
Fresh Caching of Dynamic Contents using Restless
Multi-armed Bandits

Ankita Koley, Chandramani Singh
Department of Electronic Systems Engineering

Indian Institute of Science
Bangalore 560012, India

Email:{ankitakoley, chandra}iisc.ac.in

Abstract—We consider a dynamic content caching problem
wherein the contents get updated at a central server, and local
copies of a subset of contents are cached at a local cache
associated with a Base station (BS). When a content request
arrives, based on whether the content is in the local cache, the BS
can decide whether to fetch the content from the central server or
serve the cached version from the local cache. Fetching a content
incurs a fixed fetching cost, and serving the cached version
incurs an ageing cost proportional to the age-of-version (AoV)
of the content. The BS has only partial information regarding
AoVs of the contents. We formulate an optimal content fetching
and caching problem to minimize the average cost subject to
cache capacity constraints. The problem suffers from the curse
of dimensionality and is provably hard to solve. We formulate this
problem as a continuous time restless multi-armed bandit process
(RMAB), where a single content problem of the corresponding
RMAB is a partially observable Markov decision process. We
reformulate the single content problem as a semi-Markov decision
process, prove indexability, and provide a Whittle index based
solution to this problem. Finally, we compare the performance
with recent work and show that our proposed policy is optimal
via simulations.

I. INTRODUCTION

Over the past few years, online social networks (OSNs) like
Facebook, Instagram, LinkedIn, and YouTube have become
viral platforms for users to interact, communicate, and share
content over the internet. The increasing popularity has at-
tracted many new users, resulting in a huge volume of content
being shared across these platforms.

The OSNs’ Content Distribution Networks (CDNs) deploy
caches in various geographical locations nearer to the users
along with the central server cache to ensure the timely
delivery of content; for example, the Facebook content dis-
tribution Network (FBCDN) uses several layers of caches
along with backend cache [1]. Along with low latency, caching
reduces the backhaul traffic, reducing congestion, specifically
during peak hours. Depending upon users’ interaction, content
relevance, location, etc., the content dynamics change, for
example, Facebook’s news feed or YouTube’s recommendation
system. As the dynamic contents get updated at the central
server, these need to be replaced at the local cache of the
CDNs. The server holds the most relevant version of the
content for most applications and web pages [2].

This work was supported jointly by Centre for Network Intelligence, Indian
Institute of Science (IISc), a CISCO CSR initiative and Aircel TCoE project
39010C.

The cached contents at the local cache may lose their
relevance to users over time as they get updated at the central
server. Upon receiving a request, whether the local cache will
serve the cached content or fetch a fresh version depends upon
freshness of the content. The freshness of content is measured
by age-of-version (AoV), a metric proposed by Abolhassani et
al. [3]. AoV of content is the number of updates in the central
server since that particular content is being fetched. The AoV
of content depends on the age of the content and the frequency
at which the content gets updated at the central server. Once a
content is cached, it needs to be replaced with newer versions
depending upon the AoV of the content. Otherwise, the content
will become stale, resulting in an aging cost depending upon
the AoV. Conversely, fetching a fresh version of the content
will incur a fetching cost. Hence, designing caching policies
for dynamic contents poses the following challenges:

1) Unknown Content dynamics: Since the contents get up-
dated at the central server, the AoV may not be known
to the local cache unless the content is fetched.

2) Constrained cache capacity: Local cache has smaller
capacity in comparison to the central server. Hence, after
fetching fresh version of the content it needs to decide
whether to cache it or not based on the the cached content
and cache capacity.

3) Dynamic requests: Content requests vary dynamically de-
pending on popularity, location, and many more factors.

Based on these factors, to minimize the cost, caching policies
must carefully decide when to fetch content and whether to
cache the fetched content by replacing one of the cached
contents or discard the one, keeping the cached contents as
they are. We aim to design a caching policy to minimize
the average fetching and ageing costs subject to the caching
constraint. This cost minimization problem falls in the restless
multi-armed bandit process (RMAB) class, where we refer
to each content as an arm. The single content problem of
the corresponding RMAB evolves as a partially observable
Markov decision process (POMDP). We further reformulate
the POMDP as a semi-Markov decision process, retaining all
essential information. Finally, we propose a Whittle index-
based policy to solve the problem.

A. Related Work
Kam et al. [4] present a framework that minimizes the cache

miss rate, considering content requests affected by information

238

2024 IEEE 21st International Conference on Mobile Ad-Hoc and Smart Systems (MASS)

2155-6814/24/$31.00 ©2024 IEEE
DOI 10.1109/MASS62177.2024.00040

20
24

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 M

ob
ile

 A
d-

Ho
c

an
d

Sm
ar

t S
ys

te
m

s (
M

AS
S)

 |
 9

79
-8

-3
50

3-
63

99
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
AS

S6
21

77
.2

02
4.

00
04

0

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

freshness and popularity. However, the assumptions that there
are fewer requests for packets for the content with higher
age and that information freshness depends solely on the age
of the content rather than the number of updates may not
align well with the dynamics of today’s internet. This model
is further generalized by Ahanai et al. [5] introducing utility
functions that depend upon age and the popularity. These Age-
of-information (AoI) driven models overlook the impact on
freshness due to updation of contents at the central server.
Yates [6] introduces version AoI, a very similar metric to
AoV, and studies the minimization of average version AoI in
a gossiping network. Version AoI or AoV is a more suitable
metric to measure freshness as it measures the number of
updates since a fresh version is fetched. However, dealing with
AoV can be challenging for most of the systems as the local
cache may not be aware of the updates at the central server.
Abolhassani et al. [7] pose two optimization frameworks. In
the single-user scenario, the user checks for an update at the
central server, incurring a check cost, and then updates its
cache, resulting in a cache cost. In this case, the user can
store more than one content. In this model, when a request
for cached content comes, the user must serve the version it
currently has and the user fetches only if there is a cache miss.
In the multi-user scenario, each user updates its cache for free
when another user requests the item via broadcast. Each user
has a cache capacity of precisely one, potentially resulting in
multiple copies of the same content.

We consider a more flexible framework similar to [3], i.e.,
when a request for cached content comes, the local cache can
serve the version it has or request a fresh version from the
server. Furthermore, in our model, the local cache does not
employ a cache check; hence, it does not know when it gets
updated at the server. As mentioned in [3], this problem falls
under the scope of a partially observable Markov decision
process (POMDP) average cost problem, hard to solve. Hence,
the hard cache constraint has been replaced with a probabilistic
constraint to solve the problem. Further, a more flexible choice
of average cache capacity constraint has been considered to
satisfy the probabilistic constraint. Their solution suggests that
it is enough to cache most popular items.

In a recent work, Abolhassani et al. [8] consider a combined
push and pull based caching policy, where in push based policy
the central server takes the decision to update the content in the
local cache, exploiting the knowledge of exact number updates
of a content and in pull based caching policy the decisions
are taken at the local cache exploiting the exact knowledge of
request arrival. Under the assumption that once a content is
stored in the local cache, it will never be discarded; push based
caching policy is applied on a subset of the cached contents
and pull based caching is applied for the other contents. They
show that the push and pull based caching is optimal for the
cached contents. However, for the uncached content, whenever
there is a request there will be constant fetching cost every
time. Hence, this problem needs further investigation on how
to apply a push based caching when there is a provision to
discard the content. However, in our work we relax the above
constraint, i.e., a cached content can be discarded followed by

storing a new content and focus on pull based caching, i.e.,
the local cache takes the caching decisions.

In another recent work, Abolhassani et al. [9] consider a
pull based caching framework with average cache constraint
and study a model based and model free learning. The solution
based on average cache constraint is not practical, since the
actual cache capacity might be exceeded while implementing
the caching policy. In comparison with [3] where the authors
consider dynamic caching problem with a probabilistic con-
straint, our work focuses on developing an efficient approach
to resolving the dynamic caching problem subject to a hard
cache constraint.

B. Our Contribution

1) We pose an optimal content fetching and caching problem
to minimize the time average cost subject to local cache
capacity constraints. This problem falls under the scope
of continuous time restless multi-armed bandit process
(RMAB), where the single content problem evolves as a
POMDP.

2) We reformulate the single content POMDP as a semi-
Markov decision process and establish the indexability for
each content. We further obtain a closed form expressions
of the Whittle indices and propose the Whittle index
based policy to solve the multi-content problem.

3) We implement the proposed Whittle index-based policy
via simulations and show that the Whittle Index based
policy outperforms the policy proposed by Abolhassani
et al. [3, Theorem 2]. We also show that the Whittle index
based policy offers the same performance as the optimal
policy.

II. SYSTEM MODEL

Let us consider a communication network with a central
server, a Base Station (BS) associated with a local cache and
an end user population. The central server hosts N dynamic
contents which are requested by the end users. The BS is
connected to the central server via a wired network. It can
fetch and store up to M contents in the local cache and can
locally serve these to the users upon request (Figure 1).

Content dynamics: All the N contents are updated ac-
cording to independent Poisson processes with λn being the
update rate of the nth content. The central server always hosts
the latest version of the contents. Setting λn = 0 for all n
yields the special case of static contents.

Request dynamics: The aggregate request process of the
end users is a Poisson process with rate β. Each request could
be for the nth content with probability pn independently of
the other requests. Here, pn, 1 ≤ n ≤ N denote the relative
popularity of the contents and

∑
n pn = 1. For instance,

the popularity of the contents on Web is widely modelled
using Zipf’s distribution wherein pn ∝ 1/nα for the nth most
popular content [10]. Under the proposed request dynamics,
nth content’s request rate is a Poisson process with rate pnβ.
Let C(t) ⊂ {1, · · · , N} denote the set of locally cached
contents at time t. A subset of the cached contents could
be updated at the central server once or multiple times since

239

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Fresh caching of dynamic content

they were last fetched. Let νn(t) ≥ 0 be the number of times
Content n ∈ C(t) has been updated since it was last fetched
until time t.1 We refer to νn(t) as the age-of-version (AoV) of
Content n at time t. Note that the AoVs of the cached contents
are not observable at the BS.

Content fetching and ageing costs:: If a content, say
Content n, is requested at time t, one of the following
scenarios may occur.
(a) Content n is found at the local cache. In this case, the

cached copy can be served. However, the users detest
receiving stale versions of the contents which is captured
via ageing costs. We assume that serving a cached content
incurs an ageing cost caνn(t) where ca is the ageing cost
per update. Alternatively, the latest version of Content n
can be fetched and served, incurring a constant fetching
cost cf . The newly fetched copy replaces the existing one
in the cache.

(b) Content n is not found at the local cache. It is then fetched
at cost cf and served. The fetched content either can
replace an exiting content in the cache or can be discarded
after serving.

Let A(T) denote the total number of requests until time T .
Let tk ≥ 0 and ek ∈ {1, · · · , N} denote the kth request epoch
and identity of the requested content at tk, respectively. The
BS does not have access to the information about the updates
happening in the central server. However, the BS knows the
rate (λn) at which the contents are getting updated. Further, let
ank denote the action at tk vis a vis Content n ∈ C(tk)∪{ek};
ank ∈ {0, 1} if n ∈ {ek} ∩ C(tk), ank ∈ {1, 3} if n ∈ {ek} \
C(tk), and ank ∈ {0, 2} otherwise. Hence, we define the acion

TABLE I: Annotations of the actions

Actions Contents Annotations
0 n ∈ C(tk) ∩ {ek} serve the cached copy and keep

n ∈ C(tk) \ {ek} keep
1 n = ek fetch, serve and cache
2 n ∈ C(tk) \ {ek} discard
3 n = ek fetch, serve and discard

set as A := {a ∈ {0, 1, 2, 3}N :
∑N

n=1 1{an∈{0,1}} = M}

1We use the phrases “nth content” and “Content n” interchangeably.

A. The Optimal Content Fetching and Caching Problem

The optimal content fetching and caching problem taking
actions that minimize the time average content fetching and
ageing costs subject to local cache capacity constraints. It can
be expressed more precisely as

inf
π∈Π

lim
T→∞

1

T
Eπ

A(T)∑
k=1

(
1{aek

k =0}caνek(tk)+1{aek
k ∈{1,3}}cf

)
(1)

s. t.
N∑

n=1

1{an
k∈{0,1}} = M, ∀k ≥ 1 (2)

where Π is a set of feasible policy.
Discussion: The optimal content fetching and caching

problem (1) is a Markov decision process (MDP) with an
exponential state space and action space in M + 1. One can
solve this problem using dynamic programming by restricting
the states to be finite, but the solution suffers from the curse of
dimensionality. However, the MDP in (1) falls in the class of
continuous time restless multi-armed bandit process (RMAB)
and Whittle index policy [11] is a good heuristic solution to
RMAB problems.

Whittle Index Policy: We consider the following relaxed
constraint instead of the hard constraint (2):

lim
T→∞

1

βT
Eπ

A(T)∑
k

N∑
n=1

1{an
k∈{0,1}}

 = M (3)

Hence, we can write the Lagrangian of the problem (1) subject
to the relaxed constraint (3) with multiplier Ch as follows:

lim
T→∞

1

T
Eπ

A(T)∑
k=1

(
1{aek

k =0}caνek(tk) + 1{aek
k ∈{1,3}}cf

)
+ Ch

 lim
T→∞

1

βT
Eπ

A(T)∑
k

N∑
n=1

1{an
k∈{0,1}}

−M


=

N∑
n=1

lim
T→∞

1

T
Eπ

A(T)∑
k

(
1{an

k=0}caνn(tk)+1{an
k∈{1,3}}cf

)
1{ek=n} +

Ch

β
1{an

k∈{0,1}}

]
− ChM

=
N∑

n=1

V n
π (Ch)− ChM (4)

where V n
π (Ch) is the expected average cost of Content n

under policy π where a holding cost of Ch per unit time
is incurred for taking action 0 or 1, i.e., keeping or caching
the Content n, respectively. The above problem (4) can be
decoupled into n single content problems except the common
cost part, ChM which is independent of the policy π. We
define V

πn(Ch)
n := infπ∈Π V n

π (Ch) to be the value of the
single content problem, V n

π (Ch) under the optimal policy
πn(Ch). Let the optimal solution to the relaxed problem (4)
be V̄ = maxCh

(
∑N

n=1 V
πn(Ch)
n − ChM). If all the contents

240

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

are indexable the Whittle index policy computes the Whittle
indices for each content and choose M contents to cache
having highest indices. We formally define indexability of a
content and Whittle index policy formally in sections III-A
and IV, respectively. Indexability of a content is a property
that holds if the optimal action of the single content problem
/∈ {0, 1}, i.e., not to keep or cache the content for a given
holding cost Ch, then it is not optimal to hold that content for
a higher holding cost, C ′

h > Ch. Whittle index for a content is
the minimum value of Ch for which it is equally attractive to
keep or discard the Content n. We further denote V̂ and VW to
be the value of the optimal policy and the Whittle index policy
of the original problem, i.e, (1) under the hard constraint (2).
Then, it is easy to show that V̄ ≤ V̂ ≤ VW [12]. According to
Whittle’s conjecture [11] as the number of contents, N grows
to infinity and the buffer size, M also increases proportionally
with N , the value under Whittle index policy approaches to
the value of the optimal policy of the relaxed problem, i.e.,
the optimal content fetching and caching problem (1) subject
to (3).
We note that for Ch < 0 the optimal policy for the single
content problem is to keep, i.e., {0, 1}. More precisely, when
the requested content is not in the cache, the optimal action is
1 for the requested content’s single content problem and the
optimal action is 0 for other contents’ single content problems.
Hence, similar to [13], we will also consider Ch ≥ 0 for our
analysis. Going forward we will consider the single content
problem for Ch ≥ 0. We first show that the single content
problem is indexable and then we compute the Whittle indices
for each content.

Remark 1: Abolhassani et al. [3] provides an optimal
solution by replacing (2) with a probabilistic constraint, i.e.,
the steady state fraction of time the items are held in the cache
does not exceed the cache capacity with high probability. To
satisfy the probabilistic constraint, the authors further consider
an average cache constraint and using KKT conditions they
provide an optimal solution, i.e., which items to cache and for
how long these should be cached. However, the constraint on
average cache occupancy, M̃ = Me−v , where v ∈ N and v
satisfy the equation in Proposition 1 of [3] to ensure that the
probabilistic constraint is satisfied. The caching strategy is to
cache most popular items and hold them for the times given
by the solution of while the average cache occupancy is M̃ to
ensure that that number of popular items does not exceed the
actual cache capacity. The caching strategy does not cache the
unpopular items at all even if the cache is not full, for each
request of these unpopular items, a cost of cf incurs. This leads
to under utilizing the cache capacity that further increases
the average cost. However, Whittle index policy utilizes the
full cache capacity and we demonstrate in section V that
it performs better than the solution provided by the authors
in [3]. Moreover, we also show that the cost obtained by the
Whittle index policy is very close to the optimal value of the
relaxed problem, i.e., the optimal content fetching and caching
problem (1) subject to (3). This implies that the Whittle index
policy offers almost the same performance as the optimal
policy for the optimal content fetching and caching problem

with hard cache constraints.

III. SINGLE CONTENT PROBLEM

In this section, we discuss the single content problem with
holding cost. Let Ch ≥ 0 be the holding cost of a content per
unit of time. At each epoch tk there is a request for the content
with probability p. Let A(T) be the number of decision epoch
until time T . If there is a request for the content at epoch k
and the content is in the cache then the following actions can
be taken:
(a) serve the cached copy and keep
(b) fetch serve and cache
(c) fetch serve and discard
(d) serve the cached copy and discard.
Recall that from the Table I the first three actions (a), (b) and
(c) are 0, 1 and 3, respectively. We denote the last action (d)
to be 2. We note that we did not include the action, serve
the cached copy and discard in action 2 of the multi content
problem (1) with the constraint on the cache capacity (2) in
section II-A. In the multi content problem there is no cost
associated with keeping or caching a content in the cache,
hence including the action, serve the cached copy and discard
in action 2 does not change the optimal solution and policy of
the problem. We aim to minimize the following average cost
for single content:

lim
T→∞

1

T
E
[A(T)∑

k=1

1{ak∈{0,2}}caν(tk) + 1{ak∈{1,3}}cf

+ 1{ak∈{0,1}}(tk+1 − tk)Ch

]
(5)

Instead of considering the (5) we can consider the following
equivalent objective [14] for minimization:

inf lim
T→∞

1

E[A(T)]
E
[A(T)∑

k=1

1{ak∈{0,2}}caν(tk)+1{ak∈{1,3}}cf

+ 1{ak∈{0,1}}(tk+1 − tk)Ch

]
(6)

The above minimization problem is a partially observed
Markov decision process (POMDP) where the AoV at epoch
k, v(tk) of the content can be observed only when the
content is fetched from the central server. However, the
average ageing cost at epoch k can be captured via the time
elapsed since it was last fetched. We denote this quantity
as τk := tk − max{tl : l < k : al = 1}. The expected
AoV at epoch k, E[ν(tk)] = λτk. Hence, we reformulate the
above POMDP problem as a semi-Markov decision process
considering τk instead of v(tk) as a part of the state. Let bk and
yk be two indicator variables for the content. In each request
epoch k, if there is a request for the content , then bk = 1 and
0, otherwise. Similarly, if the content is found in the cache,
then yk = 1 and 0, otherwise. We denote , sk = (τk, yk, bk)
if yk = 1 and sk = (yk, bk) if yk = 0. Hence, the state
space, S := {(τ, 1, 1), (τ, 1, 0), (0, 1), (0, 0), τ ≥ 0}. The state
at time t are constant in between two consecutive epochs for
tk ≤ t < tk+1. The time interval between kth and (k + 1)th

241

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

request epoch is exponentially distributed with parameter β.
Given, sk = (τ, 1, b), in the (k + 1)th epoch the states are
updated as follows:

sk+1 =


(τ +∆τ, 1, b′), if ak = 0

(∆τ, 1, b′), if ak = 1

(0, b′), if ak ∈ {2, 3}
(7)

where ∆τ ∼ exp (β) and b′ ∼ Bernoulli(p). Recall from
Table I that action 1 is applicable only when the state is
(τ, 1, 1). Given, sk = (0, 1), in the (k+ 1)th epoch the states
are updated as follows:

sk+1 =

{
(∆τ, 1, b′), if ak = 1

(0, b′), if ak = 3
(8)

Recall from Table I that action 0 and 2 are not applicable
when the state is (0, 1) and no action is taken when the
state is (0, 0). Given, sk = (0, 0), sk+1 will be (0, b′). The
expected single stage cost of each content is given c(s, a) =
caλτ1{a∈{0,2}}+cf1{a∈{1,3}}+

Ch

β 1{a∈{0,1}}, if s=(τ, 1, 1)

cf1{a∈{1,3}} +
Ch

β 1{a=1}, if s = (0, 1)
Ch

β 1{a=0}, if s = (τ, 1, 0)

0, if s = (0, 0)
Hence, the cost function under an admissible policy π =

{µ0, µ1, . . . } and is

Jπ(s)= lim
T→∞

1

Eπ[A(T)]
Eπ

A(T)∑
k=1

c(sk, ak)|s0 = s

 (9)

J∗(s)= inf
π∈Π

lim
T→∞

1

Eπ[A(T)]
Eπ

A(T)∑
k=1

c(sk, ak)|s0=s

 (10)

where ak = µk(sk) and J∗(s) is the solution under optimal
policy. It can be shown from [14] that Jπ(s) and J∗(s) are
independent of s since the embedded discrete time Markov
chains of the problems (9) and (10) have single recurrent
classes. Moreover, Bellman’s equation for the semi-Markov
problem is similar to the discrete-time problems [14, Chap-
ter 5, Section 5.3]. Suppose, h(s) and θ are the relative value
function of state s and optimal value, respectively. Let us
denote Lr(τ) =

∫∞
r

βe−βt(ph(t + τ, 1, 1) + (1 − p)h(t +
τ, 1, 0))dt. Then Bellman’s equations from each state are as
follows [14, Chapter 5, Section 5.3]:

h(τ, 1, 1) = min

{
caλτ +

Ch − θ

β
+ L0(τ), cf +

Ch − θ

β

+L0(0), caλτ − θ

β
+ ph(0, 1) + (1− p)h(0, 0),

cf − θ

β
+ ph(0, 1) + (1− p)h(0, 0)

}
(11)

h(τ, 1, 0)=min

{
Ch − θ

β
+L0(τ),

− θ

β
+ph(0, 1)+(1− p)h(0, 0)

}
(12)

h(0, 1)=min

{
cf +

Ch − θ

β
+ L0(0),

cf − θ

β
+ ph(0, 1) + (1− p)h(0, 0)

}
(13)

h(0, 0) = − θ

β
+ ph(0, 1) + (1− p)h(0, 0)

=⇒ h(0, 0) = − θ

pβ
+ h(0, 1) (14)

Using (14) we can rewrite the equations for h(0, 1), h(τ, 1, 0)
and h(τ, 1, 1) as follows:

h(τ, 1, 1) = min

{
caλτ +

Ch − θ

β
+ L0(τ),

cf +
Ch − θ

β
+ L0(0), caλτ + h(0, 0), cf + h(0, 0)

}
(15)

h(τ, 1, 0) = min

{
Ch − θ

β
+ L0(τ), h(0, 0)

}
(16)

h(0, 1) = min

{
cf +

Ch − θ

β
+ L0(0), cf + h(0, 0)

}
(17)

Lemma 1:
(a) Both h(τ, 1, 1) and h(τ, 1, 0) are non-decreasing in τ .
(b) For a given r ≥ 0, Lr(τ) is non-decreasing in τ .

Proof:
(a) We use induction to prove the claim. The detailed proof

can be found in our technical report [15, Appendix A].
(b) Since h(τ, 1, 1) and h(τ, 1, 0) are non-decreasing in τ ,

the integrand in Lr(τ) is also non-decreasing in τ . Hence
Lr(τ) is non-decreasing in τ .

Theorem 2: The optimal policy π∗ depends on the holding
cost Ch and is is as shown in Table II, where I = pβcf −

pcaλ(1 − e−βτ0

), τ0 =
cf
caλ

, τ∗ = − 1
pβ +

√(
1
pβ

)2

+
2cf

pβcaλ

and (τ̄ , τ̃) are the solutions to the following two equations:

caλpβ(τ̃ τ̄ − τ̄2

2
)− Chτ̄ + caλτ̃ − cf = 0 (18)

β(τ̃ − τ̄) + e−β(τ̃−τ̄) − 1− Ch

pcaλ
= 0 (19)

Additionally, 0 ≤ τ̄ < τ∗ < τ̃ ≤ τ0.

TABLE II: State-wise optimal actions for different values of
Ch

Holding Optimal policy (π∗) Optimal
cost (Ch) π∗ (τ, 1, 1) π∗ (τ, 1, 0) π∗ (0, 1) cost (θ)
Ch = 0 0 for τ ≤ τ∗ 0 1 pβcaλτ∗

1 for τ > τ∗

0 < Ch < I 0 for τ ≤ τ̄ 0 for τ ≤ τ̄ 1 pβcaλτ̃
2 for τ̄ ≤ τ ≤ τ̃ 2 for τ > τ̄

1 for τ > τ̃
Ch > I 2 for τ ≤ τ0 2 3 pβcf

3 for τ > τ0

Remark 2: Theorem 2 establishes that the optimal policy for
the single user problem is of threshold type for a given value
of Ch where the threshold is on the time elapsed since a fresh
version of the content is fetched (τ). Moreover, it provides
the closed forms of thresholds for different values of Ch in
Table II.

242

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

Proof: We outline the proof of this theorem here, the
detailed proof can be found in our technical report [15,
Appendix B].
(a) We consider three disjoint cases conditioned on the values

of h(τ, 1, 1) and h(τ, 1, 0) as follows:
I. Ch−θ

β + L0(0) ≥ h(0, 0).
II. Since h(τ, 1, 1) and h(τ, 1, 0) are non-

decreasing in τ , the complement of
case 1 is there exists a τ̄ > 0 such that
τ̄ = min

{
τ > 0 : Ch−θ

β + L0(τ) ≥ h(0, 0)
}

.
Since L0(τ) is non-decreasing in τ , caλτ + L0(τ)
is strictly increasing in τ . Since, cf + L0(0)
is a constant and caλτ + L0(τ) < cf + L0(0)
at τ = 0, there exists a τ∗ > 0 such
that caλτ

∗ + L0(τ
∗) = cf + L0(0). Hence,

τ∗ = min {τ ≥ 0 : caλτ + L0(τ) = cf + L0(0)}.
There could be two cases τ∗ ≤ τ̄ or τ∗ ≥ τ̄ . We
consider τ∗ ≤ τ̄ in this case and τ∗ > τ̄ in the
subsequent case.

III. There exists a τ̄ > 0 such that τ̄ =
min

{
τ > 0 : Ch−θ

β + L0(τ) ≥ h(0, 0)
}

and τ∗ >

τ̄ . In this case, for τ ≤ τ̄ , Caλτ +
Ch−θ

β +L0(τ) ≤
Caλτ + h(0, 0) and τ = τ̄ ,

Caλτ +
Ch − θ

β
+ L0(τ) = Caλτ + h(0, 0) (20)

Since L0(τ) is non-decreasing in τ , both R.H.S
and L.H.S in (20) are increasing in τ . The slope
of R.H.S is Caλ and the slope of L.H.S is at least
Caλ, i.e., the slope of L.H.S is greater than or equal
to that of R.H.S. Since at τ∗, the L.H.S exceeds
cf + Ch−θ

β + L0(0), it is obvious that there exists a
τ̃ ≥ τ∗ such that, R.H.S exceeds cf + Ch−θ

β +L0(0).
This implies that there exists a τ̃ > τ̄ such that τ̃ =

min
{
τ > τ̄ : caλτ + h(0, 0) = cf + Ch−θ

β + L0(0)
}
.

Now, we will show that suppose ∃ a τ̃ as above, then
τ∗ > τ̄ . Since at τ̃ R.H.S exceeds cf+ Ch−θ

β +L0(0)
and slope of R.H.S is no more than the L.H.S, the
L.H.S exceeds cf + Ch−θ

β + L0(0) at a value of τ
no more than τ̄ . Hence, τ∗ > τ̄ . Hence, we consider
the last case as follows: there exists τ̄ > 0 such that
τ̄ = min

{
τ > 0 : Ch−θ

β + L0(τ) ≥ h(0, 0)
}

and there exists a τ̃ > τ̄ such that τ̃ =
min

{
τ > τ̄ : caλτ + h(0, 0) = cf + Ch−θ

β + L0(0)
}
.

(b) We derive the optimal actions in each of the cases. Fur-
thermore, we show that Case I holds iff Ch > I , Case II
holds iff Ch = 0, and Case III holds iff 0 < Ch ≤ I .
This also implies that the above mentioned three cases
are mutually exclusive and exhaustive.

(c) Recall τ0 =
cf
caλ

theorem 2. Hence, from case III. caλτ0+
h(0, 0) = cf + h(0, 0) ≥ cf + Ch−θ

β + L0(0). Hence, by
the definition of τ̃ , τ̃ ≤ τ0. Hence, from the Lemma 3
τ̄ ≤ τ∗ ≤ τ̃ ≤ τ0.

Lemma 3:

(a) s = (τ, 1, 1) (b) s = (τ, 1, 0)

Fig. 2: Optimal policy structure with respect to Ch for the state
(τ, 1, 1) and (τ, 1, 0) where τ∗, τ0 and I are as in Theorem 2.

1) (19) and (18) are satisfied for unique non-negative values
of τ̃ and τ̄ .

2) τ̄ and τ̃ are decreasing and increasing function of Ch, for
0 < Ch ≤ I respectively. Furthermore, τ̄ ≤ τ∗ ≤ τ̃ .
Proof: See Proof of Lemma 3 in our technical report [15,

Appendix E].

Remark 3: In Figures 2a and 2b, we plot the threshold values
of τ as we vary Ch and indicate various regions depending
upon optimal actions for the states {(τ, 1, 1) : τ ≥ 0} and
{(τ, 1, 0) : τ ≥ 0}, respectively. We describe the actions for
different states as follows:
(a) When the state of the content is (τ, 1, 1), given Ch = 0,

the optimal action is to serve the cached version and keep
for τ ≤ τ∗ and fetch, serve, and keep for τ > τ∗. For 0 <
Ch < I , the optimal action is to serve the cached version
and keep for τ ≤ τ̄ , serve the cached version and discard
for τ̄ < τ ≤ τ̃ , and fetch, serve and cache for τ > τ̃ . For
Ch ≥ I , the optimal action is to serve the cached version
and discard for τ ≤ τ0, and fetch, serve, and cache for
τ > τ0. We observe in Figure 2a that the area region
where the optimal action to serve the cached version and
discard increases as Ch increases and becomes constant
after Ch exceeds I . Furthermore, the region where the
optimal action is to discard, i.e., {2, 3}, expands as Ch

increases from 0 to I , and the region extends to infinity
after Ch exceeds I .

(b) When the state of the content is (τ, 1, 0), given Ch = 0,
keep for regardless of the value of τ . For 0 < Ch < I ,
the optimal action is to keep for τ ≤ τ̄ and discard for
τ > τ̄ . For Ch ≥ I , the optimal action is to discard for
any value of τ . We observe in Figure 2b as we increase
Ch, the area of the region where the optimal action is to
discard expands and extends t infinity as Ch exceeds I .

(c) When the state of the content is (0, 1), the optimal action
is to fetch and fetch serve and discard for Ch < I and
Ch ≥ I , respectively.

In the next section, we establish indexability of the single
content problem.

A. Indexability
In this section first we show that the single content MDP

is indexable and then we compute the Whittle index for each

243

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

content n ∈ C(tk)∪ek. The passive set under the holding cost
Ch is given by the states for which it is optimal to discard the
content and more precisely: P(Ch) := {s : π∗(s) ∈ {2, 3}}.
Definition of Indexability: A content is indexable if the passive
set of that content satisfies the following conditions [16]:
(a) P(0) = ∅ and P(∞) = S
(b) P(Ch1

) ⊆ P(Ch2
) for Ch1

≤ Ch2

The corresponding RMAB is indexable if the single content
MDP is indexable.

Theorem 4: The single content MDP is indexable.
Proof: Recall from Table II if Ch = 0, the optimal action

π∗(s) ∈ {0, 1} ∀ s, i.e., it is optimal to keep the content for
any state. Hence, P(0) = ∅.
If Ch ≥ I , then the optimal action π∗(s) ∈ {2, 3} ∀ s, i.e., it is
optimal discard the content for any state. Hence, P(Ch) = S
for and Ch ≥ I and moreover P(∞) = S. Hence, for Ch ≥ I ,
P(Ch1) = P(Ch2). It is remaining to show that P(Ch1) ⊆
P(Ch2) for 0 < Ch1 ≤ Ch2 < I . Recall, from Lemma 3
that (τ̄Ch

, τ̃Ch
) are the unique solutions to the following two

equations:

1. caλpβ(τ̃Ch
τ̄Ch

−
τ̄2
Ch

2)− Chτ̄Ch
+ caλτ̃Ch

− cf = 0

2. β(τ̃Ch
− τ̄Ch

) + e−β(τ̃Ch
−τ̄Ch

) − 1− Ch

pcaλ
= 0

Furthermore, from Lemma 3 τ̃ and τ̄ increases and decreases,
respectively as we increase Ch . Hence, for 0 < Ch1 ≤ Ch2 <
I , we note that τ̄Ch2

≤ τ̄Ch1
< τ̃Ch1

≤ τ̃Ch2
. The passive

sets corresponding to Ch1 and Ch1 are P(Ch1) = {(τ, 1, 1) :
τ̄Ch1

≤ τ ≤ τ̃Ch1
} ∪ {(τ ′, 1, 0) : τ ′ ≥ τ̄Ch1

} ∪ {(0, 0)} and
P(Ch2) = {(τ, 1, 1) : τ̄Ch2

≤ τ ≤ τ̃Ch2
} ∪ {(τ ′, 1, 0) : τ ′ ≥

τ̄Ch2
} ∪ {(0, 0)}, respectively. Hence, P(Ch1) ⊆ P(Ch2) for

Ch1 ≤ Ch2 .
In the following we consider the Multi-content problem and
obtain the Whittle indices for each content. Finally, we propose
a Whittle index based policy as a solution to the problem (1)
subject to (2).

IV. WHITTLE INDEX POLICY FOR MULTI-CONTENT
PROBLEM

If a content is indexable, its Whittle index W (s) associated
with state s is the minimum cost that moves this state from the
active set to the passive set. Equivalently, W (s) = min{Ch :
s ∈ P(Ch)}.
We already mentioned in Section III-A that the single content
MDP is indexable and hence the RMAB is also indexable. We
obtained the closed form solution of the Whittle index for the
contents n ∈ C(tk)∪{ek}. The Content n ∈ C(tk)∪{ek} can
be in the following states as follows:

sn(tk) =


(τnk , 1, 1), if n ∈ C(tk) ∩ {ek}
(τnk , 1, 0) if n ∈ C(tk) \ {ek}
(0, 1) if n ∈ {ek} \ C(tk)

(21)

The Whittle index policy computes the indices for the contents
in C(tk) ∪ ek and keep M contents in the cache having
highest indices. As discussed in Section II one of the following
scenarios may occur.
(a) Suppose, the requested content is in the cache, i.e., ek ∈

C(tk). We note that |ek∪C(tk)| = M and cache size is M ,

no content needs to discarded. Hence, there are no need
to to compute the Whittle indices for each content. In this
case the optimal action π∗(sk) ∈ {0, 1} for Content ek
and for other contents C(tk) \ ek, the optimal action is 0.
Finally, from Table II, we consider the following actions
for Content ek:
(a) 0 or serve the cached copy if τ ≤ τek∗

(b) 1 or fetch and cache if τ > τek∗

where τek∗ = − 1
pek

β +
√

(1
pek

β)
2 +

2cf
pek

βcaλek
. Since,

we do not discard any content in this case and Content
ek is in state (τekk , 1, 1), we consider the first case in
Table II, where the optimal action is not to discard for
state (τekk , 1, 1).

(b) Let us consider the case when the requested content is not
in the cache, i.e., ek /∈ C(tk). It is then fetched at cost cf
and served. We observe that, |C(tk)∪ek| = M+1. Among
M + 1 contents, one content need to be discarded. The
fetched content either can replace an existing content in
the cache or can be discarded after serving. We calculate
the Whittle indices for each content in C(tk) ∪ ek and
discard the content having least Whittle index. Content n
is in state (τnk , 1, 0) if n ∈ C(tk)\ek and (0, 1) if n = ek.
Let us denote Wn(s) as Whittle index for content n at
state s. Then,
Theorem 5: For n ∈ C(tk) \ ek,

Wn((τ, 1, 0)) =

{
Ch(τ) if τ < τn∗

0, if τ ≥ τn∗
(22)

Where (Ch(τ), τ̃(τ)) be the unique solution to the follow-
ing to equations:

caλnpnβ(τ̃ τ − τ2

2
)− Chτ + caλnτ̃ − cf = 0 (23)

β(τ̃ − τ) + e−β(τ̃−τ) − 1− Ch

pncaλn
= 0 (24)

and Wek((0, 1)) = Iek = pekβcf − pekcaλek(1 −

e
−

βcf
caλek).

Proof: Suppose, the state of Content n is (τ, 1, 0).
Then the Whittle index will be minimum Ch for which
π∗(τ, 1, 0) = 2. From Table II, we note that the optimal
action is 2 for some Ch ∈ (0, In], where In = pnβcf −
pncaλn(1− e−

βcf
caλn). From Theorem 2, the Whittle index

will be min {Ch : Ch satisfies (23) and (24)}. We note
that (23) and (24) are same as (18) and (19), respectively
except p being replaced by pn and λ being replaced by
λn. From Lemma 3, we note that there is an unique value
of Ch for which (23) and (24) are satisfied. Hence, we
obtain the Whittle indices for contents in C(tk) \ ek. The
content ek has state (0, 1). We note that from Table II,
for Ch < Iek , the optimal action is 1 or fetch, serve and
cache and for Ch ≥ Iek , the optimal action is 3 or fetch,
serve and discard. Hence the Whittle index for ek is Iek .

We propose the Algorithm 1 based on Whittle Index as a
solution to the problem (1).

244

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Whittle Index-based Caching for Freshness

1: Initialization: Start with a random cache and random
vector {τnk : n ∈ N}

2: procedure CACHING()
3: for all request epoch do
4: if the requested content is found in the cache, i.e.,

ek ∈ C(tk) then
5: do not discard any content
6: if τekk exceeds the threshold, τek∗k then
7: fetch and cache the requested content
8: else
9: serve and keep

10: end if
11: else
12: fetch the requested content
13: for all contents in the cache and requested

content do
14: calculate Whittle indices
15: end for
16: Discard the content having the least Whittle

index
17: end if
18: end for
19: end procedure

A. Whittle Index Policy for Multi-content having Different
Sizes

In this section we consider a more general problem where
the contents can be of different sizes. Let dn be the size of
content n. Then the fetching cost of item n is cfdn, where
cf is the fetching cost of an item of unit size. We reformulate
the optimal caching problem (1) as follows:

inf
π∈Π

lim
T→∞

1

T
Eπ

A(T)∑
k=1

1{aek
k =0}caνek(tk)+1{aek

k ∈{1,3}}cfdek


s. t.

N∑
n=1

dn1{an
k∈{0,1}} ≤ M, ∀k ≥ 1 (25)

Using similar computations as (3), (5)and (6) we can write the
single content problem as:

inf lim
T→∞

1

E[A(T)]
E
[A(T)∑

k=1

1{ak∈{0,2}}caν(tk)+1{ak∈{1,3}}dcf

+ 1{ak∈{0,1}}(tk+1 − tk)dCh

]
(26)

where d replaces dn in (25). For the single content problem
also we can obtain similar result as Theorem 2 where Ch is
replaced by dCh and cf is replaced by dcf and prove that
the single content MDP is indexable. For the multi-content
problem the policy would be as follows:
(a) Suppose, the requested content is found in the cache, i.e.,

ek ∈ C(tk). Then we consider the following actions for
Content ek:

(a) 0 or serve the cached copy if τ ≤ τek∗1

(b) 1 or fetch and cache if τ > τek∗1

where τek∗1 = − 1
pek

β +
√
(1
pek

β)
2 +

2cfdek

pek
βcaλek

. We ob-
serve that τek∗1 has the same expression as τek∗ in Algo-
rithm 1 except cf is replaced by cfdek .

(b) Suppose, the requested content is not found in the cache,
i.e., ek /∈ C(tk). Then, we compute the Whittle indices of
M+1 contents and choose a number of top contents until
the constraint (25) is violated [17].

V. PERFORMANCE ANALYSIS

In this section, we study the performance of the Whittle
Index based policy. We consider the number of contents, N =
1000, and study the impact on average cost as we increase
the cache size from 40 to 100 under the following settings
[3], [18]: The popularity of the content n be pn = 1

n , the
fetching cost and the aging cost are cf = 1 and ca = 0.1,
respectively, and the arrival rate, β = 5.

A. Comparison

The update rate of the content n at the central server is
λn = λ = 0.01. We implement the the proposed Whittle
index based policy and plot the average cost for different
cache sizes. Figure 3 shows that the Whittle Index based
policy outperforms the policy proposed by Abolhassani et
al. [3, Theorem 2]. We numerically compute the average cost
of the relaxed RMAB problem using Table II. Furthermore,
the average cost under the Whittle index policy is almost
same as the optimal cost of the relaxed RMAB problem. As
we mentioned earlier the optimal cost of the relaxed RMAB
problem acts as a lower bound of the optimal cost of the
original problem, the Whittle index policy is therefore optimal.

Fig. 3: Comparison of average cost between Whittle Index
based policy and the policy by Abolhassani et al.[3]

B. Effect of update rate (λ) on average cost

In this subsection, we implement the Whittle index policy
to compute the average cost for three different update rates
λ = 0.01, 2 and 5 and for cf = 5, while keeping all the
other parameters the same as in section V. We observe that
the average cost increases as the update rate increases (see
Figure 4a). Since the ageing cost of a content is ∝ its update
rate, it is obvious the average cost will increase as we increase

245

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

(a) Effect of update rate (λ) on the
average cost

(b) Effect of Cache size on aver-
age ageing cost and fetching cost

Fig. 4: Effect of update rate and cache size on average ageing
cost and fetching cost

the update rate. Moreover, the average cost decreases as the
cache size increases (see Figure 4a). This is because a larger
cache size reduces fetching costs, given that more items can be
accommodated. However, lowering fetches results in serving
more items with older versions, therefore causing an increase
in the aging cost. For example, see Figure 4b, where we plot
the average ageing cost and fetching cost for λ = 2. The
overall average cost decreases due to the Whittle index based
policy’s management of the trade-off between fetching costs
and aging costs.

C. Effect of fetching cost (cf) on average cost and number of
fetches during cache hits

In this subsection we will discuss how the fetching cost
affects number of fetches during cache hits. We implement
the Whittle index based policy for different fetching costs,
cf = 1, 2, 5 and for λ = 2, while keeping all the other
parameters the same as in section V. Since the average fetching
cost increases as cf increases, we observe that (see Figure 5)
the average cost increases as we increase (cf) increases.

Fig. 5: Effect of fetching cost (cf) on average cost

VI. CONCLUSION

We have formulated the optimal content fetching and
caching problem (1) subject to hard cache capacity constraints.
In Theorem 2, we have provided the optimal policy for the
single content problem with holding cost. In Theorem 4, we
have proved the indexability of the single content problem.
Finally, in Theorem 5, we have computed the Whittle indices.
We have proposed a Whittle index based algorithm to solve
the optimal content fetching and caching problem subject to

hard cache capacity constraints. We have demonstrated that our
proposed algorithm outperforms the solution provided by [3]
and offers almost the same performance as the optimal policy.
It would be interesting to design and solve the problem where
content fetching can be unsuccessful; for example, if the local
cache is connected to the central server or back-end cache via
a wireless channel, the success of fetching content will depend
upon the channel’s reliability.

REFERENCES

[1] H. Zhou, L. Tang, Q. Huang, and W. Lloyd, “The evolution of
advanced caching in the facebook cdn,” URL: https://research. fb.
com/blog/2016/04/the-evolution-ofadvanced-caching-in-the-facebook-
cdn/(visited on 14/05/2021), 2016.

[2] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal,
“Enabling dynamic content caching for database-driven web sites,” in
Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, pp. 532–543, 2001.

[3] B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh, “Fresh caching
for dynamic content,” in IEEE INFOCOM 2021 - IEEE Conference on
Computer Communications, pp. 1–10, 2021.

[4] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in 2017 IEEE International Symposium on Information Theory
(ISIT), pp. 136–140, 2017.

[5] G. Ahani, D. Yuan, and S. Sun, “Optimal scheduling of age-centric
caching: Tractability and computation,” IEEE Transactions on Mobile
Computing, vol. 21, no. 8, pp. 2939–2954, 2022.

[6] R. D. Yates, “The age of gossip in networks,” in 2021 IEEE International
Symposium on Information Theory (ISIT), pp. 2984–2989, IEEE, 2021.

[7] B. Abolhassani, J. Tadrous, and A. Eryilmaz, “Achieving freshness in
single/multi-user caching of dynamic content over the wireless edge,”
in 2020 18th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks (WiOPT), pp. 1–8, 2020.

[8] B. Abolhassani, J. Tadrous, A. Eryilmaz, and S. Yüksel, “Optimal
push and pull-based edge caching for dynamic content,” IEEE/ACM
Transactions on Networking, 2024.

[9] B. Abolhassani, A. Eryilmaz, and T. Hou, “Swiftcache: Model-
based learning for dynamic content caching in cdns,” arXiv preprint
arXiv:2402.17111, 2024.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and zipf-like distributions: evidence and implications,” in IEEE INFO-
COM’99, vol. 1, pp. 126–134, 1999.

[11] P. Whittle, “Restless bandits: Activity allocation in a changing world,”
Journal of applied probability, vol. 25, no. A, pp. 287–298, 1988.

[12] Q. Zhao, Multi-armed bandits: Theory and applications to online
learning in networks. Springer Nature, 2022.

[13] S. Aalto, P. Lassila, and I. Taboada, “Whittle index approach to op-
portunistic scheduling with partial channel information,” Performance
Evaluation, vol. 136, p. 102052, 2019.

[14] D. P. Bertsekas et al., “Dynamic programming and optimal control 3rd
edition, volume ii,” Belmont, MA: Athena Scientific, vol. 1, 2007.

[15] A. Koley and C. Singh, “Fresh caching of dynamic contents using
restless multi-armed bandits,” 2024.

[16] V. Tripathi and E. Modiano, “A whittle index approach to minimizing
functions of age of information,” in 2019 57th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), pp. 1160–
1167, 2019.

[17] K. E. Avrachenkov and V. S. Borkar, “Whittle index policy for crawling
ephemeral content,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 1, pp. 446–455, 2018.

[18] B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh, “Fresh caching of
dynamic content over the wireless edge,” IEEE/ACM Transactions on
Networking, vol. 30, no. 5, pp. 2315–2327, 2022.

246

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:51:14 UTC from IEEE Xplore. Restrictions apply.

