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ABSTRACT

Heterogeneous computing involves CPU architectures that sup-
port more than one core type, and it aims to achieve energy effi-
ciency while meeting the performance guarantees. This aim can be
achieved by the operating system or the on-chip driver by exploiting
the differential power-performance trade-off that heterogeneous
cores offer. We characterize the power-performance trade-off for
an Intel CPU with heterogeneous cores and provide a mathematical
framework to study heterogeneous computing. In particular, we
provide probabilistic workload split and operating frequency for all
active cores that allow workload execution with minimal carbon
emissions. We support the analytical findings with experimental
evaluations for a few representative workloads. As compared to
the default Linux frequency governors, our scheme can reduce the
energy-delay product by up to 80%.
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1 INTRODUCTION

The Information and Communications Technology (ICT) sector’s
current energy usage is close to 10% of global electricity consump-
tion and is projected to increase to 20% by 2030 [21]. A significant
fraction of ICT energy consumption is by data centers [8]. To com-
bat the adverse impact on environmental sustainability caused by
the above growth in energy demand, novel solutions are being
proposed and developed by different players targeting different
parts of the ICT space. While data center providers attempt to com-
pensate for their carbon footprint through alternative targets such
as Net-Zero, which focuses on the use of renewable energy, chip
and server manufacturers are exploring energy-efficient hardware
architectures. Despite efficiency improvements in CPU power, it is
the most dominant components of the total server power consump-
tion. It accounts for 58% of dynamic server power and 33% of total
server power [11, 19, 29]. Further, cooling and provisioning costs
are proportional to the total server power. Therefore, we focus on
ways to reduce CPU power in this work. We note that memory
power consumption is another important contributor to the server
energy consumption. However, memory frequency and voltage are
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constants during operation and are not load-dependent. Therefore,
we do not consider energy consumption due to memory usage.

Computational workloads are time-varying and the service re-
quirements are seldom constant [38]. Therefore, CPUs are rarely
used at maximum utilization [11]. CPUs consume power when
idling between busy phases, leading to energy wastage and lack
of energy proportionality! that has become a key design goal for
energy-efficient computing. Though it is possible to work around
the lack of energy proportionality by putting CPUs to sleep when
idle, low-power CPU sleep states are useful only to an extent. As ob-
served in [39], CPUs need to be awakened quite often, and there is
latency and power cost involved in the transitions to and from sleep
states. Another approach to get better energy proportionality in
modern CPUs is via using Dynamic Voltage and Frequency Scaling
(DVES) [44]. Using DVEFS, one can dynamically slow down the clock
frequency and supply voltage to reduce energy consumption. This
can also reduce idle times, by reducing the intervals when the CPU
is idle. However, reducing clock frequency can increase task com-
pletion times and there is latency involved with dynamic frequency
switching. Further, frequent changes in voltage and frequency can
be significantly detrimental to hardware reliability [51].

Fundamentally, there are two sources of non-proportionality: (a)
CPUs consume static power primarily corresponding to leakage
power [27], when CPUs are idle and not asleep, and (b) CPUs’
dynamic power consumption while active is non-linear in the core
frequency, especially at low utilization of 10-50% [11]. In order to
improve power efficiency at all utilization levels of practical interest,
servers offering high dynamic range and linear deviation (with
workload) are desired. One proposed approach [56] for extending
the dynamic range while maintaining high linearity is through
computing architectures consisting of CPUs with heterogeneous
cores having different power-performance trade-offs. A multi-core
CPU with functionally non-identical cores is called a heterogeneous
or hybrid multi-core processor (HMP). A HMP typically has more
than one core micro-architecture in a single die, allowing distinct
sets of cores to operate at different processing speeds, while sharing
the same ISA, thus enabling performance and energy efficiency.
Intel Core Processors, 12th generation onward [2], are examples
of HMP CPUs, combining performance and efficiency cores (P-
cores and E-cores) in the same package. P-cores support high clock
speeds to maximize single-thread performance and responsiveness
for compute-intensive workloads. E-cores are slower, consume less
power, and are meant for background tasks. These Intel CPUs also
support DVES for both core types.

Realizing the energy-saving potential of HMPs requires a joint
allocation and scheduling of workloads to all the cores. This en-
tails (a) finding the workload allocation to the cores and (b) core
frequency selection for each of the active cores. The overall objec-
tive is to meet the workload service level objectives (SLO’s) while
minimizing the energy consumption. Such an allocation scheme
needs to be aware of the power-performance trade-off for the CPU
cores being used, and the workload characteristics including arrival
rate and service requirements. This can be achieved by (a) CPU
characterization preferably through an analytical model for power

! Energy proportionality implies that the system’s energy consumption should remain
proportional to the utilization.
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as a function of frequency, supply voltage, and utilization, and (b)
workload characterization through an analytical model for inter-
arrival times and service requirements. Together these two models
can predict the power-performance trade-off and help in making
fast scheduling decisions. In this work, we focus on workloads that
do not change considerably during one scheduling span and focus
on determining (a) the number of sleeping and active cores, (b) the
operating frequency selection at active cores, and (c) the workload
split on active cores through thread assignments, such that service
level objectives are met while minimizing power consumption.
Energy and performance-aware scheduling for hybrid cores can
become significant in cloud environments due to the increasing
adoption of serverless computing. Serverless systems are evolving to
support heterogeneous workloads with varying processing charac-
teristics and performance requirements. Efforts are already under-
way to instantiate such platforms over heterogeneous computing
systems for improving performance and reducing resources, energy,
and cost [20, 34]. Intel also recently announced plans for a mod-
ular SoC architecture that can support both P and E cores using
compute chiplets for cloud workloads that need more than one
CPU design [22]. The scheduling policies derived in this work can
be extended to determine the right number of container replicas
to enable different services on the right type of hardware based
on the characteristics of the incoming workload. Our focus is on
predictable workloads that remain unchanged for one scheduling
span, e.g. modern batch processing workloads in cloud [36] that can
consist of data and image analytics tasks as part of application work-
flow orchestration frameworks [23] and in HPC environments [55].
We note that our approach can be extended to dynamic, real-world
scenarios by learning the changes to the workload at runtime, and
this study can guide the design of efficient heuristics. We also note
that our study can be utilized on public clouds, where workloads
with similar characteristics can be aggregated and scheduled.

1.1 Related Work

The benefit of single-ISA heterogeneous multi-core architecture
for energy optimization was first established in [33] by switching a
multi-phased application with different phase execution character-
istics among cores of a heterogeneous multi-core system composed
of different generations of Alpha ISA processors. Heterogeneous
scheduling has been studied in a variety of other across-chip het-
erogenic contexts. CPU-GPU collaboration for high-performance
computing is explored in [18, 38, 41]. Multiple layers of parallelism
exposed in modern hardware with symmetric multi-core processors
are exploited in [14]. Maximizing the average instructions per cycle
of a set of applications running simultaneously on an asymmetric
multi-core processor system is studied in [45]. The tradeoff between
average power reduction and SLA degradation is studied in [24]
when a higher fraction of incoming tasks are scheduled on less per-
formant but more power-efficient servers while letting idle servers
sleep. In contrast, this work focuses on heterogeneity within a chip.

Theoretically, it has been shown that classical load-balancing
policies designed for homogeneous servers perform poorly in the
heterogeneous setting [10, 50, 54]. Existing work on scheduling over
heterogeneous servers considers fixed service rates [15, 35, 37, 52].
Probabilistic splitting of workloads for performance optimization in
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the heterogeneous setting was considered in [52]. These works did
not consider service rate control and energy consumption. Energy-
aware scheduling in Linux kernels using DVFS for multiple CPUs
was proposed in [3]. The proposed scheduling was shown to be
sub-optimal for a heterogeneous multi-core architecture [48, 49].
To the best of our knowledge, ours is the first work to combine
scheduling on multicore CPUs with intra-chip heterogeneity and
DVFES for optimizing power while meeting latency guarantees.

1.2 Key contributions

The key contributions of this work are as follows.

(1) We propose a power and performance model for CPUs with
heterogeneous cores that is consistent with the CMOS CPU
architecture of current generations in Section 2.

(2) We validate the system model through experimental char-
acterization on an Intel X86-64 CPU (core 19-13900) with 8
P-cores and 16 E-cores in Section 4.1.

(3) We formulate the configuration problem of (a) the workload
distribution among the cores, and (b) their operating fre-
quencies in Problem 1 that minimizes the aggregate power
consumption while meeting a mean sojourn time guarantee
for the workload at each core.

(4) We propose HEMP—Heterogeneity enabled Energy-Minimizer
with Performance constraints—an optimal analytical solution
to the configuration problem in Theorem 3 which has strong
theoretical guarantees, and is easily implementable in prac-
tical systems.

(5) We present numerical results in Section 4.2, and validate
HEMP with experiments on a CPU with heterogeneous cores
in Section 4.3.

(6) We compare the performance of HEMP with Linux frequency
governors combined with the default CPU scheduler in Sec-
tion 4.3.3 for image-processing and machine-learning infer-
ence workloads.

Notation: We denote the set of all positive integers by N, the

set of first n positive integers by [n], the set of non-negative reals
by R4, the set of probability measures on a finite set A by M(A) =

{pelot]t: peapa=1}.

2 SYSTEM MODEL

We consider a compute system with a single class of computational
tasks, that can be offloaded to one of the N available cores. We model
the arrival of computational tasks as a Poisson process with an
aggregate arrival rate NA. We consider a simple probabilistic load-
balancing scheme where each arriving task is randomly assigned
by the OS scheduler to one of the cores independently with an
identical distribution (i.i.d. ) where the common probability mass
function (PMF) is denoted by y € M([N]). It follows that y, is the
thinning probability for arrivals to core n. If a core is busy, the task
is queued in a per-core buffer? at the OS scheduler. We assume an
arbitrarily large buffer serviced on a first come first served (FCFS)
basis.

2In practice, the OS scheduler may have a common priority queue per CPU with a
sophisticated priority scheme. However, modeling such queues is complex, and hence
we assume a per-core queue for analytical tractability.
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We consider the case of heterogeneous cores of two classes. The
mutually exclusive sets of performance and efficiency cores are
denoted by N € [N] and Ne = [N] \ N, respectively. Since each
core is of type performance or efficiency, we denote the type of
core n by

1)

We denote the number of performance and efficiency cores by
Np = |Np| and N = |Ne| = N — Np, respectively.

g = pl{neNp} + el{nGNe}'

2.1 Service time and requirement

We model the service requirements for computational tasks as an
i.i.d. random sequence with a common exponential distribution
having unit mean on a core with a unit task service rate. The
task service rate u, at a core n € [N] for a given workload is
proportional to the core frequency f, € J,, where J¢, is the set
of allowable frequencies for a core n. Hence the task service time
is distributed exponentially, the service rate is proportional to the
frequency, and the proportionality relation is given by

@)

The heterogeneity of the cores is reflected in the proportionality
constant a., that depends on the core type c,. The performance
cores have a larger proportionality constant for the task completion
rate, i.e. ap > Q. That is, a performance core works faster than an
efficiency core for the same operating frequency. Under this model,
the service time distribution for computational tasks on core n with
frequency f; is exponential with a rate y,. We denote the limiting
average of sojourn time by W;, averaged over all tasks joining a core
n, and consider the guarantee that the mean sojourn time doesn’t
exceed a threshold w at any core n.

Hn 2 ac,,fn-

2.2 Power consumption

The average power consumption at a core in a time duration de-
pends on whether the core was idle or working during this duration.
If the core is idle for the entire time duration, then the average power
consumed by the core n working at frequency f;, is obtained by
adapting the results of [47] and is denoted by

Pgta(cn, fn) = ac,, Vn(ebc" V _ 1), (3)

for positive core-dependent constants ap, bp, de, be > 0.If the core
n operating at frequency f, is working for the entire time duration,
then the additional average power consumed is similarly adapted
from the results of [47],

den(cn,fn) = ﬁcnvnzfn, (4)

for positive proportionality constants 8, and e which represent
the effective capacitance of the CMOS system. We note that the
two powers at core n are functions of the operating frequency f,.
However, these functions include undetermined variable voltage V;,.
This is because voltage V}, is set by the CPU’s internal governor to
meet stability criteria depending on the operating frequency f;. The
exact voltage-frequency map is discussed in detail in Section 4.1.
We note the following property.

Property 1. The operating voltage V,, = V;, (fy) at any core nis a
convex non-decreasing function of operating frequency f.



E-Energy ’24, June 04-07, 2024, Singapore, Singapore

CPU architectures also define sleep power states {Cy, ..., Cy}
as described in Section A. For simplicity of presentation, we fo-
cus on a single sleep state—the deepest sleep state Cj. with the
average power consumption denoted by Pyjeep(cn) for a core n.
Typically, Pyeep(cn) is significantly lower than the static power
Psta(cn, min I, ). However, the core can’t immediately start work-
ing when in a sleep state, and there is a non-negligible delay in
waking a core from deep sleep. In the rest of the manuscript, we
will assume that the cores that are sent to sleep state are decided
at the beginning of the schedule, and the sleeping cores are not
woken up for the duration of the schedule. In contrast, we note that
an idling core can start working as soon as a task arrives.

We denote the limiting time average of power consumption at
core n by Pp,. We have assumed that a sleeping core is never woken
up, and hence P, = Pgleep(cn) implies that the thinning probability
Yn = 0. Further, if thinning probability y, = 0 for a core n, then
the power consumption is minimized when it is asleep and hence
P, = Pyleep(cn). Thus, we assume that the thinning probability
yn = 0 for a core n if and only if Py = Pyjeep (cn)-

2.3 Problem formulation

We are interested in finding the thinning probability mass function
y € M([N]) and the sequence of operating frequencies f = (fy :

ne [N]) e S"p P x ?g\re for all cores that minimizes the average
power consumption aggregated over all cores while meeting the
service requirement on limiting average of sojourn time at each
core n.

Problem 1. Consider the set of feasible allocations
A N e -
A {(y,f) € M(IND) X (5,7 X F2) : Wy <w}.

Find the optimal allocation

(v f) argming > Pr:(y.f) €A )

ne[N]

3 ANALYTICAL RESULTS

For a given allocation (y, f), we note that the task arrival process
at each core n is a thinned version of the aggregate homogeneous
Poisson task arrival process of homogeneous rate NA and thinning
probability y,. It follows that at each core n, the task arrival process
is an independent Poisson process with a homogeneous rate 1,, =
NAyp. If the thinned Poisson arrival rate A,, = 0 for any core n, then
the power consumption is minimized when it is in sleep state, i.e.
Py, = Pyleep(cn). We first focus on the non-sleeping cores.

Definition 1. For any thinning PMF y € M([N]), we define the
set of non-sleeping or active cores with N1 = {n € [N] : y, # 0}.
Similarly, we define the set of active performance and efficiency
cores as

Np,1 é{neNP:yn;#O}, 6)

The number of active cores is denoted by N; £ |Ni|, and the
corresponding notation for active performance and efficiency cores
are Np1 = |NP,1| and N1 = |Ne,1|.

Ne1 =2{neNe:yp #0}.

The service time for each task at an active core n is an indepen-
dent exponential random variable with rate y, = ac, fu. It follows
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that each active core n has an independent M/M/1 queue of tasks
with the limiting average of task sojourn time [9] averaged over all
incoming tasks

1 1

W (cns for Yn) = = .
n{en s ¥) Hn = An acnfn - NAyn

)

The mean load on this core is p, = /1—:, and the limiting average of
idle time for this core is 1 — p,. Hence, the limiting average power
consumption is

Ny,
Kf:den(cmﬁl)] Linenyy

+ Psleep(cn)l{n¢N1}~

pn(cnafn, )/n) = Psta(cnyﬁl) +
()

3.1 Optimal frequency selection

We first focus on solving the following sub-problem. Given a thin-
ning probability mass function y € M([N]), find the optimal fea-
sible frequency allocation® f € 37;\[" X 3"5 ¢ that minimizes the
average power consumption aggregated over all cores.

Problem 2. Consider a fixed thinning probability mass function
y € M([N]) and the set of feasible frequencies

A £ {f e g, x T s () e af.

Find the optimal feasible frequency f € A(y) that solves

f*(y) £ argmin Z P, feAy) 9)

ne[N]

Lemma 1. For a given thinning probability mass function y €
M([N]) and any active core n € N1, the optimal feasible operating
frequency that minimizes the average power consumption at each
core n is given by

. . 1 1

£ (cnoyn) £ inf {f,, €T, fo> —(N/lyn + —)} . (0)
o, w

Proor. See Appendix C.2. O

Remark 1. From Lemma 1, we observe that the optimal frequency
selection f € SFIJ,\IP X si‘f ¢ is completely determined for any given
thinning probability mass function y € M([N]).

Definition 2. We define the minimum average power consumption
given a fixed thinning PMF y as

(11)

where optimal frequency allocation f*(y) given y is defined in (10)
for all active cores n € N7.

Pn(cn: Yn) £ pn(cnsf;(cn, Yn)s )’n),

Assumption 1. The sets of feasible frequencies for both types of
cores are typically different; both are sets of discrete frequencies.
We will assume both sets to be continuous for the simplicity of
analysis.

3Setting frequency of each core individually is not supported on all CPU architectures.
However, frequency setting per core type for active cores suffices for optimality, as
established in Theorem 2.
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Remark 2. Under Assumption 1, the optimal frequency at core n
with positive thinning probability y, that minimizes average power
consumption while satisfying the mean sojourn time guarantee w
at this core, is

: _ 2 1 1
fi e ) = fon () = — (Nayn+ ). (12

Cn

We observe that f, (yn) is affine in thinning probability y,, and
increasing in yp since g—l > 0.
cn

3.2 Optimal workload splitting

Thus, to find the optimal allocation (f*,y*), we need to find the
thinning feasible PMF y that minimizes the average of aggregate
power consumption at all cores.

Problem 3. Consider the optimal operating frequency f,; (¢n, yn)
defined in (12), and feasible thinning PMF set

T2 {y e M([N]): f;(cnyn) € Fe, foralln € Ni}.

Find the optimal thinning PMF that solves

y" £ argmin Z Pn(cn,yn) :y €T}, (13)

ne[N|

where the minimum average power consumption Py, (cy, yn) at each
core n that meets the mean sojourn time guarantee w is defined
in (11).

Remark 3. From Lemma 1, we observe that the optimal allocation
(f*,y*) that solves Problem 1 is given by (f*(c,y*),y*), where
fey) = (feu(yn) :n € N) (14)

is the optimal frequency allocation that solves Problem 2 for any

thinning PMF y and the optimal thinning PMF y* solves Problem 3.

We next discuss how to solve Problem 3, i.e. how to optimally
split the workload in order to minimize average aggregate power
consumption while meeting the mean sojourn time guarantee at
each core.

3.2.1 When all cores are homogeneous and active.

Theorem 1. Consider the case when N¢, 1 = [N] and Assumption 1
holds. Then, the optimal allocation for all coresn € [N] is

1 1
=—(2+-).
ac, w
The minimum power consumption for N active homogeneous cores is

)

(16)

., 1

e R (15)

ﬁcn

Qc

1
P, (NAN) = NPsta(c,,, for (N)) +NA

n

Proor. See Appendix C.4. O
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3.2.2  When all cores are homogeneous but not necessarily active.

Theorem 2. Letc € {p, e} be the core type. Consider the case when
N¢ = [N], and Assumption 1 holds. There exists an optimal number
of active cores N, such that an optimal allocation (y*, f*) is

NA 1

i(_+;) neNe1, (17)

1
* 1 s+
Yn * ne > fn S
Nc,l { Ncyl} ac Nc,l

for any subset N¢1 € [N] of size Nc*,l'
Proor. See Appendix C.6. O

Assumption 2. We will assume real number of active performance
cores Np 1 € [0, Np] and active efficiency cores Ne,; € [0, Ne] to
simplify the problem.

Definition 3. Given aggregate arrival rate NA at Nj, performance
cores, the minimum average power consumption aggregated over
all performance cores is defined as

Piot(p, NA,Np) = inf  Piot(p, NA, Np, xp).

xp€[0,Np]

Similarly, for the aggregate arrival rate NA at N, efficiency cores,
the minimum average power consumption aggregated over all effi-
ciency cores is defined as

Piot(e, NA,Np) £ inf | Piot(e, NA, Ne, x¢).

Xe €[0,Ne
Remark 4. Since Piot(p, NA, Np, x) and Piot (e, NA, N, x) are jointly
convex functions of NA and x (see Lemma 5 in Appendix C.5) and
[0, Np], [0, N¢] are convex sets, it follows from Lemma 2 part 2 that
Piot(c, NA, N;) is convex in NA for ¢ € {p, e}.

3.2.3 Heterogeneous cores. We now return to the optimal alloca-
tion in the case of heterogeneous cores. For any thinning PMF
y € M([N]), we can find the sets of active performance cores Np 1
and active efficiency cores N 1 defined in Definition 1.

Theorem 3. Under Assumption 1 and Assumption 2, there exists
a unique split (5, 5;) € M({p, e}), and optimal number of active
cores N;,l, N:’l that determine the optimal allocation (y*, f*) that
minimizes the aggregate power consumption while meeting the mean
sojourn time guarantees at all N cores. The optimal thinning proba-
bility for all active cores is
*
5_9 1 + e 1
N* {nEval} N* {nENevl}’
p.1 el

%

Yn = (18)

where Np1 € Np and N1 © N, are active cores of size N; , and

N1 respectively. The operating frequency at each active core is

.. 1 (NAs, 1 1 (NAS: 1
n = %( N;1 +;)1{neNp'1}+a_e( N:l +;)1{HENE‘1}' (19)
Proor. See Appendix C.7. O

Definition 4. We can define the following minimizers for any core
n and type ¢, € {p, e}

Psta(cn, f) - Psleep(cn)

1
acnf ~w

* A ﬂ n
fo, = + _ac Ve, (f)2 + NcnPsleep(Cn)'
Cn

in
feFe,
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We can write the minimum values for core n and type ¢, € {p, e}

Pga(cn, £5) =P, c
C:n N sta (Cn fcn)* slleep( n) + ﬂcn Ve, (f;;)z +NcnPsleep(cn)~
acnﬂn T w ey,
Remark 5. We observe from Definition 4 that the minimizing fre-
quencies f; ,f" do not depend on the normalized arrival rate A.
Further, these frequencies do not depend on the number of cores if
the sleep powers are negligible.

Theorem 4. Consider the case when Assumption 1 and Assumption 2
hold, and fy, f¢', cj, c; be as defined in Definition 4. We define
Np

. 1 A Nep 1
N (dpf‘;, - ;), /13’0 = F(Q’efe - ;)

Then for all normalized arrival rates A < Ao = Apo A Ae,, the optimal
workload split is 5, = 1{

A

Apo = (20)

c;‘,<c2} ’
ProoF. See Appendix C.8. O

Remark 6. Theorem 4 provides an arrival rate region, in which
only one type of core is selected for the entire workload. Further,
we know the identical optimal frequency to be used on the active
cores as given in Definition 4 which is independent of workload.
We also know the number of active cores is x;, if ¢;, < c; and x;
otherwise. For sufficiently large mean sojourn time guarantees, we
empirically observe that c; < c;, for the CPU we study.

4 EVALUATION

In this section, we describe the CPU characterization conducted
for validating (a) linearity of service rate with core frequency, (b)
convexity of operating voltage as a function of core frequency, and
(c) dependence of static and dynamic power on the operating volt-
age. Further, we compute (a) the voltage-frequency relationship,
and (b) the model parameters for power-frequency curves for both
static and dynamic power. We next conduct numerical studies to
obtain the optimal workload split §* between P and E cores, and
correspondingly, the optimal number of active cores Np*’l, N; We
conduct experiments on a heterogeneous CPU to show that un-
der the probabilistic workload splitting, the aggregate power is
minimized by HEMP. Finally, a comparison with common Linux
frequency governors is presented.

4.1 CPU characterization

The test system’s CPU was an Intel Core 19 13900K processor (Rap-
tor Lake series) with two types of cores: eight P-cores and sixteen
E-cores. Its P cores have a base frequency of 3GHz and a maximum
turbo frequency of 5.6GHz. Its E cores have a base frequency of
2.2GHz and a maximum turbo frequency of 4.3GHz. In the absence
of server-class processors with HMP yet, we consider the i9-13900K
desktop CPU to be a suitable demonstrator of HMP capabilities.

4.1.1 System settings. The operating system on the system was
Ubuntu 23.10 with Linux 6.5 kernel. We disabled simultaneous multi-
threading (SMT) (also called hyper-threading) on the CPU to ensure
performance and power predictability. Evaluations of SMT on real-
world applications have been mixed [42, 46]. While the maximum
benefits can be up to 15% on a dual-socket system [28], these vary
by applications [26], sometimes adversely [31], and require separate
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characterization to adjust model parameters, which we plan to do
as future work. Further, we disabled the intel_pstate driver to
bypass the processor’s Energy-Performance Preference (EPP) logic
and hardware-managed P-states, and enabled overclocking to turbo
frequencies. This enabled setting specific core frequencies (beyond
the base frequencies) from our scripts through ACPI driver and the
userspace frequency governor. One disadvantage of using the ACPI
driver is the limit of 15 on the number of frequency steps reported
by the ACPI interface, hence the ACPI driver reports only a subset
of the feasible frequencies to the userspace governor. To ensure
steady-state thermal and power stability, we evaluated the system
between 0.8—-4.3 GHz frequencies. The available CPU frequencies
presented by the ACPI driver in this range are as per the frequency
set? listed in Table 1.

Core type Frequency set*J in GHz
PorE {0.8,1,1.3,1.5,1.8,2,2.3,2.5,2.8,3,3.3,3.5,3.8,4,4.3}
Table 1: Feasible frequency set for both types of cores.

The core 13900K processor does not allow sending cores individ-
ually to deep sleep states {Cs, Cs, C19} and those can be invoked
at package level only [5]. These are not under the direct control
of our scheduler, hence we disabled the package and core C-states
through the BIOS for controlled experiments®. We left the core
voltages untouched, to be determined as per CPU’s internal VID
table for each given frequency.

4.1.2  Workload benchmarks. Each computational task comprises
of the execution of specified number of iterations of a given work-
load. We perform characterization, numerical, and experimental
evaluation for two representative workloads:

(a) Image manipulation: We use the image manipulation bench-
mark (538_imagick_r) included in the SPECrate2017 floating-point
benchmark suite under the SPEC-2017 benchmark package [17].
It uses Imagemagick [16], a commonly used batch image process-
ing tool, in a single-threaded configuration. We execute the SPEC
suite’s imagick binary in a stand-alone mode without invoking it
through runcpu to avoid the benchmark instrumentation overheads
for short job runs.

(b) Machine Learning inference: As a machine learning inference
workload, we use the TFLite Model Benchmark Tool [4] in a single-
threaded CPU-only execution mode. The specific model used was
‘NASNet mobile’, a convolution neural network of size 21MB. A
small model was chosen so that the inference iterations could be
repeated for a desired number of times to compose tasks matching
a given size distribution. The current section contains a detailed
analysis and results for the image manipulation benchmark. Due
to space limitations, we only provide the performance comparison
with Linux governors in Section 4.3.4 for the machine learning
inference benchmark.

4 Although 2.2GHz is the base frequency for E-cores in i9-13900K processor, this
frequency step did not appear on the subset reported by the ACPI driver for the given
frequency range.

SHowever, the C; (active standby) state cannot be disabled. An idle cores are automat-
ically sent by the CPU to C; state when it is not executing any instructions.
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4.1.3  Measurement setup. CPU package power consumption is
measured every 100ms through the RAPL mechanism [30] that
reports accurate energy reading through the CPU’s model-specific
registers (MSR). RAPL is shown to accurately measure CPU package
and core power [43]. CPU package power includes the core power,
and the power consumption at the common components within the
CPU, such as cache, internal bus, etc., shared between the cores [12].
The individual power consumption at these components is not
directly measurable. Our estimated aggregate of static power at all
cores includes the static core power and the power consumption at
the shared components so that the total power estimate is closer to
the real power consumed by the CPU. Core voltage values (common
for all cores in i9-13900K CPU) are similarly measured through
a corresponding MSR. We repeat the following characterization
experiments for every frequency in F (Table1). To compute power
characterization for each core type ¢ € {p, e}, the frequency for all
cores of this type c is set at the given frequency. The frequency of the
other core type is set to 800MHz. To measure static power, all cores
are left idle. The measure the dynamic power, workload iterations
are run in a loop pinned to each core of type c. Thus, the dynamic
power characterization is performed at 100% core utilization for
used cores, with unused cores idling in Cy state®. Each data point
was obtained by running the workload for 2 minutes.

4.1.4  Service rate and core voltage versus operating frequency. We
plot the iteration completion rate (iterations/sec) as a function of
core frequency in Fig. 1a. The plot validates (2), where the service
rate at a core n is yip = o, fn proportional to the core frequency fy,
and the proportionality constant o, depends on the core type cp.

Next, we plot the variation of core voltage as a function of core
frequency in Fig. 1b. The voltage-frequency map for core n depends
only on the core type ¢, € {p, e}. Performance and efficiency cores
have different sets of feasible frequencies denoted by F, and F
respectively. The minimum operating voltages for performance and
efficiency cores are Vp g and Ve, respectively. The corresponding
minimum operating frequencies for performance and efficiency
cores are defined as fp0 = inf Fp o and fep = inf Fe . For core
n operating at frequency f € J,, the operating voltage V,, =
Ve, (f) is experimentally observed to be the following function of
frequency,

Ve, (f) = Vep0 + 1, fon (21)

We note that the voltage of E-cores is higher than that of P-cores at
identical frequencies. The proportionality constants ay, ., linearity
constants rp, re, exponents sp, Se, minimum voltages Vp,o, Ve,0, and
minimum feasible frequencies fj,0, fe 0 are listed in Table 2.

Type a p a b r s Vo fo
P 0.0022 | 0.0014 | 0.1935 | 2.2703 | 8.67¢~° | 2.08 | 0.722 | 800
E 0.0017 | 0.0008 | 0.1966 | 1.4789 | 5.29¢™° | 2.23 | 0.722 | 800

Table 2: CPU model parameters from empirical characteriza-
tion for Intel Core i9 13900K processor.

Sexcept when the core is executing OS background tasks. The percentage of time spent

executing OS background tasks in our test setup was observed to be below 0.02%.
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Figure 1: Service rate and operating voltage.

4.1.5 Static and dynamic power. We note that the power consump-
tion at a core consists of two components. Static power Pst, mea-
sured at zero utilization, and an additional dynamic power Pgyp
when a core is working at full utilization. We plot the two empirical
power measurements (dots) and the curve-fitted values (lines) in
Fig. 2, for both core types. We plot the static power Pst, as a function
of operating voltage V in Fig. 2a and observe that it closely follows
the analytical expression in (3). Similarly, the plot of dynamic power
Payn with respect to the product VZf in Fig. 2b closely follows the
analytical expression in (4).
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(a) Static power vs voltage. (b) Dynamic power vs V2 (f)f.

Figure 2: Static and dynamic components of CPU power.

4.1.6  CPU power versus core frequency and core service rate. We
plot the per-core CPU power as a function of core frequency in
Fig. 3a and as a function of workload service rate in Fig. 3b. As
expected, total core power is a convex increasing function of core
frequency. In fact, P-cores have higher power draw than E-cores
for all frequencies. However, as the service rate for a P-core is
higher than an E-core for the same core frequency, E-cores are
more efficient at low service rates while P-cores become more
efficient beyond the crossover point at 5.8 iterations/sec.

4.2 Numerical results

We validate the analytical results through numerical studies, using
the parameters obtained through characterizations in Section 4.1.
We assume the mean sojourn time guarantee at each core is w = 4
seconds. This is roughly one standard deviation from the mean
service time for the slowest type of core at base frequency (E-cores
at 2.2 GHz). In practice, workloads may specify a stricter latency
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Figure 3: CPU package power per core.

bounds that can be incorporated in HEMP. We conducted numerical
studies for the system parameters obtained by the power and the
performance characterization of the heterogeneous core CPU in
Section 4.1. In particular, we consider the number of efficiency and
performance cores as N = 16 and N), = 8 respectively. Therefore,
the total number of cores N = Nj, + N = 24. We assume that the
static power follows (3) and the dynamic power follows (4) and the
constant service rates at both core types follow (2), where constants
ap, Ae, Ap, Ae, bp, be, ﬂp,/)’e are tabulated in Table 2.

The workloads under consideration comprise of discrete number
of iterations of a benchmark (e.g., imagick image manipulation
on a reference input image). Hence, the service requirement for
tasks (number of iterations) was generated from an exponential
distribution rounded to the nearest integer, with a mean of 8. We
recall that the base frequencies for P-cores and E-cores are f, =
3GHz and f, = 2.2GHz respectively. For the given workload, the
effective service rates for P and E cores are yi, = 0.84 and e = 0.47
tasks per second. For 16 E cores and 8 P cores, this implies the
maximum base capacity of the system to be 8y, + 16y, = 14.286
tasks per second. We normalize the arrival rate in terms of this base
capacity and denote this normalized arrival rate by Anorm.

In all of our theoretical studies, we have assumed the feasible set
of frequencies to be continuous in Assumption 1, and the availability
of a fractional number of cores in Assumption 2. These assumptions
enabled a tractable analysis and proposal of theoretically optimal
solutions. To align with the system reality, we remove both of these
assumptions in our numerical studies. We numerically determined
the optimal solution without these assumptions and found that the
numerical solutions are close to the theoretically obtained solutions
under the two assumptions. In the following discussion, we con-
sider discrete set of frequencies Fp, Fe (tabulated in Table 1), the
number of active cores Np,1 € {0, el Np} ,Ne1€{0,...,Ne},and
workload split y € M([Np]) or y € M([N]).

4.2.1 Homogeneous cores. We have plotted the total power aggre-
gated over all cores of a single type as a function of the number of
active cores for different normalized arrival rates Aporm in Fig. 4,
where each core has an identical feasible frequency at all active
cores specified by (10) that meets the mean sojourn time guarantee
w = 4 seconds at each core as prescribed by Theorem 1. We plot the
power curve for expression obtained in Section 4.1 under Assump-
tion 1 in solid lines and empirical values as squares, for P-cores in
Fig. 4a and E-cores in Fig. 4b. Empirically obtained curves fit the
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predicted curves and validate our claims made in Lemma 5 and The-
orem 2 regarding the convexity of aggregate power for each core
type in the number of active cores for a fixed aggregate workload.
In particular, we observe the existence of a unique optimal number
of active cores to use for any given aggregate workload sent to that
class of cores.

—— Normalized arrival rate = 0.2

Normalized arrival rate = 0.26

—— Normalized arrival rate = 0.223
—— Normalized arrival rate = 0.297
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(a) P-cores. (b) E-cores.

Figure 4: Aggregate power.

We observed in Fig. 4 that for a fixed aggregate workload NA
over a fixed core type, there exists an optimal number of active
cores N;,l, N:’l. We plot the optimal allocation for homogeneous
cores in Fig. 5 under Assumption 1 and Assumption 2 in solid lines
and without these assumptions in dashed lines. In Fig. 5a we plot
the variation of the optimal number of active cores with different
normalized arrival rates Anorm. We observe that the number of ac-
tive cores increases almost linearly with the normalized arrival rate
Anorm for both core types until they saturate to their maximum
value. From Theorem 2, we know that the optimal frequency at
homogeneous cores is identical at all active cores such that they
meet the mean sojourn time guarantee w. We plot the optimal fre-
quency for both types of cores assuming the total workload is over a
homogeneous set of cores in Fig. 5b. However, Theorem 4 suggests
that the optimal frequencies are ]?,* , 2 and remain unchanged for
low arrival rates A < Ay, for P-cores and A < A for E-cores. We
observe this phenomenon in Fig. 5b.

Optimal core frequency (GHz)

Optimal number of active cores

—— P-cores
E-cores

T 0 T

—— P-cores
E-cores

T T T T T T
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalized arrival rate

Normalized arrival rate

(a) Optimal core count. (b) Optimal frequency.

Figure 5: Optimal allocation of active cores and frequency.

4.2.2 Heterogeneous cores. For each workload split 6 € M({p, e}),
we have independent aggregate Poisson arrival of tasks with rates
NASp and NAS, at P-cores and E-cores respectively. For different
values of split probability &, € [0, 1], we have plotted the minimum
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power consumption aggregated over all cores in Fig. 6 for two
different values of normalized arrival rates Aporm € {0.210,0.596}.
We chose two nominal values of normalized arrival rate which were
(a) in the feasibility region for the mean sojourn time guarantees
and (b) sufficiently far apart to understand the behavior of optimal
solutions under different loads.

As predicted by Theorem 5, the total aggregate average power
is convex in the split probability 6, for a fixed normalized arrival
rate Aporm. Further, as predicted by Theorem 4, we observe that at
a low normalized arrival rate of Aporm = 0.210, the total average
power is affine in the split probability 6, following (24).
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Figure 6: Minimum power consumption vs. split probability.

We plot the optimal solution to Problem 1 with heterogeneous
cores in Fig. 7. Dotted lines are numerical results in continuous val-
ues of number of cores and frequencies while squares correspond
to results in discrete settings of the same. We plot the optimal work-
load split probability to P-core and E-cores in Fig. 7a as a function of
increasing normalized arrival rate Aporm. We numerically observe
that ¢j, > ¢, in our case, for c;, c; defined in Definition 4. Thus,
as predicted by Theorem 4, we observe that at low arrival rates
A < Ag = 0.06, i.e. normalized arrival rates Anorm < Anorm,0 = 0.1,
all the workload is split among the E-cores. i.e. 5; = 0. Beyond this
threshold, the optimal split is non-zero for P-cores and is concave
increasing in normalized arrival rate Anorm. That is, at low loads
all the work is done at efficiency cores, and performance cores are
woken up when the workload increases. As the workload keeps
increasing, the optimal split saturates to the point where all cores
are active and operating at their optimal frequencies. Fig. 7b shows
the corresponding optimal number of active cores of each type
given the optimal split 6" = (&5, 1 — §;). We observe that for the
normalized arrival rate A < Ay, no P-cores are active, and the num-
ber of active cores increases linearly with the normalized arrival
rate until the saturation. Fig. 7c shows the optimal operating fre-
quency at each active core for both core types. When the workload
increases beyond A > 0.12 i.e. Aporm > 0.2, all the cores get active,
and the core frequency has to be increased to accommodate the
mean sojourn time guarantee w. We observe that these frequencies
are in accordance with Theorem 1, and are identical for all cores of
a particular type.

4.3 Experimental validation

We validate HEMP by implementing and experimentally evaluating
its performance on Linux OS, and comparing its performance with
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that obtained in default Linux DVFS settings. We used the same
test system, BIOS settings, and measurement setup as that used
for empirical characterization in Section 4.1. HEMP performs the
following tasks:

1. For a Poisson arrival of tasks with aggregate arrival rate NA
having exponential service requirements and mean sojourn time
guarantee w, it numerically obtains the optimal thinning probabil-
ities y* and the optimal core frequency f*. For all P and E cores
with y* > 0, it sets their frequency at f; and f;" respectively and it
sets the frequency of idle cores (y* = 0) at the lowest frequency.
2. For every incoming task arrival, it randomly assigns the task to
one of the active P or E cores with probability mass function y*.
3. If the assigned core is already busy running a task, hold the task
assigned to a core in that individual core’s virtual queue, to be
executed when the queue becomes idle.

Workload generator: To experimentally evaluate HEMP, we also
need to implement a task generator that generates realistic work-
loads matching the task distributions assumed in our model. The
workload generator is designed to produce task arrivals matching
the workload model described in Section 2 and Section 4.2. The
tasks thus generated are submitted to whichever scheduler (e.g.,
HEMP or Linux’s default Completely Fair Scheduler (CFS) [6] is
being used in the experiment run.

4.3.1 Homogeneous cores. In Fig. 8, we experimentally validate
the theoretical results which were validated numerically in Sec-
tion 4.2.1. Again the curves experimentally confirm our claims made
in Lemma 5 and Theorem 2 about the convexity of the total power
in the number of active cores for a fixed aggregate workload and a
single core type.

4.3.2 Heterogeneous cores. We now experimentally validate the
numerical results for the heterogeneous setting as described in
Section 4.2.2, with the same incoming workload and scheduling
policy. In Fig. 9, we have plotted the total power aggregated over
all cores as a function of split probability &, as in Fig. 6. We observe
that the experimental curves are close to the theoretical curves,
which validates the claims made in Section 4.2.2.

In Fig. 7 we have plotted the optimal solutions obtained ex-
perimentally and numerically as a function of normalized arrival
rates. Dotted lines are numerical results from continuous settings,
squares correspond to numerical results in discrete settings, and
circles correspond to the experimental results. The experimental
results validate the numerical studies plotted in Fig. 7 described
in Section 4.2.2. We see that the scheduling policy obtained theo-
retically and numerically by HEMP is close to the experimentally
obtained policy, which justifies our policy.

4.3.3  Comparison with Linux frequency governors. Next, we com-
pare HEMP’s performance with Linux frequency governors [7],
namely powersave, performance, and schedutil, wherein HEMP
and Linux governors received identical workload (SPEC-2017 im-
age manipulation) task arrival patterns. For Linux governor exper-
iments, no core pinning or frequency selection was applied, and
the Linux OS’s CFS [6] controlled the scheduling and allocation
of tasks to cores. Both P and E cores were allowed to operate be-
tween 800 —4300MHz under ACPI cpufreq driver control; rest of the
system settings were identical to the CPU characterization setup.
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Figure 9: Aggregate power versus split probability 5.

We note from Fig. 10a and Fig. 10b that performance and schedu-
til are aggressive in selecting higher frequencies at the cost of
higher power while powersave prioritizes energy saving at the cost
of higher sojourn time. HEMP, on the other hand, achieves CPU
power close to powersave, while delivering stable sojourn time close
to the set threshold w at all values of task arrival rate. Energy-delay
product (EDP) [25] is often cited [32, 40] as a combined metric to
quantify the performance-energy trade-off. Fig. 10c plots the EDP
among the schemes compared. HEMP is more efficient than Linux
governors at normalized arrival rate Aporm > 0.25 and achieves up
to 45% reduction at Aporm > 0.45.

Disabling C-states may seem to constrain Linux frequency gover-
nors unfairly by limiting the available optimizations. Therefore, we
repeated the Linux governor experiments after enabling C-states
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from BIOS’. The EDP plots in Fig. 10d for this scenario indicates
that HEMP offers up to 35% reduction in EDP above Aporm = 0.45. It
should be noted that HEMP would similarly benefit from enabling
C-states below Aporm = 0.2 wherein P-cores are unused.

4.3.4 Machine learning workloads (TensorFlow Lite): Comparison
with Linux frequency governors. Finally, we present the comparison
of HEMP with Linux governors for a different workload—the Ten-
sorFlow Lite inference benchmark [4] running the NASNet Mobile
model. CPU characterization with this workload yielded model
parameters similar to Table 2 which were used for numerically
obtaining the optimal thinning probabilities y* across all cores and
the optimal core frequency f™ for active P and E cores. The service
requirement for each task, which is supplied as an input to the
workload generator as the number of runs of NASNet inference
to execute, is computed similar to the image manipulation work-
load 4.2. The sojourn time guarantee w is taken to be 1.3 seconds,
following the same logic as described in Section 4.2.

The plots for measured CPU power, sojourn time, and EDP are
presented in Fig. 11. We note that HEMP is able to provide stable
sojourn time guarantee 1.3s while consuming power closer to pow-
ersave governor. Similarly, HEMP offers 33-80% reduction in EDP
for Anorm € [0.2,0.8]. Even when C-states are enabled for Linux
governor experiments, HEMP offers 30-73% improvement in EDP.

5 CONCLUSION AND FUTURE WORK

We have provided a power and performance model for a computer
system with multi-core CPUs consisting of heterogeneous cores
(HMP) that implement a given instruction set architecture (ISA).
Using this, we analytically find the optimal allocation of the number
of active cores, workload split across all the heterogeneous cores,
and the operating frequency at each core. Due to the convexity of
power functions, the optimal solution for cores of a fixed type is
an equal division of workload among all active cores, with iden-
tical frequency for all. Thus, one only needs to find the optimal
workload split between the core types and the number of active
cores for each type. We conducted experiments on a HMP to find
that the empirically found optimal solution to the static workload
configuration is close to the analytically predicted optimal solution.

"Experiments for HEMP could not be repeated with C-states enabled due to paucity of
time.
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Figure 11: Comparison with Linux frequency governors For TensorFlow Lite workload.

Our system model and corresponding analytical results may
apply with minor enhancements to the ARM big.LITTLE architec-
ture [1], which brings two different processors with similar ISA
together to simulate a single CPU with heterogeneous cores by
allowing only one of these processors to be active at any time. Our
work will also be applicable to future HMPs as long as convexity of
power functions holds true.

There are multiple future research directions. One direction
is to study other possible and more flexible service guarantees
with the potential to increase power savings. Examples include
statistical service guarantees averaged over all tasks, guarantees
on the variance of sojourn times, or on the tail of the sojourn
time distributions. A second direction is the design of randomized
solutions in which frequencies and core counts are modeled as
random variables and the optimal allocation selects probability
mass functions for these. This can eliminate discontinuities due to
the discrete nature of these quantities.

Extensions to support dynamic workloads is another interesting
direction. Workload-dependent splits like joining the core with the
least workload or power-of-d variants of such splits, inclusion of
multiple sleep states with different wake-up times, and on-demand
changes to core frequencies can be considered here. In the absence
of workload models, OS’es use system metrics such as task ready
queue size, cache misses, core utilization, etc., as feedback signals
to make heuristic scheduling decisions [48, 49]. A very interest-
ing direction is to design data-driven adaptive approaches to learn
workload configurations at runtime and adapt the scheduling poli-
cies gracefully to the changing environments.

With the increasing adoption of GPUs in large computing clus-
ters, computing power would be an even more dominant percentage
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of energy consumption. GPU architectures are still evolving and
power and performance measurements are either not available or
not very accurate. Part of our study can be extended to the case of
GPUs.
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A CPUPOWER-SAVING STATES

The ACPI specification [53] defines common vendor-agnostic inter-
faces enabling robust operating system (OS) directed power man-
agement of devices and systems. The ACPI specification defines
a few common system power states as shown in Fig. 12. They are
classified as global (G), sleep (S), and CPU (C) states, numbered
from 0 (no power-saving) in increasing order of power-saving. We
focus on the ‘Gy — Sp: working’ state of the CPU, within which
the CPU can be in one of {Cy,Cy, ..., Cy} states. Contained within
the Cy state are several performance states {Py, ..., P} that define
the voltage and frequency supplied to the CPU. A vendor-specific
CPU architecture (e.g., [5]) determines the number of such states
supported, physical parameters, and the control primitives for these
states. Recent CPUs allow control of the C and P states on a per-core
basis. Some of the C and P states are under the control of the OS
although the CPU hardware/firmware may override them due to
thermal or interrupt servicing considerations.

Global working state Go

change freq/disable

Powel level n

Sleep state Cy

Figure 12: Power states of a working CPU

B CONVEX FUNCTIONS

Lemma 2. [13, Chapter 3.2] Assume that f, g : R — Ry are convex
increasing functions, then we have the following

a) Affine functions in one variable are convex.

b) fg is also convex and increasing.

¢) f(x)+9g(1—x) is also a convex function over the domain [0, 1].

d) f o g is also convex and increasing.

e) af + bg is also convex and increasing for any a, b € Ry.

f) Ifh(x,t) = tf(F), then h : (R+)? = Ry, called the perspec-
tive of f is also a convex function on (Ry)2. Consequently, for
any fixed (x,t) — h(x,t) is convex on R,..

g) Iff : R? — R is jointly convex in both arguments, and C C R
is a convex non-empty set, then g(x) = infyecc f(x,y) isa
convex function.

Proor. Part 2, 2, and 2 can be verified directly. Convexity of
resulting functions in parts 2, 2, 2, and 2 follow directly from [13,
Chapter 3.2]. The fact that the resulting functions are increasing
is immediate for parts 2 and 2, and for part 2 it follows from the
additional assumption of non-negativity. O
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C PROOFS

C.1 Convexity of static and dynamic power

Lemma 3. For any active core n € Ny, the following are convex
increasing functions of frequency f,.

a) The static power Psta(cn, fn),

b) the dynamic power per frequency Payn(cn, fn)/ fn, and

c) the average power consumption Pp(cp, fn, Yn)-
In addition, the average power consumption P, (cp, fy, yn) is affine
and increasing in thinning probability y,.

PRrOOF. Let n be an active core. From Eq. (3) and Eq. (4) for static
and dynamic power respectively, it follows that Psta and Payn/ fn
are convex increasing functions of voltage V},. From Property 1, the
operating voltage V;,(cp, f) at core n is a convex non-decreasing
function of frequency f;.

a) Since Psta (cp, fn) is the composition of Psta (V) and the volt-
age function V,;(cp, fn), the result follows from Lemma 22.
P, dyn (Vn)
—=—= and the

voltage function V;, (cp, fn), the result follows fronm Lemma 22.

¢) From (8) for any active core n, it follows that the average
power consumption P, (cy, fu, yn) at node n is a positive
linear combination of Psta(cp, fn) and den(cn, fn)/ fn. Thus,
it is also convex and increasing from Lemma 22.

b) Since Payn(cn, fn)/ fu is the composition of

From (8) for any active core n, it follows that average power con-
sumption Py, (cp, fn, yn) at node n is affine in y,,, and increasing
from the positivity of the other terms. O

C.2 Proof of Lemma 1

From Eq. (7), it follows that for a fixed thinning probability y,
the mean sojourn time W, at any core n is decreasing function
of frequency f;,. Therefore, we have W,, < w for any frequency
fn = f; (cn, yn). For any core n with non-zero thinning probability
Yn > 0, the average power consumption is an increasing function
of frequency f, from Lemma 3, and hence the result follows.

C.3 Convexity of static and dynamic power
under optimal frequency allocation

Lemma 4. Under Assumption 1, an active core n operating at a
frequency fc, (yn) defined in (12) satisfies the mean sojourn time
constraint w while minimizing the average power consumption for
a given thinning probability yn. The following powers at core n are
convex increasing in the positive thinning probability yy,.

a) The static power Psa(cp, fe, (Yn)),
b) the scaled dynamic power ynPayn (cn, fe, (yn))/ fe, (yn), and
¢) the power consumption Py (cy, yn) at core n defined in (11).

ProOF. Let n be an active core.

Under Assumption 1, it follows from Remark 2, that the optimal
operating frequency f,y (cn, yn) = fc, (yn) for an active core n is an
affine increasing function of positive thinning probability y;,.

a) Since Psta (cn, f (cnyyn)) is the composition of two convex
increasing functions Psta (cn, fn) and f;) (cp, yn), it is convex
increasing in y, from Lemma 22.

b) Since Pyyn(cn, f (¢n, ¥n))/ f (cn, yn) is the composition of
two convex increasing functions Py (cn, fn)/ fn and fy (cn, yn),
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it is convex increasing in y; from Lemma 22. Since yj, is lin-
ear non-negative and increasing, it follows from Lemma 22
that the scaled dynamic power f* Y o) Payn(cn, fn (cn, yn))
is also convex increasing in posmve thinning probability y;,.
c) The average power consumption at core n with a positive

thinning probability y,, > 0 and operating frequency f,; (cn, yn)

NAyn dyn(cn’ fn (cn, yn))
ey, fu (ensyn) ,
is a positive linear combination of two convex increasing

functions of y,, and hence is convex increasing in y, from
Lemma 22.

pn(cns Yn) sta(Cn,fn (Cn, }/n))

C.4 Proof of Theorem 1

We show the result holds when all cores are of performance type. In
this case, Np,1 = [N] and ¢, = p for all active cores n. Further, the
minimum power consumption at core n while meeting the mean
sojourn time guarantee of w is ensured by setting the operating
frequency at f; (p, yn) = fp(yn). The minimum power consumption
at performance core n for a given positive thinning PMF y is written
as

N/ly,, dyn (Ps fp (Yn))

fﬂ()’n)

From the convexity of P, (cy, yn) in ¥, from Lemma 4 for a fixed
cp, we obtain that

Pn(Pa ¥Yn) = Psta(p, J?D(Yn))

I

n:

(p.yn) > meﬂ

This implies that y;, = % for all active performance cores n € [N].
We can repeat the proof when all cores are of efficiency type.

C.5 Joint convexity of aggregate power under
optimal frequency allocation

Lemma 5. Letc € {p, e} be the core type. Consider a fixed number
N of ¢ type cores with a given set of non-sleeping cores N¢ 1 and
continuous operating frequency F.. The minimum aggregate power
that satisfies the mean sojourn time guarantee w at each active core
n € N1 isPe(NA, Ne 1), where P.(NA, x) : Ry xRy — Ry is jointly
convex in NA and x.

Proor. We show the result holds when all cores are of perfor-
mance type. From Theorem 1, the optimal thinning probability for

non-sleeping cores n € Ny 1 is y,, = . Thus, we can write the

N,,
optimal operating frequency for all non-sleeping cores n € Np 1 as

fn(p n)_ (l\]/1 l)

Np1  wl
The minimum aggregate power consumption Pp(NA, Np 1) at all
Np,1 non-sleeping cores can be written as

NP IPsta(p (]Cj,/ll %))

2
+ %)) . (@22)
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We observe that the average power consumption at each active
performance core n € Np 1 is given by

N/lyn Payn (P, frr (P.¥n))
fa (o, vh)

Pn(cns Yn) Psta(P fn (p Yn))

Thus, Pp(NA, Np1) = Npan(cn, 1{}; ) From Lemma 44, it fol-

lows that P, (p, yn) is a convex function of y,. We observe that
Py (NA, Np,1) is the perspective of Pp(p, yn), hence jointly convex
in NA and Np 1 from Lemma 2, part (2). We can repeat the proof
when all cores are of efficiency type. O

C.6 Proof of Theorem 2

We show the result holds when all cores are of performance type. We
observe that Nj, = [N] and the set of sleeping cores are [N] \ Np ;.
We can apply Theorem 1 to active cores Np 1 to obtain the optimal
allocation in (17) for any set of active cores Ny, 1. We can find the
aggregate average power consumption for all N cores

Piot(p, NA,N, Np,1) = Pp(NA, Np1) + (N = Np,1) Pyleep (P)- (23)

We observe that Pyt (p, NA, N, x) is the sum of affine function (N —
x)Psleep (p) and convex function Py (N4, x) for x € Ry. Thus, the
aggregate average power consumption Pyt (p, NA, N, ) : [0, N] —
R is a convex function, and the minima is achieved at some unique
x; € [0, N]. Since the number of cores Np,1 is not a real number, (a)
we can find the ceiling and the floor of the optimal real number x3,
and (b) compare the two power consumptions to find an optimal
number of cores N;’l. This optimal number is unique if the power
consumption at the ceil and the floor of x;, are not identical. We
can repeat the proof when all cores are of efficiency type.

C.7 Proof of Theorem 3

We assume that § = (8p,Je) € M({p,e}) is the thinning PMF
across performance and efficiency cores. This implies that the ag-
gregate arrival rate to Np performance and N, efficiency cores
are NASp and NAS, respectively. For these fixed aggregate arrival
rates, the minimum aggregate average power consumption at per-
formance and efficiency cores are given by Piot(p, NASp, Np) and
Piot(e, NASe, Ne) respectively, as defined in Definition 3.

These power consumptions are achieved at performance and
efficiency cores by letting some of the cores sleep, thinning the
aggregate arrivals equally among all active cores of each type, and
operating all active cores n at an identical frequency for each core
type. Thus, for a fixed splitting §, the minimum aggregate average
power consumption at all N cores is achieved when each core

n operates at frequency f;; (cp, 15::1 ) that minimizes the average
power consumption at each core type while satisfying the mean
sojourn time guarantee w at each active core n. For each core type,
the number of active cores is optimized to minimize this power
consumption.

It suffices to show that there is an optimal split § among the two
core types. From Remark 4, both Pyot (p, NA, Npp) and Pyot (e, NA, Ne)
are convex in NA under Assumption 2, and since &p + de = 1, it
follows from Lemma 22 that the total aggregate power in convex
in §p. Thus, there exists a unique 5;‘, € [0, 1] that minimizes the
aggregate power consumption.
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C.8 Proof of Theorem 4

For a given workload split § € M({p, e}) and denoting the number
of active performance and efficiency cores by xp, x,, we can write
the optimal identical operating frequencies at the two types of
active cores that meet the mean sojourn time guarantee w at each

active core, are
NASp, 1 NASe 1
. ( xp ;)’ fe= e( Xe ;)
From this equatlon, we can write the number of active cores xp, xe
in terms of the operating frequencies fp, fe. Under the theorem
hypothesis of zero sleep powers, workload split §, and operating
frequencies f}, fe, the minimum average power consumption for
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core n of type ¢, € {p, e} can be written as
Psta(cn, fe,) — Psleep(cn)

e, fe, —

Prot(cn, NASc,, Ny, fo) 2 pvzscn(

w

+&m%n%M&mm)

We observe that the optimal operating frequency jj; , [+ at both the
cores is independent of the split  and is defined in Definition 4.
When A < Ag, then we observe that xl*, < Np and x; < N. We
observe that

n}in Prot(p, N/l(sp, Nps f})) + Peot(e, NAbe, Ne, fe)

p:Jp-Je

> néin NA(Spcp, + decy).- (24)

»

The result follows from the fact that the minimum aggregate power
consumption across all cores is a convex combination.



	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Key contributions

	2 System Model
	2.1 Service time and requirement
	2.2 Power consumption
	2.3 Problem formulation

	3 Analytical results
	3.1 Optimal frequency selection
	3.2 Optimal workload splitting

	4 Evaluation
	4.1 CPU characterization
	4.2 Numerical results
	4.3 Experimental validation

	5 Conclusion and Future Work
	Acknowledgments
	References
	A CPU power-saving states
	B Convex Functions
	C Proofs
	C.1 Convexity of static and dynamic power
	C.2 Proof of Lemma 1
	C.3 Convexity of static and dynamic power under optimal frequency allocation
	C.4 
	C.5 Joint convexity of aggregate power under optimal frequency allocation 
	C.6 
	C.7 
	C.8 


