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ABSTRACT
The synthesis of maximally-permissive controllers in infinite-state
systems has many practical applications. Such controllers directly
correspond to maximal winning strategies in logically specified
infinite-state two-player games. In this paper, we introduce a tool
called GenSys which is a fixed-point engine for computing maximal
winning strategies for players in infinite-state safety games. A key
feature of GenSys is that it leverages the capabilities of existing
off-the-shelf solvers to implement its fixed point engine. GenSys
outperforms state-of-the-art tools in this space by a significant
margin. Our tool has solved some of the challenging problems in
this space, is scalable, and also synthesizes compact controllers.
These controllers are comparatively small in size and easier to
comprehend. GenSys is freely available for use and is available
under an open-source license.
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1 INTRODUCTION
Reactive systems are control programs that continuously interact
with their environment. Examples range from cyber physical sys-
tems, robot motion planning systems, wireless sensor networks to
bus arbiters, synchronous and distributed programs, to name a few.
Synthesizing such systems automatically from temporal specifica-
tions without human intervention has been a challenge in software
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engineering for decades. This problem is of much practical impor-
tance, and there are many approaches in the literature that address
it. These approaches can be classified broadly as ones that address
finite-state synthesis [6, 12, 15], and ones that address infinite-state
synthesis [2, 9, 14, 19, 22].

While modelling a reactive system, we can view it as a game
between two non co-operating players, with a given winning con-
dition. The controller is the protagonist player for whom we wish
to find a strategy, such that it can win against any series of moves
by the other player, which is the environment. A play of the game
is an infinite sequence of steps, where each step consists of a move
by each player.

The aim of synthesis is to find a “winning region” and a winning
strategy for the controller if these exist. A winning region consists
of a set of states from which the controller will win if it follows its
strategy.

In addition to scalability, speed, and size of the synthesized con-
trol program, the quality of “maximal permissiveness,” which re-
quires the program to allow as many of its moves as possible while
still guaranteeing a win, has also gained importance in recent ap-
plications. A maximal winning region is one that contains all other
winning regions. For instance, a maximally permissive program
could be used as a “shield” for a neural network based controller
[23], and a maximal control program would serve as the ideal shield.

In this paper we introduce our tool GenSys, which performs
efficient synthesis of maximal control programs, for infinite-state
systems. Gensys uses a standard fixpoint computation [21] to com-
pute a maximal controller, and does so by leveraging the tactics
provided by off-the-shelf solvers like Z3 [7]. Our approach is guar-
anteed to find a maximal winning region and a winning strategy
for any given game whenever the approach terminates.

GenSys is available on GitHub1.

2 MOTIVATING EXAMPLE
A classic example of a game with infinite states is that of Cinderella-
Stepmother [5, 13]. This has been considered a challenging problem
for automated synthesis. The game is practically motivated by the
minimum backlog problem [1], which is an online problem in the
domain of wireless sensor networks.

The game consists of five buckets with a fixed capacity of C
units each, arranged in a circular way. The two players of the game
are Cinderella, who is the controller, and the Stepmother, who is
the environment. In each step, Cinderella is allowed to empty any
two adjacent buckets, and then the Stepmother tops up the buckets
by arbitrarily partitioning one fresh unit of liquid across the five

1https://github.com/stanlysamuel/gensys
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Figure 1: GenSys Tool Architecture

buckets. Cinderella wins if throughout the play none of the buckets
overflow; otherwise the Stepmother wins.

The winning region for Cinderella in the Cinderella-StepMother
game with bucket capacity three units comprises states where three
consecutive buckets have at most two units each, with the sum of
the first and third of these buckets being at most 3 (see Table 1).

We will use this game as a running example to illustrate the
components of the tool.

3 TOOL DESIGN
GenSys allows users to model a reactive game, to provide a winning
condition, and to check automatically if a strategy can be synthe-
sized for the controller to win the game. Figure 1 describes the
overall architecture of GenSys. We describe the main components
of the tool below.

3.1 Game Specification
The game specification is given as input by the user, and consists of
four parts: the state space, environment moves, controller moves,
and the winning condition. A sample game specification is depicted
in Figure 2, corresponding to the Cinderella-Stepmother game. The
game specification needs to be Python code, and needs to make
use of certain API features provided by GenSys. In Figure 2 we
have used three buckets for brevity; in our evaluation we use five
buckets as that is the standard configuration used in the literature.

State space: Every game consists of a state space, where a state
consists of a valuation for a set of variables. In the example in
Figure 2, the variables are named b1, b2, and b3. Intuitively, the
values of these variables represent the amount of liquid in each
bucket currently. GenSys follows the convention that a variable

1 from gensys . h e l p e r impor t ∗
2 from gensys . f i x p o i n t s impor t ∗
3 from z3 impor t ∗
4

5 # 1 . Environment moves
6 de f environment ( b1 , b2 , b3 , b1_ , b2_ , b3_ ) :
7 r e t u r n And ( b1_ + b2_ + b3_ == b1 + b2 + b3 + 1 ,

b1_ >=b1 , b2_ >=b2 , b3_ >=b3 )
8

9 # 2 . C o n t r o l l e r moves
10 de f move1 ( b1 , b2 , b3 , b1_ , b2_ , b3_ ) :
11 r e t u r n And ( b1_ == 0 , b2_ == 0 , b3_ == b3 )
12

13 de f move2 ( b1 , b2 , b3 , b1_ , b2_ , b3_ ) :
14 r e t u r n And ( b2_ == 0 , b3_ == 0 , b1_ == b1 )
15

16 de f move3 ( b1 , b2 , b3 , b1_ , b2_ , b3_ ) :
17 r e t u r n And ( b3_ == 0 , b1_ == 0 , b2_ == b2 )
18

19 c on t r o l l e r _move s = [move1 , move2 , move3 ]
20

21 # 3 . S a f e s e t
22 C = sys . argv [ 1 ]
23

24 de f gua r an t e e ( b1 , b2 , b3 ) :
25 r e t u r n And ( b1 <= C , b2 <= C , b3 <= C , b1 >= 0 , b2

>= 0 , b3 >= 0 )
26

27 s a f e t y _ f i x e d p o i n t ( c on t r o l l e r _move s , environment ,
gua r an t e e )

Figure 2: Cinderella Game Specification in GenSys

name of the form “var_” represents the “post” value of “var” after a
move.

Environment move: Lines 6–7 define the state-update permitted to
the environment (which would be the StepMother in the example)
in each of its moves. In Figure 2, this portion indicates that the
StepMother can add a total of one unit of liquid across all three
buckets. Semantically, the environment moves can be encoded as a
binary relation Env(s, s ′) on states.

Controller move: This portion defines the state-update permitted to
the controller (which would be Cinderella in the example) in each
of its moves. Lines 10–19 in the code in Figure 2 indicate that the
controller has three alternate options in any of its moves. ‘move1’
corresponds to emptying buckets b1 and b2, and so on. Semantically,
the controller moves can be encoded as a binary relation Con(s, s ′)
on states. In Figure 2, Con(s, s ′) is a disjunction of each controller
move in the Python list controller_moves.

Safe Set: We support safety winning conditions as of now in GenSys.
A safety winning condition is specified by a set of “safe” states in
which the controller must forever keep the play in, to win the play.
In Lines 24–25, the safe set of states is given by the condition that
each bucket’s content must be at most the bucket capacityC , which
is a command-line parameter to the tool. In other words, there
should be no overflows. Semantically, the safe set is a predicate
G(s) on states.
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3.2 Game Formulation
From the given game specification, this module of our tool formu-
lates one step of the game. The formulation is as follows:

WP(X ) ≡ ∃s ′.(Con(s, s ′) ∧G(s ′) ∧

∀s ′′.(Env(s ′, s ′′) =⇒ (G(s ′′) ∧ X (s ′′))))

A step consists of a move of the controller followed by a move of
the environment. The formula above has the state variable s as the
free variable. The solution to this formula is the set of states starting
from which the controller has a move such that if the environment
subsequently makes a move, both moves end in a state that satisfies
the given winning condition G, and the environment’s move ends
in a state that is in a given set of states X . The formula above
resembles the weakest pre-condition computation in programming
languages. Note that the controller makes the first move 2.

3.3 Fixed-Point Engine
The winning region of the game is the solution to the following
greatest fixed-point equation:

νX .WP(X )

The winning region represents the set of states starting from
which the controller has a way to ensure that only states that satisfy
the winning condition G are visited across any infinite series of
steps. Our tool computes the solution to the fixed-point equation
above using an iterative process (which we describe later in the
paper).

Our formulation above resembles similar classical formulations
for finite state systems [16, 21]. Those algorithms were guaranteed
to terminate due to the finiteness of the state space. This is not
true in the case of an infinite state space. Thus, it is possible our
approach will not terminate for certain systems. In Figure 1, this
possibility is marked with the “Unknown” output. Thus, we are
incomplete but sound. We note that due to the uncomputable nature
of the problem [9] there cannot exist a terminating procedure for
the problem.

Maximality: If the procedure terminates, the winning region
is maximal i.e., it contains the exact set of states from where the
controller can win. For the proof sketch, assume that the region is
not maximal. Then there exists a state which was missed or added
to the exact winning region. This is not possible due to the fact that
at every step, the formulation in Section 3.2 computes the weakest
set of states for the controller to stay in the safe region, against any
move of the environment. The detailed proof can be found in [20].

3.4 Strategy Extraction
The game is said to be winnable for the controller, or a winning
strategy for the controller is said to be realizable, if the winning
region (computed above) is non-empty.

From the winning region, the strategy can be emitted using a
simple logical computation. The strategy is a mapping from subsets
of the winning region to specific alternative moves for the controller
as given in the game specification, such that every state in the
winning region is present in at least one subset, and such that upon

2We also support the scenario where the environment plays first but this is beyond
the scope of this paper.

Table 1: Strategy Synthesized by GenSys for the Cindrella
game with bucket size 3

Condition Move

0 ≤ b1,b2 ≤ 3 ∧ 0 ≤ b3,b4,b5 ≤ 2 ∧ b3 + b5 ≤ 3 b1_,b2_ = 0
0 ≤ b2,b3 ≤ 3 ∧ 0 ≤ b4,b5,b1 ≤ 2 ∧ b4 + b1 ≤ 3 b2_,b3_ = 0
0 ≤ b3,b4 ≤ 3 ∧ 0 ≤ b5,b1,b2 ≤ 2 ∧ b5 + b2 ≤ 3 b3_,b4_ = 0
0 ≤ b4,b5 ≤ 3 ∧ 0 ≤ b1,b2,b3 ≤ 2 ∧ b1 + b3 ≤ 3 b4_,b5_ = 0
0 ≤ b5,b1 ≤ 3 ∧ 0 ≤ b2,b3,b4 ≤ 2 ∧ b2 + b4 ≤ 3 b5_,b1_ = 0

taking the suggested move from any state in a subset the successor
state is guaranteed to be within the winning region.

In the Cinderella-StepMother game, when there are five buckets
and the bucket size C is 3, the strategy that gets synthesized is
shown in Table 1.

It is interesting to note that a sound and readable strategy has
been synthesized automatically, without any human in the loop.

4 IMPLEMENTATION DETAILS
GenSys is currently in a prototype implementation stage, and serves
as a proof of concept for the experimental evaluation that follows.
The current version is 0.1.0. Currently GenSys supports safety win-
ning conditions; immediate future work plans include adding sup-
port for other types of temporal winning conditions.

GenSys is implemented in Python, and depends on the Z3 theo-
rem prover [7] from Microsoft Research. GenSys has a main loop,
in which it iteratively solves for the fixed-point equation in Sec-
tion 3.3. It first starts with an over-approximation X = G, where
G is the given safe set, and computes using Z3 a formula that en-
codes WP(X ). It then makes X refer to the formula just computed,
re-computes WP(X ) again, and so on iteratively, until the formulas
denoted by X do not change across iterations.

The iterative process above, if carried out naively, can quickly
result in very large formulas. To mitigate this issue, we make use of
Z3’s quantifier elimination tactics. Z3 provides many such tactics;
our studies showed that the ‘qe2’ [4] strategy showed the best
results. We believe the quantifer elimination power of Z3 is one of
the main reasons for the higher scalability of our approach over
other existing approaches.

5 EXPERIMENTAL RESULTS
To evaluate our tool GenSys, we consider the benchmark suite
from the paper of Beyene et al. [2], which introduces the Cinderella
game as well as some program repair examples. We also consider
the robot motion planning examples over an infinite state space
introduced by Neider et al. [18].

The primary baseline tool for our comparative evaluation is JSyn-
VG [14], whose approach is closely related to ours. Their approach
also uses a weakest-precondition like formulation and an iterative
approach to compute a fix-point solution. However, their approach
uses a “forall-there-exists” formulation of a single step, in contrast
to the “there-exists-forall” formulation that we adopt (see theWP
formulation in Section 3.2). Also, their tool uses a dedicated solver
called AE-VAL [10, 11], whereas GenSys uses the standard solver
Z3.
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Table 2: Running times for the Cinderella game for various
values of bucket size C. "-" indicates unavailability of data,
while ">xm" denotes a timeout after x minutes. R denotes
Realizable and U denotes Unrealizable.

C Out SimSynth ConSynth JSyn-VG GenSys

Time Iter

3.0 R 2.2s 12m45s 1m26s 0.6s 3
2.5 R 53.8s >15m 1m19s 0.7s 3
2.0 R 68.9s - 1m6s 0.6s 3
1.9(20) U - - >16m 31.0s 69
1.8 U >10m - >16m 0.6s 5
1.6 U 1.5s - >16m 0.4s 4
1.5 U 1.4s - 14m34s 0.3s 4
1.4 U 0.2s - 17s 0.2s 3

We used the latest version of the JSyn-VG, which is available
within the JKind model checker (https://github.com/andrewkatis/
jkind-1/releases/tag/1.8), for our comparison.

To serve as secondary baselines, we compare our tool with sev-
eral other tools on the same set of benchmarks as mentioned above.
These tools include SimSynth [9] and ConSynth [2], which are
based on logic-based synthesis, just like GenSys and JSyn-VG. We
also consider the tool DT-Synth [17], which is based on decision
tree learning, and the tools SAT-Synth and RPI-Synth, which are
based on automata based learning [18]. The numbers we show for
SimSynth and ConSynth are reproduced from [9] and [17] respec-
tively, while the numbers for all other tools mentioned above were
obtained by us using runs on a machine with an Intel i5-6400 pro-
cessor and 8 GB RAM. 3 Results for the Cinderella game are not
available from the learning-based approaches (i.e., they time out af-
ter 900 seconds). SimSynth results are available only for Cinderella
among the benchmarks we consider.

Table 2 contains detailed results for the Cinderella game, by
considering various values for the bucket sizeC . It was conjectured
by the ConSynth tool authors [2] that the range of bucket sizes
between ≥ 1.5 and < 2.0 units is challenging, and that automated
synthesis may not terminate for this range. They also mention
that this problem was posed by Rajeev Alur as a challenge to the
software synthesis community. However, GenSys terminated with
a sound result throughout this range. In fact, GenSys was able to
scale right upto bucket-size 1.9(20) (i.e., the digit 9 repeated 20
times after the decimal), whereas the state of the art tools time
out much earlier. The number of iterations for the fixed-point loop
to terminate, i.e., 69, and the time taken to solve, i.e., 31 seconds,
affirm that it was indeed challenging to solve for this bucket size.
This empirically proves that we can scale to large formula sizes.
This is challenging because the formula sizes keep increasing with
every iteration of the fixed-point computation.

3We were unable to build SimSynth from source due to the dependency on a very
specific version of OCaml.Wewere unable to get access to ConSynth even after mailing
the authors. Thus, we used the numbers for ConSynth from the DT-Synth [17] paper
which is the latest paper that evaluates ConSynth. They also describe the difficulty in
reproducing the original ConSynth results. We expect the ConSynth results that we
have reproduced from the other paper [17] to be accurate, as the numbers for the other
tools given in that paper match the numbers we obtained when we ran those tools.

Table 3: Results on remaining benchmarks. Times are in sec-
onds. >15m denotes a timeout after 15 minutes. Tool name
abbreviations: C for ConSynth, J for JSyn-VG, D for DT-
Synth, S for SAT-Synth, R for RPI-Synth, G for GenSys.

Benchmark C J D S R G

Repair-Lock 2.5 1.5 0.5 0.6 0.2 0.3
Box 3.7 0.6 0.3 0.3 0.1 0.3
Box Limited 0.4 1.7 0.1 0.4 0.5 0.2
Diagonal 1.9 4.0 2.4 1.34 0.5 0.2
Evasion 1.5 0.5 0.2 81 0.1 0.7
Follow >15m 1.2 0.3 88.9 >15m 0.7
Solitary Box 0.4 0.9 0.1 0.3 0.1 0.3
Square 5x5 >15m 6.5 2.5 0.6 0.2 0.3

Table 3 shows the results on the other benchmarks. Here also it
is clear that GenSys outperforms the other tools in most situations.

SimSynth supports reachability, which is a dual of safety. Con-
Synth supports safety, reachability and general LTL specifications.
The rest of the tools that we consider, including GenSys, natively
support safety (and its dual, reachability) winning conditions only.

Regarding maximality, it should be noted that JSyn-VG is the
only tool apart from us that synthesizes a maximal controller.

6 FUTUREWORK
The scalability of our approach hints at the potential for addressing
more complex winning conditions apart from safety. It would be
interesting to address synthesis of maximal controllers forω-regular
specifications, which is a strict superclass of safety, and compare
scalability, synthesis time, and controller size for such properties.

7 CONCLUSION
We have presented the prototype implementation of our tool Gen-
Sys. We discussed the design of the tool using a motivating example,
and demonstrated scalability of strategy synthesis and the read-
ability of synthesizied strategies. One of the key takeaways is that
with the advances in SMT algorithms for quantifier elimination
and formula simplification, it is possible to expect scalability for
fundamental problems. Tools such as ConSynth, JSyn-VG and Sim-
Synth use external solvers such as E-HSF [3], AE-VAL [10, 11], and
SimSat [8] respectively, which appear to slow down the synthesis
process. E-HSF requires templates for skolem relations, while AE-
VAL restricts the game allowing only the environment to play first.
Although SimSynth does not require external templates as a man-
ual input, it follows a two step process where it first synthesizes a
template automatically using SimSat, followed by the final strategy
synthesis. Our approach does not require an external human in
the loop to provide templates, does not pose restrictions on the
starting player and is a relatively intuitive approach. Thus, we show
an elegant solution that works well in practice. More information
about our approach, running the tool and reproducing the results
can be found on GitHub4.

4https://github.com/stanlysamuel/gensys
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