
active cores that meet the mean sojourn time guarantee𝑤 at each
active core, are

𝑓𝑝 ≜
1
𝛼𝑝

(𝑁𝜆𝛿𝑝

𝑥𝑝
+ 1
𝑤

)
, 𝑓𝑒 ≜

1
𝛼𝑒

(𝑁𝜆𝛿𝑒
𝑥𝑒

+ 1
𝑤

)
.

From this equation, we can write the number of active cores 𝑥𝑝 , 𝑥𝑒
in terms of the operating frequencies 𝑓𝑝 , 𝑓𝑒 . Under the theorem
hypothesis of zero sleep powers, workload split 𝛿 , and operating
frequencies 𝑓𝑝 , 𝑓𝑒 , the minimum average power consumption for

core 𝑛 of type 𝑐𝑛 ∈ {𝑝, 𝑒} can be written as

𝑃tot (𝑐𝑛, 𝑁𝜆𝛿𝑐𝑛 , 𝑁𝑐𝑛 , 𝑓𝑐𝑛 ) ≜ 𝑁𝜆𝛿𝑐𝑛

(𝑃sta (𝑐𝑛, 𝑓𝑐𝑛 ) − 𝑃sleep (𝑐𝑛)
𝛼𝑐𝑛 𝑓𝑐𝑛 − 1

𝑤

+ 𝛽𝑐𝑛
𝛼𝑐𝑛

𝑉𝑐𝑛 (𝑓𝑐𝑛 )2
)
+ 𝑁𝑐𝑛𝑃sleep (𝑐𝑛).

We observe that the optimal operating frequency 𝑓 ∗𝑝 , 𝑓 ∗𝑒 at both the
cores is independent of the split 𝛿 and is defined in Definition 4.
When 𝜆 < 𝜆0, then we observe that 𝑥∗𝑝 < 𝑁𝑝 and 𝑥∗𝑒 < 𝑁𝑒 . We
observe that

min
𝛿𝑝 ,𝑓𝑝 ,𝑓𝑒

𝑃tot (𝑝, 𝑁𝜆𝛿𝑝 , 𝑁𝑝 , 𝑓𝑝 ) + 𝑃tot (𝑒, 𝑁𝜆𝛿𝑒 , 𝑁𝑒 , 𝑓𝑒 )

⩾ min
𝛿𝑝

𝑁𝜆(𝛿𝑝𝑐∗𝑝 + 𝛿𝑒𝑐
∗
𝑒 ). (24)

The result follows from the fact that the minimum aggregate power
consumption across all cores is a convex combination.
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