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Abstract—We consider reinforcement learning (RL) in
Markov decision processes in which an agent repeatedly in-
teracts with an environment that is modeled by a controlled
Markov process. At each time step t, it earns a reward and
also incurs a cost vector consisting of M costs. We design
model-based RL algorithms that maximize the cumulative
reward earned over a time horizon of T time steps while
simultaneously ensuring that the average values of the M
cost expenditures are bounded by agent-specified thresh-
olds cub

i , i = 1, 2, . . . ,M . The consideration of the cumula-
tive cost expenditures departs from the existing literature,
in that the agent now additionally needs to balance the
cost expenses in an online manner while simultaneously
performing the exploration–exploitation tradeoff that is typ-
ically encountered in RL tasks. This is challenging since the
dual objectives of exploration and exploitation necessarily
require the agent to expend resources. In order to measure
the performance of an RL algorithm that satisfies the av-
erage cost constraints, we define an M + 1 dimensional
regret vector that is composed of its reward regret, and M
cost regrets. The reward regret measures the suboptimality
in the cumulative reward while the ith component of the
cost regret vector is the difference between its ith cumula-
tive cost expense and the expected cost expenditures Tcub

i .
We prove that the expected value of the regret vector is
upper-bounded as Õ(T 2/3), where T is the time horizon,
and Õ(·) hides factors that are logarithmic in T . We further
show how to reduce the regret of a desired subset of the M
costs, at the expense of increasing the regrets of rewards
and the remaining costs. To the best of our knowledge, ours
is the only work that considers nonepisodic RL under aver-
age cost constraints and derives algorithms that can tune
the regret vector according to the agent’s requirements on
its cost regrets.

Index Terms—Machine learning, Markov decision pro-
cesses, reinforcement learning.
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I. INTRODUCTION

R EINFORCEMENT learning (RL) [1] involves an agent
repeatedly interacting with an environment modeled by a

Markov decision process (MDP) [2]. More specifically, consider
a controlled Markov process [2] st, t = 1, 2, . . . , T . At each dis-
crete time t, an agent applies control at. State-space and action
space are denoted by S and A, respectively, and are assumed
to be finite. The controlled transition probabilities are denoted
by p := {p(s, a, s′) : s, s′ ∈ S, a ∈ A}. Thus, p(s, a, s′) is the
probability that the system state transitions to state s′ upon
applying action a in state s. The probabilities p(s, a, s′) are not
known to the agent. At each discrete time t = 1, 2, . . . , T , the
agent observes the current state of the environment st, applies
control action at, and earns a reward rt that is a known function
of (st, at). When the agent applies an action a in the state s, then
it earns a reward equal to r(s, a) units. The agent does not know
the controlled transition probabilities p(s, a, s′) that describe the
system dynamics of the environment. The performance of an
agent or a RL algorithm is measured by the cumulative rewards
that it earns over the time horizon.

However, in many applications, in addition to earning re-
wards, the agent also incurs costs at each time. The underlying
physical constraints impose constraints on its cumulative cost
expenditures, so that the agent needs to balance its reward earn-
ings with the cost accretion while also simultaneously learning
the choice of optimal decisions, all in an online manner. As
a motivating example, consider a single-hop wireless network
that consists of a wireless node that transmits data packets to
a receiver over an unreliable wireless channel. The channel
reliability, i.e., the probability that a transmission at time step
t is successful, depends upon the instantaneous channel state
cst and the transmission power at. Thus, for example, this
probability is higher when the channel is in a good state, or
if the transmission is carried out at higher power levels. The
transmitter stores packets in a buffer, and its queue length at
time t is denoted by Qt. The wireless node is battery operated,
and packet transmission consumes power. Hence, it is desired
that the average power consumption is minimal. An appropriate
performance metric for networks [3] is the average queue length(

E
∑T

t=1 Qt

)
/T , and hence, it is required that the average

queue length stays below a certain threshold. The AP has to
choose at adaptively so as to minimize the power consumption(

E
∑T

t=1 at

)
/T or, equivalently, maximize

(
E
∑T

t=1 −at

)
/

T while simultaneously ensuring that the average queue length is
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below a user-specified threshold, i.e.,
(

E
∑T

t=1 Qt

)
/T ≤ cub.

In this example, the state of the “environment” at time t is given
by the queue length and the channel state (Qt, cst). Thus, it
might be “optimal” to utilize high transmission power levels only
when the instantaneous queue length Qt is large or the wireless
channel’s state cst is good. Such an adaptive strategy saves en-
ergy by transmitting at lower energy levels at other times. Since
channel reliabilities are typically not known to the transmitter
node, it does not know the transition probabilities p(s, a, s′)
that describe the controlled Markov process (Qt, cst). Hence, it
cannot compute the expectations of the average queue lengths
and average power consumption for a fixed control policy, and
needs to devise appropriate learning policies to optimize its
performance under average-cost constraints. RL algorithms that
we propose in this work solve exactly these classes of problems.

Many important network control problems can be solved
within the framework of constrained MDPs (CMDPs). For
example, Lazar [4] and Hsiao and Lazar [5] utilize CMDPs
in order to maximize the throughput offered by a stochastic
network, where the network operator wants to simultaneously
satisfy constraints on delays, while Nain and Ross [6] design
control policies that make dynamic decisions regarding network
access in networks shared by different types of traffic. Similarly,
the framework of CMDPs has been used in [7] and [8] in order
to maximize the timely throughput1 in stochastic networks. The
work [9] addresses the issue of admission control and routing
in networks shared by multiple flows in which the goal is to
maximize the weighted sum of customers served while simul-
taneously satisfying constraints on the blocking probability. If
the network/system parameters are known, then a CMDP can be
posed as a linear program (LP) and solved efficiently. However,
in practice, network parameters are seldom known to the network
operator, and it needs to design algorithms that “learn” the
optimal policies in an “optimal” manner. Our work addresses
precisely this issue.

II. PREVIOUS WORKS AND OUR CONTRIBUTIONS

RL Algorithms for unconstrained MDPs: RL problems with-
out constraints are well understood by now. Jaksch et al.
[10] develop UCRL2 algorithm using the upper confidence
bounds (UCB) strategy [11], while Mete et al. [12] use the
reward biased maximum likelihood estimation (RBMLE) ap-
proach [13], and Osband and Roy [14] use Thompson sam-
pling. UCRL2 [10] is a popular RL algorithm that has a regret
bound of Õ(D(p)S

√
AT ), where D(p) is the diameter [10] of

the MDP p; the algorithms proposed in this work are based on
UCRL2.

RL Algorithms for Constrained MDPs: The work in [15] is
an early work on optimally controlling unknown MDPs under
average cost constraints. It utilizes the certainty equivalence
(CE) principle, i.e., it applies controls that are optimal under the
assumption that the true (but unknown) MDP parameters are

1Throughput derived from those packets, which reach their destination within
their deadline.

equal to the empirical estimates and also occasionally resorts
to “forced explorations.” This algorithm yields asymptotically
(as T → ∞) the same reward rate as the case when the MDP
parameters are known. However, analysis is performed under
the assumption that the CMDP is strictly feasible. Moreover,
the algorithm lacks finite-time performance guarantees (bounds
on regret). Unlike [15], we do not assume strict feasibility;
in fact, we show that the use of confidence bounds allows
us to get rid of the strict feasibility assumption. Borkar [16]
derives a learning scheme based on multitime-scale stochastic
approximation [17], in which the task of learning an optimal
policy for the CMDP is decomposed into that of learning the
optimal value of the dual variables, which correspond to the price
of violating the average cost constraints, and that of learning the
optimal policy for an unconstrained MDP parameterized by the
dual variables. However, the proposed scheme lacks finite-time
regret analysis and might suffer from a large regret. Prima facie,
this layered decomposition might not be optimal with respect
to the sample-complexity of the online RL problem. Recent
works [18], [19] have obtained concentration bounds for two
time-scale stochastic approximation algorithms, which could be
used for deriving regret bounds. The works [20], [21], [22], [23]
design policy-search algorithms for constrained RL problems.
However unlike our work, they do not utilize the concept of
regret vector, and their theoretical guarantees need further re-
search. After the first draft of our work was published online,
there appeared a few manuscripts/works that address various
facets of learning in CMDPs, and these have some similarities
with our work. For example, Qiu et al. [24] consider episodic
RL problems with constraints in which the reward function is
time-varying. Similarly, Efroni et al. [25] also consider episodic
RL in which the state is reset at the beginning of each episode. In
contrast, we deal exclusively with non-episodic infinite horizon
RL problems. In fact, as we show in our work, the primary
difficulty in nonepisodic constrained RL arises due to the fact
that it is not possible to simultaneously “control/upper-bound”
the reward and M costs during long runs of the controlled
Markov process. Consequently, in order to control the regret
vector, we make the assumption that the underlying MDP is
unichain. However, this problem does not occur in the episodic
RL case [24], [25] since the state is reset periodically. Second,
unlike the algorithms provided in our work, [24] and [25] do
not allow the agent to tune the regret vector. Very recently, we
came to know that Chen et al. [26] have derived RL algorithms
for CMDPs that have Õ(

√
T ) regret guarantees and, hence,

improve upon the bounds derived in this work. Wei et al. [27]
also derive model-free learning algorithms for infinite-horizon
average reward CMDPs and show that their reward and cost
regrets are Õ(T 5/6). The work [28] claims to attain O

√
T )

regrets for CMDPs; however, unfortunately there seems to be
an error in the derivations of their proofs. More specifically,
in Lemma 11, they bound the span of the CMDP by diameter.
Although this argument works for MDPs [10], it is not true for
CMDPs since now not only does the decision maker optimize
rewards, but it also has to satisfy cost constraints. Liu et al.
[29] consider an episodic setup and derive algorithms, which
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have Õ
(√

K
)

reward regret, with a bounded expected number

of constraint violations. Ding et al. [30] propose a primal-dual
algorithm for discounted RL for CMDPs and show that its

convergence rate is O
(
1/
√
T
)

. The work [31] summarizes

recent approaches to RL in CMDPs while Liu et al. [32] apply
RL for CMDPs to make dynamic decisions in network slicing
applications.

The contributions of this article are summarized as follows.
1) We initiate the problem of designing RL algorithms that

maximize the cumulative rewards while simultaneously
satisfying average cost constraints. We propose an algo-
rithm that we call UCRL for CMDPs, henceforth abbrevi-
ated as UCRL-CMDP. UCRL-CMDP is a modification of
the popular RL algorithm UCRL2 of the work in [10] that
utilizes the principle of optimism in the face of uncertainty
(OFU) while making decisions. Since an algorithm that
utilizes OFU does not need to satisfy cost constraints (this
is briefly discussed at the end of this section), we modify
OFU appropriately and derive the principle of balanced
optimism in the face of uncertainty (BOFU). Under the
BOFU principle, at the beginning of each RL episode,
the agent has to solve for 1) an MDP and 2) a controller,
such that the average costs of a system in which the
dynamics are described by 1), and which is controlled
using 2), are less than or equal to the cost constraints.
This is summarized in Algorithm 1.

2) In order to quantify the finite-time performance of an
RL algorithm that has to perform under average cost
constraints, we define its M + 1 dimensional “regret
vector” that is composed of its reward regret (8) and M
cost regrets (9). More precisely, considering solely the
reward regret (as is done in the RL literature) overlooks
the cost expenditures. Indeed, we show in Theorem 2
that the reward regret can be made arbitrarily small (with
a high probability) at the expense of an increase in the
cumulative cost expenditure. Thus, while comparing the
performance of two different learning algorithms, we
also need to compare their cost expenditures. The reward
regret of a learning algorithm is the difference between its
reward and the reward of an optimal policy that knows the
MDP parameters while the ith cost regret is the difference
between the total cost incurred until T time steps, and the
budget on the ith expected cost cub

i T .
3) We ask the following question in the constrained

setup: What is the set of “achievable” M + 1 dimen-
sional regret vectors? In Theorem 1, we show that the
components of the regret vector of UCRL-CMDP can be
bounded as Õ

(
T 2/3

)
.

4) We show that the use of BOFU allows us to overcome the
shortcomings of the CE approach that were encountered
in [15], i.e., there are arbitrarily long time-durations dur-
ing which the CMDP’s system dynamics are described by
the current empirical estimates of transition probabilities
is infeasible and, hence, the agent is unable to utilize
these estimates in order to make control decisions. As
a byproduct, BOFU also allows us to get rid of “forced

explorations,” i.e., employing randomized controls occa-
sionally, which were utilized in [15].

5) Analogous to the unconstrained RL setup, in which one
is interested in quantifying a lower bound on the regret
of any learning algorithm, we provide a partial charac-
terization of the set of those M + 1-dimensional regret
vectors, which cannot be achieved under any learning
algorithm. More specifically, in Theorem 3, we show
that a weighted sum of the M + 1 regrets is necessarily
greater than O(D(p)S

√
AT log(T )), where D(p) is the

diameter of the underlying MDP, and S,A is the number
of states and control actions, respectively.

6) In many applications, an agent is more sensitive to the
cost expenditures of some specific resources compared to
the rest, and a procedure to “tune” theM + 1 dimensional
regret vector is essential. In Section VI, we consider the
scenario in which the agent can prespecify the desired
bounds on each component of the cost regret vector
and introduce a modification to the UCRL-CMDP that
allows the agent to keep the cost regrets below these
bounds.

Failure of OFU in constrained RL problems: Consider
a two-state S = {1, 2}, two-action A = {0, 1} MDP in
which the controlled transition probabilities p(1, 1, 1) = 1− θ
and p(1, 1, 2) = θ are unknown while remaining probabili-
ties are equal to 0.5. Assume that r(1, a), c(1, a) ≡ 0 and
r(2, a), c(2, a) ≡ 1, i.e., reward and cost depend only upon the
current state. Assume that θ > 0.5, and the average cost thresh-
old satisfies cub < 2θ/(1 + 2θ). Since state 2 yields reward at the
maximum rate, and θ > 0.5, this means that the optimal action
in state 1 is 1. Let θ̂t and εt denote the empirical estimate of θ,
and the radius of the confidence interval, respectively, at time t.
Then, UCRL2 sets the optimistic estimate of θ equal to θ̂t + εt
and then implements the control that is optimal when the true
parameter value is equal to this estimate. Thus, if θ̂t + εt ≥ 0.5,
then it chooses action 1 in state 1. Since with a high probability,
we have θ̂t + εt ≥ θ, and θ̂t + εt → θ as T → ∞ [10], we have
that when the index of the RL episode is sufficiently large, the
agent implements action 1 in state 1. Since the average cost of
this policy is 2θ/(1 + 2θ), this means that UCRL2 violates the
average cost constraint.

III. PRELIMINARIES

In our setup, at each time t, the agent earns a reward and
also incurs M costs. Reward and cost functions are denoted
by r, {ci}Mi=1,S ×A 
→ R. Thus, the instantaneous reward ob-
tained upon taking an action a in the state s is equal to r(s, a)
while the ith cost is equal to ci(s, a). A controlled Markov
process in which the agent earns reward and incurs M costs is
defined by the tuple CMP = (S,A, p, r, c1, c2, . . . , cM ). The
controlled transition probabilities p(s, a, s′) are not known to the
agent while the reward and cost functions r, {ci}Mi=1 are known
to the agent. We will now briefly discuss some notions and results
on MDPs. Let P (t)

π,p,s denote the t-step probability distribution
when the policy π is applied to the MDP p and the initial state is
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s while Pπ,p is the corresponding stationary measure.2 For two
measures μ1, μ2, we let ‖μ1 − μ2‖V denote the total variation
distance [33] between μ1 and μ2.

Definition 1: (Unichain MDP) The MDP p is unichain if
under any stationary policy there is a single recurrent class. If
an MDP is unichain [2], then for the Markov chain induced by
any stationary policy π, we have

‖P (t)
π,p,s − Pπ,p‖TV ≤ Cρt ∀s ∈ S (1)

where C > 0, 1 > ρ > 0 are constants. Let Ts,s′ denote the time
taken by the Markov chain induced by a stationary policy to hit
state s′, when it starts in state s. The mixing time of an MDP p
is defined as TM (p) := maxπ,s,s′ Eπ,pTs,s′ , where the subscript
denotes the fact that the expectation is taken with respect to the
measure induced by π when it is applied to the MDP p. We will
occasionally omit its dependence upon p and denote it by TM .

Definition 2: (Control Policy) Let Δ(A) := {x ∈ R|A| :∑|A|
i=1 xi = 1, xi ≥ 0} be the |A|-simplex and Ft denote

the sigma-algebra [34] generated by the random variables
{(s�, a�)}t−1

�=1 ∪ st. A stationary policy π : S 
→ Δ(A) pre-
scribes randomized controls on the basis of the current state
st. Thus, under policy π, we have that at is chosen according to
the probability distribution π(·|st).

A. Notation

Throughout, we use bold font for denoting vectors; for
example, the vector (x1, x2, . . . , xN ) is denoted by x. We
use N to denote the set of natural numbers, RM to de-
note the M -dimensional Euclidean space, and RM

+ to de-
note non-negative orthant of RM . Inequalities between two
vectors are to be understood componentwise. If E is an
event [34], then 1(E) denotes its indicator function. For a control
policy π,3r̄(π) := limT→∞ 1

T Eπ

∑T
t=1 r(st, at), and4c̄i(π) :=

limT→∞ 1
T Eπ

∑T
t=1 ci(st, at). Forx ∈ RN , we let‖x‖1 denote

its 1-norm and ‖x‖∞ be the infinity norm. 0M denotes the M -
dimensional zero vector consisting of all zeros. Forx, y ∈ R, we
letx ∨ y := max{x, y}. Throughout, forM ∈ N, we abbreviate
[M ] := {1, 2, . . . ,M}, S := |S|, A := |A|.

B. Constrained MDPs

We now present some definitions and standard results pertain-
ing to constrained MDPs. These can be found in [35].

Definition 3 (Occupation Measure): Consider the controlled
Markov process st evolving under the application of a station-
ary policy π. Its occupation measure μπ = {μπ(s, a) : (s, a) ∈
S ×A} is defined as μπ(s, a) := limT→∞ 1

T Eπ(
∑T

t=1 1(st =
s, at = a)) and describes the average amount of time that the
process (st, at) spends on each possible state–action pair.

Definition 4 (SR(µ)): Consider a vector μ = {μ(s, a) :
(s, a) ∈ S ×A} that satisfies the constraints (6) and (7). Define
SR(μ) to be the following stationary randomized policy. When
the state st is equal to s, the policy chooses the action a

2Under the assumption that a unique stationary measure exists.
3In case limit does not exist, lim should be replaced by lim inf .
4In case limit does not exist, lim should be replaced by lim sup.

with a probability equal to μ(s,a)∑
a′∈A μ(s,a′) if

∑
a′∈A μ(s, a′) > 0.

However, if
∑

a′∈A μ(s, a′) = 0, then the policy takes an action
according to some prespecified rule (e.g., implement at = 0).

Constrained MDP (CMDP): The following dynamic opti-
mization problem is a CMDP [35]:

max
π

lim inf
T→∞

1

T
Eπ

T∑
t=1

r(st, at) (2)

s.t. lim sup
T→∞

1

T
Eπ

T∑
t=1

ci(st, at) ≤ cub
i , i ∈ [M ] (3)

where the maximization above is over the class of all history-
dependent policies, and cub

i denotes the desired upper-bound
on the average value of ith cost expense. The optimal average
reward rate of the CMDP is equal to the optimal value of the
above LP and is denoted by r�.

Linear Programming approach for solving CMDPs: When
the controlled transition probabilities p(s, a, s′) are known, and
p is unichain, an optimal policy for the CMDP (2)–(3) can be
obtained by solving the following LP [35]:

max
μ={μ(s,a):(s,a)∈S×A}

∑
(s,a)∈S×A

μ(s, a)r(s, a) (4)

s.t.
∑

(s,a)∈S×A
μ(s, a)ci(s, a) ≤ cub

i , i ∈ [M ] (5)

∑
a∈A

μ(s, a) =
∑

(s′,b)∈S×A
μ(s′, b)p(s′, b, s) ∀s ∈ S (6)

μ(s, a) ≥ 0 ∀(s, a) ∈ S ×A,
∑

(s,a)∈S×A
μ(s, a) = 1. (7)

If μ� is a solution of the above LP, then SR(μ�) solves (2)–(3).
Moreover, it can be shown that the average reward and M costs
of SR(μ�) are independent of the initial starting state s0 if the
MDP is unichain [35].

C. Learning Algorithms and Regret Vector

We will develop RL algorithms to solve the finite-time horizon
version of the CMDP (2)–(3) when the probabilities p(s, a, s′)
are not known to the agent. A learning policy π chooses action
at on the basis of past operational history of the system. In order
to measure the performance of a learning algorithm, we define
its reward and cost regrets. The “cumulative reward regret” until
time T , denoted by Δ(R)(T ), is defined as

Δ(R)(T ) := r� T −
T∑

t=1

r(st, at) (8)

where r� is the optimal average reward of the CMDP (2)–(3)
when controlled transition probabilities p(s, a, s′) are known.
Note that r� is the optimal value of the LP (4)–(7). The “cu-
mulative cost regret” for the ith cost until time T is denoted by
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Algorithm 1: UCRL-CMDP
Input: State-space S , Action-space A, Confidence
parameter δ, Time horizon T

Initialize: Set t := 1, and observe the initial state s1.
for Episodes k = 1, 2, . . . do

Initialize Episode k:
1) Set the start time of episode k, τk := t. For all

state-action tuples (s, a) ∈ S ×A, initialize the
number of visits within episode k, nk(s, a) = 0.

2) For all (s, a) ∈ S ×A set Nτk(s, a), i.e., the number
of visits to (s, a) prior to episode k. Also, set the
transition counts Nτk(s, a, s

′) for all
(s, a, s′) ∈ S ×A× S .

3) Compute the empirical estimate p̂t of the MDP as
in (10).

Compute Policy π̃k:
1) Let Cτk be the set of plausible MDPs as in (11).
2) Solve (12)–(16) to obtain π̃k.
3) In case (12)–(16) is infeasible, choose π̃k to be some

predetermined policy (chosen at time t = 0).
Implement π̃k:
while t− τkt

< �Tα� do
1) Sample at according to the distribution π̃k(·|st).

Observe reward r(st, at), and observe next state st+1.
2) Update nk(st, at) = nk(st, at) + 1.
3) Set t := t+ 1.

end while
end for

Δ(i)(T ), and is defined as

Δ(i)(T ) :=
T∑

t=1

ci(st, at)− cub
i T. (9)

IV. UCRL-CMDP: A LEARNING ALGORITHM FOR CMDPS

We propose UCRL-CMDP to adaptively control an unknown
CMDP. It is depicted in Algorithm 1. UCRL-CMDP maintains
empirical estimates of the each transition probability p(s, a, s′)
as follows:

p̂t(s, a, s
′) =

{
Nt(s,a,s

′)
Nt(s,a)

if Nt(s, a) > 0
1
S , otherwise

(10)

where Nt(s, a) and Nt(s, a, s
′) denote the number of visits to

(s, a) and (s, a, s′) until t, respectively.
Confidence Intervals: Additionally, it also maintains confi-

dence interval Ct associated with the estimate p̂t as follows:

Ct :=
{
p′ :

∑
s′∈S

p′(s, a, s′) = 1∀(s, a), p′(s, a, s′) ≥ 0

|p′(s, a, s′)− p̂t(s, a, s
′)| ≤ εt(s, a) ∀(s, a)} (11)

where εt(s, a) :=
√

2 log(T b|S||A|)
Nt(s,a)∨1 , b > 1 is an agent-specified

constant.

Episode: UCRL-CMDP proceeds in episodes and utilizes a
single stationary control policy within an episode. Each episode
is of duration �Tα� steps.5 Let τk denote the start time of episode
k. kth episode is denoted by Ek := {τk, τk + 1, . . . , τk+1 − 1},
and comprises of τk+1 − τk consecutive time-steps. Denote by
kt the index of the ongoing episode at time t. At the beginning
of Ek, the agent solves the following constrained optimization
problem in which the decision variables are 1) occupation mea-
sure μ = {μ(s, a) : (s, a) ∈ S ×A} of the controlled process,
and 2) “candidate” MDP p′

max
μ,p′

∑
(s,a)∈S×A

μ(s, a)r(s, a) (12)

s.t.
∑

(s,a)∈S×A
μ(s, a)ci(s, a) ≤ cub

i , i ∈ [M ] (13)

∑
a∈A

μ(s, a) =
∑
(s′,b)

μ(s′, b)p′(s′, b, s) ∀s ∈ S (14)

μ(s, a) ≥ 0 ∀(s, a),
∑
(s,a)

μ(s, a) = 1 (15)

p′ ∈ Cτk . (16)

The maximization with respect to p′ denotes that the agent is
optimistic regarding the belief of the “true” (but unknown) MDP
p while that with respect to μ ensures that the agent optimizes
its control strategy for this optimistic MDP. The constraints (13)
ensure that the cost expenditures do not exceed the thresholds
{cub

i }Mi=1 and hence ensure that the agent also balances the cost
expenses while being optimistic with respect to the rewards
about the choice of the MDP thereby taking a balanced approach
to optimism when the underlying MDP parameters are unknown.
If the constraints (13) were absent, we would recover the UCRL2
algorithm of [10] that is based on the OFU principle [11]. How-
ever, as is shown in Section II, the OFU principle might fail when
it is applied to learning the optimal controls for CMDPs. Indeed,
as is shown in the example of Section II, the limiting average cost
is greater than the threshold value of cost. The BOFU principle
proposed in this work is a natural extension of the OFU principle
to the case when the agent has to satisfy certain constraints
on costs, in addition to maximizing the rewards. In case the
problem (12)–(16) is feasible, let (μ̃k, p̃k) denote a solution. The
agent then chooses at according to SR(μ̃k) within Ek. However,
in case (12)–(16) is infeasible, the agent implements an arbitrary
stationary control policy that has been chosen at time t = 0. In
summary, it implements a stationary controller within Ek, which
is denoted by π̃k. We make the following assumptions on the
MDP p while analyzing UCRL-CMDP.

Assumption 1:
1) The MDP p = {p(s, a, s′) : s, s′ ∈ S, a ∈ A} is

unichain. Thus, under any stationary policy π, we
have

‖P (t)
π,p,s − Pπ,p‖TV ≤ Cρt, t = 1, 2, . . . , s ∈ S (17)

where C > 0, 0 ≤ ρ < 1.

5If x ∈ R, we let �x� be the least integer greater than or equal to x.
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2) The CMDP (2)–(3) is feasible.
3) Without loss of generality, we assume that the magnitude

of rewards and costs are upper-bounded by 1, and hence,
r� ≤ 1 as well as {cub

i }Mi=1 can be taken to be less than 1.
We establish the following bound on the regrets of UCRL-

CMDP. It is proved in the next section.
Theorem 1: Consider the UCRL-CMDP (Algorithm 1) ap-

plied with δ = 1/T 1/3, α = 1/3 to an MDP p that satisfies
Assumption 1. The reward and cost regrets can be bounded as
follows:

EΔ(R)(T ),EΔ(i)(T ), i ∈ [M ] ≤ 4TM (p)
√

2 log (T b|S||A|)

×
((√

2 + 1
)√

SAT + T 2/3
√

log
(
SAT 4/3

))

+
C�T 2/3�
1− ρ

+ T 2/3 +
2

T 2b−2|S||A| . (18)

A detailed proof is provided in Section V. Over here, we only
provide a proofsketch.

Proofsketch: We show that the proposed algorithm can be
interpreted as an “index policy” in which it assigns an index (20)
to each policy that is calculated on the basis of operational history
and then plays the policy with the highest index. We use this
characterization in order to analyze the behavior of the algorithm
on the “good set,” G (21) on which the following two occur: 1)
concentration of the empirical estimate ofp, and 2) the number of
times (s, a) is visited is proportional to the number of times those
set of policies are implemented under which (s, a) is visited with
a positive probability. In Lemma 1 and Lemma 2, we show thatG
occurs with a high probability; since the regret on Gc is bounded
as O(T ), it suffices to analyze the algorithm on G. Lemma 7
shows that the instantaneous regrets depend on the radius of
the confidence ball. The behavior of the radius of the ball upon
playing a suboptimal policy is then used to complete the proof.

Remark 1: In comparison with the Õ(
√
T ) regret bounds

for unconstrained RL, our bounds for the constrained case
are Õ(T 2/3). The reason for this is that the proof techniques
of [10] cannot be applied. More specifically, for the former
case, one is able to relate the diameter D(p) of the MDP to
a bound on the span of the relative value function hk(·), of the
optimistic MDP obtained during the kth episode6 as follows:
Suppose that hk(s)− hk(s

′) > D(p), then one would obtain a
contradiction since we can construct a policy for the extended
MDP, which starts in state s′ and reaches s in D(p) steps
(in expectation), so that the “missed rewards” on account of
starting in s′ (as opposed to starting in s) is upper-bounded
by D(p). Indeed, one could always choose the true transition
probabilities p at every step, and implement a policy, which
takes from s′ to s in D(p) steps (that such a policy exists,
follows from definition of the diameter). However, in the case of
CMDP, the agent is not only maximizing the rewards, but also
making sure that the cost expenditures are below their respec-
tive thresholds, i.e., it is solving a multiobjective optimization
problem and it is not clear how to convert these multiobjective

6See [10] for more details.

criteria to a scalar objective function. One could argue that
consideration of the Lagrangian would allow us to “scalarize”
this problem, so that we could derive an upper-bound on the
span of the bias function associated with the extended MDP that
maximizes r(x(t), u(t)) +

∑
i λici(x(t), u(t)). However, this

result will then depend upon the values of Lagrange multipliers
λi, i = 1, 2, . . . ,M , and in order for such upper-bounds to be
useful, we would have to derive bounds on these multipliers.
It is not clear how such a bound could be derived. In order
to overcome this difficulty, we instead view UCRL-CMDP as
an index policy, derive upper and lower bounds on the indices
of stationary policies, and upper-bound the number of times
“suboptimal policies” are played.

V. PROOF OF THEOREM 1

We begin by introducing few notations. If B denotes a subset
of S , then we let ΠB be the set of those stationary policies
for which Pπ,p(s) > 0 for all s ∈ B. Let Bπ denote the set of
states for which Pπ,p(s) > 0. We now derive a few preliminary
results that are used while proving the main result. The following
result can be shown by an application of Azuma–Hoeffding
inequality [36].

Lemma 1: Define G1 := {p ∈ Cτk ∀k = 1, 2, . . . ,
K}. Then, P (G1) ≥ 1− 1

T b−1−(1−α) .
Lemma 2: Let nk(s, a) denote the number of visits to (s, a)

during Ek, and β > 1/2 satisfy 2β − α = 1. Define

G2 :=

{
K∑

k=1

nk(s, a)−E(nk(s, a)|Fτk)√
Nk(s, a)

≤T β

√√√√log

(
SAT

δ

)

∀(s, a) ∈ S ×A
}

(19)

where K is the total number of episodes. We have P (G2) ≥
1− δ

T .

Proof: Note that
nk(s,a)−E(nk(s,a)|Fτk

)√
Nk(s,a)

, k=1, 2, . . . ,K is a

martingale difference sequence. Furthermore, since the
duration of each episode is �Tα�, and

√
Nk(s, a) ≥ 1,

we have
nk(s,a)−E(nk(s,a)|Fτk

)√
Nk(s,a)

≤ �Tα�. By applying

Azuma–Hoeffding’s inequality to this martingale difference
sequence, we get that the probability of the event

∑K
k=1

nk(s,a)−E(nk(s,a)|Fτk
)√

Nk(s,a)
≥ T β

√√√√log

(
SAT
δ

)
can be

upper-bounded by exp
(
− T 2β

T 1−αT 2α log SAT
δ

)
= exp(−T 2β−(1+α) log SAT

δ

)
. Since 2β − (1 + α) = 0, the above

bound reduces to δ
SAT . The proof then follows by using union

bound for all state–action pairs (s, a). �
Lemma 3: If s ∈ Bπk

, then7

E (nk(s, a)|Fτk) ≥
⌊

�Tα�
2TM (p)

⌋
× πk(a|s)

2
.

7For x ∈ R, we let �x� be the greatest integer less than or equal to x.
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Proof: Within this proof, we use TM to denote TM (p). Since
we have Eπ,pTs′,s ≤ TM ∀s′ ∈ S , it follows from Markov’s
inequality that the probability with which st does not hit the
state s in 2TM steps, is less than 1/2, or equivalently the state s
is visited at least once with a probability greater than 1/2, which

yields us mins′∈S Eπ

(∑2TM

t=1 1{st = s}|s0 = s′
)
≥ 1/2. The

proof is then completed by dividing the total time of �Tα� steps
in an episode into “mini-episodes” of2TM steps each, and noting
that nk(s, a) is equal to the sum of the number of visits to (s, a)
during each such miniepisode. �

We begin by giving an equivalent characterization of the
UCRL-CMDP rule. At each τk, it assigns an index Ik(π) to
each stationary policy π as follows:

Ik(π) := max
θ∈Cτk

{
r̄(π, θ) : c̄i(π, θ) ≤ cub

i , i ∈ [M ]
}
. (20)

In case the above optimization problem is infeasible, i.e.,
c̄i(π, θ) > cub

i ∀θ ∈ Cτk for some i, then the policy is assigned
an index of −∞. UCRL-CMDP implements a policy with the
largest index during Ek.

Define the “good set”

G := G1 ∩ G2. (21)

Lemma 4: On the set G, we have the following for θ ∈ Cτk :

|r̄(π, p)− r̄(π, θ)|, |c̄i(π, p)− c̄i(π, θ)|, i ∈ [M ]

≤ 2max
s

∑
a∈A

π(a|s)ετk(s, a). (22)

Proof: Note thatP (1)
π,p,s is the vector of transition probabilities

from state s of the Markov chain that results when the policy π
is applied to the MDP p. Consider an MDP θ ∈ Cτk . Since on

G, we have p ∈ Cτk , we have ‖P (1)
π,p̂τk

,s − P
(1)
π,p,s‖1, ‖P (1)

π,p̂τk
,s −

P
(1)
π,θ,s‖1 ≤ ∑

a∈A π(a|s)ετk(s, a), where π(a|s) is the prob-
ability with which the policy implements a in state s.
From triangle inequality, we have that ‖P (1)

π,p,s − P
(1)
π,θ,s‖1 ≤

2
∑

a∈A π(a|s)ετk(s, a). Equation (22) then follows from [37],
Corollary 3.1]. �

For a stationary policy π, we say r� − r̄(π, p) is its instanta-
neous reward regret, and c̄i(π, p)− cub

i is its instantaneous cost
regret for the ith cost. We now show that if the instantaneous
reward regret, or an instantaneous cost regret of a policy is
greater than a certain threshold, this threshold depends upon
the radius of the confidence ball at time τk, then it is not played
during Ek. For a stationary policy π, define

δk(π) := 2max
s∈Bπ

∑
a∈A

π(a|s)ετk(s, a).

Consider the following two possibilities.
Case A) c̄i(π, p) > cub

i + δk(π) for some i: From (22),
we have that |c̄i(π, p)− c̄i(π, θ)| ≤ δk(π), which implies
c̄i(π, θ) > cub

i for all θ ∈ Cτk . Thus, Ik(π) = −∞.
Case B) From (22), we have that |r̄(π, p)− r̄(π, θ)| ≤ δk(π)

for all θ ∈ Cτk , so that the index Ik(π) is bounded by r̄(π, p) +
δk(π).

The following result summarizes this discussion.

Lemma 5: Let π be a stationary randomized policy. On
the set G, we have that Ik(π) = −∞ if c̄i(π, p) > cub

i +
δk(π), for some i ∈ [M ]. Also, Ik(π) ≤ r̄(π, p) + δk(π).

We now show that if a stationary policy is feasible for the MDP
p, i.e., c̄i(π, p) ≤ cub

i ∀i, then its index Ik(π) is lower-bounded
by r̄(π, p).

Lemma 6: If π is feasible for the true MDP, i.e., it satisfies
c̄i(π, p) ≤ cub

i ∀i ∈ [M ], then on G, its index satisfies Ik(π) ≥
r̄(π, p). With π set equal to the policy that solves the CMDP
maxπ{r̄(π, p) : c̄i(π, p) ≤ cub

i ∀i ∈ [M ]}, we obtain that the
index of an optimal policy is greater than r�.

Proof: Note that on the set G, the true MDP p always
belongs to Cτk . If c̄i(π, p) ≤ cub

i ∀i ∈ [M ], we have Ik(π) =
maxθ∈Cτk {r̄(π, θ) : c̄i(π, θ) ≤ cub

i , i ∈ [M ]} ≥ r̄(π, p). �
Upon combining Lemma 5 and Lemma 6, we obtain the

following result.
Lemma 7: On the set G, the instantaneous regrets during Ek

can be bounded by δk(πk).
Proof: We begin by bounding cost regrets. Consider a station-

ary policy π. In case c̄i(π, p) > cub
i + δk(πk), then it follows

from Lemma 5 that Ik(π) = −∞. However, it is shown in
Lemma 6 that there is a policy π̃, which is feasible for the true
MDP, and whose index is greater than r�. In case the index of π
is less than the index of π̃, the policy π would not be played by
UCRL-CMDP. This means that in order forπ to be a candidate to
be played during Ek, we must have c̄i(π, p) ≤ cub

i + δk(πk), or
equivalently the instantaneous cost regret of π must be bounded
by δk(πk).

In order to bound the reward regret, we note that it was shown
in Lemma 6 that the index of an optimal policy is greater than
r�, and since the index Ik(πk) must be greater than or equal
to the index of an optimal policy, we must have Ik(πk) ≥
r�. From Lemma 5, we have Ik(πk) ≤ r̄(π, p) + δk(πk). Upon
combining these inequalities, we obtain r̄(π, p) + δk(πk) ≥ r�,
or r̄(π, p) ≥ r� − δk(πk). This shows that the instantaneous
reward regret r� − r̄(π, p) is bounded by δk(πk). �

We now use the result on instantaneous regrets in order to
bound the cumulative regrets of UCRL-CMDP.

Proof of Theorem 1: We will only derive upper-bound on
the reward regret, since the bound on cost regrets can be derived
by following similar steps. Now, E

(∑
t∈Ek r

� − r (st, at)
)
=

E
(

E
{∑

t∈Ek r
� − r̄(πk, p) + r̄ (πk, p)− r(st, at)

∣∣∣Fτk

})
. It

follows from (17) that we have E{∑t∈Ek r̄(πk, p)−
r(st, at)|Fτk} ≤ C

1−ρ , and hence the expected regret during

Ek can be bounded by E
(

E
{∑

t∈Ek r
� − r̄(πk, p)

∣∣∣Fτk

})
+

C
1−ρ . Let Δ

(R)
k := E

{∑
t∈Ek r

� − r̄(πk, p)|Fτk

}
denote the

regret incurred during the kth episode. Thus, the cumulative
expected regret can be bounded as follows:

EΔ(R)(T ) ≤ E

(
K∑

k=1

Δ
(R)
k

)
+K

C

1− ρ
(23)

where K is the total number of episodes. Henceforth, we
will focus on bounding the first term

∑K
k=1 Δ

(R)
k in the r.h.s.

above. This is bounded separately on the sets G,Gc
1,Gc

2.
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We begin by bounding
∑K

k=1 Δ
(R)
k on G. Since from

Lemma 7, the instantaneous regret on G during Ek can be
bounded by δk(πk), we have

Δ
(R)
k ≤ δk(πk)|Ek|

≤ 4TM

∑
(s,a):s∈Bπk

E(nk(s)|Fk)
πk(a|s)

√
2 log (T b|S||A|)√
Nk(s, a)

+ 4TM

∑
(s,a):s∈Bπk

{ |Ek|
2TM

1

2
− E(nk(s)|Fk)

}

× πk(a|s)
√

2 log (T b|S||A|)√
Nk(s, a)

≤ 4TM

×
∑

(s,a):s∈Bπk

E(nk(s)|Fk)
πk(a|s)

√
2 log (T b|S||A|)√
Nk(s, a)

(24)

where the last inequality follows from Lemma 3. We will now
bound the term

∑K
k=1

∑
(s,a):s∈Bπk

E(nk(s)|Fk)πk(a|s)√
Nk(s,a)

. We have

K∑
k=1

E(nk(s)|Fk)πk(a|s)√
Nk(s, a)

=

K∑
k=1

E(nk(s, a)|Fk)√
Nk(s, a)

=
K∑

k=1

nk(s, a)√
Nk(s, a)

+
K∑

k=1

E(nk(s, a)|Fk)− nk(s, a)√
Nk(s, a)

. (25)

As is shown in [10], p. 1578], the term
∑K

k=1

∑
(s,a)

nk(s,a)√
Nk(s,a)

can be bounded by
(√

2 + 1
)√

SAT on each sample path

while from (19), we have that on G2, the term
∑K

k=1

E(nk(s,a)|Fk)−nk(s,a)√
Nk(s,a)

is bounded by T β

√
log

(
SAT
δ

)
. It

follows from (25) and the discussion above that on
G, we have

∑
(s,a):s∈Bπk

∑K
k=1

E(nk(s)|Fk)πk(a|s)√
Nk(s,a)

≤ (√
2 + 1

)
√
SAT + T β log1/2(SAT/δ). Upon summing (24) over

episodes, and using the above inequality, we obtain that the regret
on G can be bounded as follows:

K∑
k=1

Δ
(R)
k ≤ 4TM

√
2 log (T b|S||A|)

×
((√

2 + 1
)√

SAT + T β log1/2 (SAT/δ)
)
. (26)

This completes the analysis on G.
We now analyze the regret on Gc

2. From Lemma 2, the
probability of Gc

2 is bounded by δ. On Gc
2, the sample path

regret
∑K

k=1 Δ
(R)
k can be trivially bounded by T , so that its

contribution to the expected regret is bounded by δT .
To analyze the regret on Gc

1, we note that if the confidence
ball Cτk at time τk fails, then the regret during Ek can be
bounded by the duration of Ek. Since τk+1 − τk = �Tα�, the
regret during Ek is bounded by �Tα�. From Lemma 1, we have

that the probability with which confidence ball fails at time t is
upper-bounded by 2

T 2b−1|S||A| . Hence, the expected regret from
the failure of ball (in case an episode starts at t) at time t is
bounded by 2�Tα�

T 2b−1|S||A| , so that the cumulative expected regret is

bounded by 2
T 2b−2|S||A| . �

VI. LEARNING UNDER-BOUNDS ON COST REGRET

The upper-bounds for the regrets of UCRL-CMDP in Theo-
rem 1 are the same for reward and M costs regrets. However,
in many practical applications, an agent is more sensitive to
overutilizing certain specific costs, as compared to the other
costs. Thus, in this section, we derive algorithms that enable
the agent to tune the upper-bounds on the regrets of different
costs. We also quantify the reward regret of these algorithms.

A. Modified UCRL-CMDP

Throughout this section, we assume that p satisfies the fol-
lowing condition.

Assumption 2: For the MDPp, there exists a stationary policy
under which the average costs are strictly below the thresholds
{cub

i : i = 1, 2, . . . ,M}. More precisely, there exists an ε > 0
and a stationary policyπfeas. such that we have c̄i(πfeas.) < cub

i −
ε ∀i ∈ [M ]. Define

η := min
i∈[M ]

{
cub
i − ε− c̄i(πfeas.)

}
. (27)

The modified algorithm maintains empirical estimates p̂t
and confidence intervals Ct (11) in exactly the same manner
as UCRL-CMDP (see Algorithm 1) does. It also proceeds in
episodes of duration �Tα� steps and uses a single stationary
control policy within an episode. However, at the beginning
of each episode k, it solves an optimization problem, which
is a modification of (12)–(16). More concretely, the cost con-
straints (13) are replaced by the following modified constraints:∑

(s,a)∈S×A
μ(s, a)ci(s, a) ≤ cub

i − di, i ∈ [M ]

where di := biε, i ∈ [M ], and the parameters bi ∈ (0, 1), i ∈
[M ] are chosen by the agent. If this problem is feasible, let μ̃k

be an optimal occupation measure obtained by solving it. In
this case, the agent implements SR(μ̃k) within Ek. However, in
case the problem is infeasible, then it implements a stationary
controller that has been chosen at time t = 0. We derive upper-
bounds on the regrets of the modified UCRL-CMDP algorithm
in the following result.

Theorem 2: Consider the modified UCRL-CMDP algorithm
with δ = 1/T 1/3, α = 1/3 applied to an MDP p that satisfies
Assumption 1 and Assumption 2. Then, the expected reward
regret can be upper-bounded as follows:

EΔ(R)(T )

≤ 4TM

((√
2 + 1

)√
SAT + T 2/3

√
log

(
SAT 4/3

))

+
C

⌈
T 2/3

⌉
1− ρ

+ T 2/3 +
2

T 2b−2|S||A| + zT (28)
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where z = (maxi bi)
η̂
η ε, η is as in (27) and

η̂ := max
(s,a)∈S×A

r(s, a)− min
(s,a)∈S×A

r(s, a). (29)

The expected cost regret can be upper-bounded as follows:

EΔ(i)(T ) ≤ 4TM

√
2 log (T b|S||A|)

×
((√

2 + 1
)√

SAT + T 2/3
√

log
(
SAT 4/3

))

+
C

⌈
T 2/3

⌉
1− ρ

+ T 2/3 +
2

T 2b−2|S||A| − biεT, i ∈ [M ]. (30)

Remark 2: Note that the prefactor in the O(T ) term in (28)
depends upon ε linearly, and this quantity can be tuned by the
agent. When ε = T−1/3, then EΔ(R)(T ) can be bounded as
O

(
T 2/3

)
.

VII. PROOF OF THEOREM 2

Proof closely follows the proof of Theorem 1, hence we
point out only the key differences. The modified UCRL-CMDP
algorithm assigns the following modified index8 to policy π:

Ik(π) := max
θ∈Cτk

{
r̄(π, θ) : c̄i(π, θ) ≤ cub

i − di, i ∈ [M ]
}
.

If for some i we have c̄i(π, θ) > cub
i − di ∀θ ∈ Cτk , then we

set Ik(π) = −∞.
The proof of next result is omitted since it is similar to that of

Lemma 5.
Lemma 8: Let π be a stationary randomized policy. On

the set G we have that Ik(π) = −∞ if c̄i(π, p) > cub
i − di +

δk(π) for some i ∈ [M ]. Also, Ik(π) ≤ r̄(π, p) + δk(π).
The following result allows us to derive bounds on the instan-

taneous regrets.
Lemma 9: If a stationary policy π satisfies c̄i(π, p) ≤ cub

i −
di, ∀i ∈ [M ], then onG its index satisfiesIk(π) ≥ r̄(π, p). With
π set equal to the policy which solves the CMDP maxπ r̄(π, p)
such that c̄i(π, p) ≤ cub

i − di ∀i ∈ [M ], on G the index of such
a policy satisfies Ik(π) ≥ r� − z, where z is as in Theorem 2.

Proof: We note that on the set G, the true MDP p always
belongs to Cτk . Since c̄i(π, p) ≤ cub

i − di ∀i ∈ [M ] this means
that the index of π satisfies

Ik(π) = max
θ∈Cτk

{
r̄(π, θ) : c̄i(π, θ) ≤ cub

i − di, i ∈ [M ]
}

≥ r̄(π, p).

It follows from Lemma 14 that the optimal value of the CMDP
maxπ r̄(π, p), such that c̄i(π, p) ≤ cub

i − di ∀i ∈ [M ], is greater
than or equal to r� − z. Hence, it follows from the discussion
above that the index of the policy, which is optimal for this
CMDP is greater than or equal to r� − z. �

As earlier, we bound the regret on the sets G,Gc
1 and Gc

2

separately. On G, the regret is bounded by the time spent playing
suboptimal policies.

8To avoid introducing unnecessary notation, we continue to use the same
notation for denoting the modified indices as that used to denote the indices of
UCRL-CMDP.

Lemma 10: For the modified UCRL-CMDP algorithm, on the
set G the instantaneous reward regret during Ek can be bounded
by δk(πk) + z while the instantaneous cost regret associated
with the ith cost can be bounded by δk(πk)− di.

Proof: Consider a stationary policy π for which c̄i(π, p) >
cub
i − di + δk(πk). It follows from Lemma 8 that the index

of this policy satisfies Ik(π) = −∞. However, it is shown in
Lemma 9 that there is a policy π̃ that has index greater than
r� − z. Since Ik(π) is less than the index of π̃, π will not be
played by UCRL-CMDP during Ek. Thus, in order π to be a c
means that c̄i(π, p) ≤ cub

i − di + δk(πk), which shows that the
instantaneous cost regret is bounded by δk(πk)− di.

In order to bound the instantaneous reward regret, note that it
was shown in Lemma 9 that there is a policy with index greater
than r� − z. Hence, the index of πk is necessarily greater than
r� − z. Since from Lemma 8, we have that the index of πk is
upper-bounded by r̄(π, p) + δk(πk), we must have r̄(π, p) +
δk(πk) ≥ r� − z, or equivalently r� − r̄(π, p) ≤ δk(πk) + z.
This shows that the instantaneous reward regret is bounded by
δk(πk) + z. �

Proof of Theorem 2: Since the proof closely follows that of
Theorem 1, we only point out the key differences. The regret
decomposition result (23) holds for reward as well cost regrets.
Similarly, the regrets on Gc

2 and Gc
1 can be bounded by δT

and 2
T 2b−2|S||A| , respectively. The only difference from the proof

of Theorem 1 arises while bounding the terms
∑

k Δ
(R)
k and∑

k Δ
(i)
k . It follows from Lemma 10 that the bound on

∑
k Δ

(R)
k

differs from (24) by an additional term zT , and similarly, the
bound on

∑
k Δ

(i)
k differs from the earlier bound by an additional

term εbiT . The proof is then completed by summing the bounds
on regrets over the sets G,Gc

1,Gc
2. �

VIII. ACHIEVABLE REGRET VECTORS

Let λ ≥ 0M . Consider the Lagrangian relaxation of (2)–(3)

L(λ;π) := lim inf
T→∞

Eπ

∑T
t=1 r(st, at) + λ · (cub − c(st, at)

)
T

where c(st, at) is the vector that consists of costs ci(st, at), i ∈
[M ]. Consider its associated dual function [38], D(λ) :=
maxπ L(λ;π), and the dual problem

min
λ≥0

D(λ). (31)

Define the diameter D(p) of MDP p as follows, D(p) :=
maxs,s′ minπ Eπ,pTs,s′ .D(p) is finite if p is communicating [2].

Theorem 3: There is a problem instance such that the regrets
Δ(R)(T ), {Δ(i)(T )}Mi=1 under any learning algorithm φ satisfy

EφΔ
(R)(T ) +

M∑
i=1

λ�
i EφΔ

(i)(T ) ≥ .015 ·
√
D(p)SAT (32)

where λ� is an optimal solution of the dual problem (31),
and subscript denotes that expectation is taken with respect to
probability measure induced by φ.

Proof: We begin by considering an auxiliary reward
maximization problem that involves the same MDP p, but in
which the reward received at time t by the agent is equal to
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Fig. 1. Plot of the (a) reward regret and (b) cost regret for the network
in which the desired delay is cub = 4.5.

r(st, at) + λ · (cub − c(st, at)) instead of r(st, at). However,
there are no average cost constraints in the auxiliary problem.
Let φ′ be a history-dependent policy for this auxiliary problem.
Denote its optimal reward by r�(λ). Then, the regret for cumu-
lative rewards collected by φ′ in the auxiliary problem is given
by r�(λ)T − Eφ′ [

∑T
t=1 r(st, at) + λ · (cub − c(st, at))]. It

follows from [10], Th. 5] that the controlled transition
probabilities p(s, a, s′) of the underlying MDP can be chosen
so that this regret is greater than 0.015

√
D(p)SAT , i.e.,

r�(λ)T − Eφ′
[∑T

t=1 r (st, at) + λ · (c (st, at)− cub
)] ≥

0.015
√

D(p)SAT . We observe that any valid learning
algorithm for the constrained problem is also a valid algorithm
for the auxiliary problem. Thus, if φ is a learning algorithm for
the problem with average cost constraints, then we have

r�(λ)T − Eφ

[
T∑

t=1

r(st, at) +

M∑
i=1

λi

(
cub
i − ci (st, at)

)]

≥ 0.015
√

D(p)SAT . (33)

We now substitute (34) in the above to obtain Eφ Δ
(R)(T ) +∑M

i=1 λi Eφ Δ
(i)(T ) ≥ 0.015

√
D(p)SAT + r�T − r�(λ)T .

Since the r.h.s. is maximized for values of λ, which
are optimal for the dual problem (31), we set it equal
to λ�, and then use Lemma 11 in order to obtain
Eφ Δ

(R)(T ) +
∑M

i=1 λiEφ Δ
(i)(T ) ≥ 0.015

√
D(p)SAT . �

IX. SIMULATION RESULTS

We compare the performance of the proposed UCRL-CMDP
algorithm with the actor-critic algorithm for CMDPs that was
proposed in [16]. Actor-critic algorithms are a popular class of
online learning algorithms [39], [40], [41] that are based on
multitime-scale stochastic approximation [42]. Note that since
the algorithms proposed in [24] and [25] are for an episodic RL
setup, we do not compare the performance of UCRL-CMDP
with algorithms proposed therein.

Experiment Setup: We consider the single-hop wireless net-
work that was discussed in Section I. For simplicity, we let
the action set A be binary and take the channel state to be
static. Thus, at = 0 means no packet was transmitted while
at = 1 means one packet is attempted. Let At ∈ {0, 1, 2, 3}
be the number of packet arrivals, which are assumed i.i.d.
across times with mass function (0.65, 0.2, 0.1, 0.05) for the
experiments shown in Figs. 1 and 2. Queue length evolves
as Qt+1 = (Qt +At −Dt)

+ ∧B, t = 0, 1, 2, . . . , where B is

Fig. 2. Plot of the normalized (a) reward regret and (b) cost regret, as
the desired delay cub is varied.

the capacity of the buffer9 while Dt is the number that is
delivered to destination at time t. In our experiments, we use
B = 6 and take the channel reliability as 0.9.

Actor-Critic Algorithm for CMDPs: Let a(n) = 1/n, b(n) =
1/(n log n) and c(n) = 1/(n log2 n). Let Q := {x ∈ R|A|−1 :

xi ≥ 0∀i,∑|A|−1
j=1 xj ≤ 1} denote the simplex of subproba-

bility vectors. Let Γ(·) denote the map that projects a vec-
tor onto Q. It begins by replacing the original constrained
MDP by an unconstrained one by imposing a penalty upon
constraint violation. The instantaneous reward for this mod-
ified MDP is equal to r(st, at)− λ̃t(c(st, at)− cub) where
λ̃t ≥ 0 is the price associated with the constraint violation.
In order to solve this unconstrained MDP, the algorithm
keeps an estimate of the value function Vt : S 
→ R, which is
updated as Vt+1(s) = Vt(s) + a(Nt(s))1{st = s}(r(s, ut) +
λ̃tc(s, ut)− Vt(s)− Vt(s

�) + Vt(st+1)), where s� is a des-
ignated state. Let πt(a|s) denote the probability with which
action a is implemented in state s at time t. Let a� be a
designated action. These probabilities are generated as follows.
The algorithm maintains vectors π̂t(s) = {π̂t(a|s) : a ∈ A},
s ∈ S , and updates it as π̂t+1(s) = Γ(π̂t(s) + �), t = 1, 2, . . . ,
where, � =

∑
a �=a� b(Nt(s, a))× 1{st = s, at = a}π̂t(s, a)×

[Vt(s) + Vt(s
�)− r(s, a) + λ̃tc(s, a)− Vt(st+1)]ej , where ea

is the unit vector with a 1 in the place corresponding to action
a.10 The probability for action a� is computed as π̂t(a

�|s) =
1−∑

a �=a� π̂t(a|s). The action probabilities πt are then gener-
ated from π̂t as πt(a|s) = (1− εt)π̂t(a|s) + εt

|A| , a ∈ A, where

εt → 0. Finally, the price λ̃t is updated as λ̃t+1 = [̃λt +
γt(c(st, at)− cub)]+, where cub is the threshold on average
queue length. In our experiments, we use s� = B, a� = 0 and
εt = 1/t.

Results: Fig. 1 compares the cumulative regrets incurred by
these algorithms. We observe that the reward regret as well as the
cost regret of UCRL-CMDP are low. We observe the following
drawback of the actor-critic algorithm’s performance that the
cost regret is prohibitively high. We then vary the budget cub

on the average queue length. These results are shown in Fig. 2.
Once again, we make a similar observation that UCRL-CMDP
is effective in balancing both, the reward regret Δ(R)(t) and
the cost regret Δ(1)(t), whereas the actor-critic algorithm yields
a high cost regret. In both of these experiments the probability
vector of arrivals was held fixed at (0.65, 0.2, 0.1, 0.05). We vary
this probability vector, and plot the regrets in Fig. 3. Once again,

9For x ∈ R, we let (x)+ := max{x, 0}, x ∧B := min{x,B}
10We enumerate the available actions as 1, 2, . . . , |A|.
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Fig. 3. Plot of the (a) reward regret and (b) cost regret, as the prob-
ability distribution of the arrivals is varied. The probability vector of
At is equal to (0.65− 0.02i, 0.2, 0.1 + 0.01i, 0.05 + 0.01i), where the
parameter i is varied from 0 to 9. The desired delay cub is held fixed at
4.5, and channel reliability at 0.9.

UCRL-CMDP outperforms the actor-critic algorithm. Though
the reward regret of actor-critic algorithm is lower than that of
the UCRL-CMDP algorithms, this occurs at the expense of an
undesirable much larger cost regret. In contrast, the reward regret
as well as the cost regret of UCRL-CMDP is low. All plots are
obtained after averaging over 100 runs.

X. CONCLUSION

In this work, we initiate a study to develop learning algorithms
that simultaneously control all the components of the regret
vector while controlling unknown MDPs. We devised algorithms
that are able to tune different components of the cost regret vector
and also obtained a nonachievability result that characterizes
those regret vectors that cannot be achieved under any learning
rule. In our work, we assume that the underlying MDP is
unichain. An interesting research problem is to characterize the
set of achievable regret vectors under the weaker assumption
that the underlying MDP is communicating.

APPENDIX A
RESULTS USED IN THE PROOF OF THEOREM 3

Lemma 11: Consider the dual problem (31) associated with
the CMDP (2)–(3), and let λ� be a solution of the dual problem.
If Assumption 2 holds true, then D(λ�) = r�.

Proof: Under Assumption 2, the CMDP (2)–(3) is strictly
feasible, so that Slater’s condition [43] is satisfied, and conse-
quently strong duality holds true. Thus, if λ� solves the dual
problem (31), we then have that D(λ�) = r�. �

Lemma 12: Let λ ≥ 0M and φ be a learning algorithm for
the problem of maximizing cumulative rewards under average
cost constraints. We then have the following:

Eφ

T∑
t=1

(r(st, at) +

M∑
i=1

λi(c
ub
i − ci(st, at)))

= r�T − EφΔ
(R)(T )−

M∑
i=1

λiEφ Δ
(i)(T ). (34)

Proof: We have, Eφ

∑T
t=1(r(st, at) +

∑M
i=1 λi(c

ub
i −

ci(st, at)))= Eφ

∑T
t=1 r(st, at) +

∑M
i=1 λi Eφ

∑T
t=1(c

ub
i −

ci(st, at))= r�T − EφΔ
(R)(T )−∑M

i=1 λiEφ Δ
(i)(T ). �

APPENDIX B
PERTURBATION ANALYSIS OF CMDPS

We derive some results on the variations in the value of
optimal reward of the CMDP (2)–(3) as a function of the cost
budgets cub. Consider a vector ĉub of cost budgets that satisfies

cub
i − ε ≤ ĉub

i ≤ cub
i ∀i ∈ [M ] (35)

where ε > 0. Now consider the following CMDP in which the
upper-bounds on the average costs are equal to {ĉub

i }Mi=1

max
π

lim inf
T→∞

1

T
Eπ

T∑
t=1

r(st, at) (36)

s.t. lim sup
T→∞

1

T
Eπ

T∑
t=1

ci(st, at) ≤ ĉub
i , i ∈ [1,M ]. (37)

Lemma 13: Let the MDP p satisfy Assumption 1 and As-
sumption 2. Let λ� be an optimal dual variable/Lagrange mul-
tiplier associated with the CMDP (36)–(37). Then, λ� satisfies∑M

i=1 λ�
i ≤ η̂

η , where the constant η is as in (27) while η̂ is as
in (29).

Proof: Within this proof, we let π�(ĉub) denote an optimal
stationary policy for (36)–(37). Recall that the policy πfeas. that
was defined in Assumption 2 satisfies c̄i(πfeas.) ≤ cub

i − η. We
have

max
(s,a)∈S×A

r(s, a) ≥ r̄(π�(ĉub))

= r̄(π�(ĉub)) +

M∑
i=1

λ�
i

(
ĉub
i − c̄i(π

�(ĉub)
)

≥ r̄(πfeas.) +

M∑
i=1

λ�
i

(
ĉub − c̄(πfeas.)

)

≥ min
(s,a)∈S×A

r(s, a) +

M∑
i=1

λ�
i

(
ĉub − c̄(πfeas.)

)

≥ min
(s,a)∈S×A

r(s, a) + η

M∑
i=1

λ�
i

where the second inequality follows since a policy that is
optimal for the problem (36)–(37) maximizes the Lagrangian
r̄(π) +

∑M
i=1 λi(ĉ

ub
i − c̄i(π)) when the Lagrange multiplier λ

is set equal to λ� [38]. Rearranging the above inequality yields
the desired result. �

Lemma 14: Let the MDPp satisfy Assumption 1 and Assump-
tion 2. If r�(ĉub) denotes optimal reward value of (36)–(37),
and r� is optimal reward of problem (2)–(3), then we have
that r� − r�(ĉub) ≤ (maxi∈[1,M ]{cub

i − ĉub
i }) η̂η , where η̂ is as

in (29), η is as in (27), and ĉ satisfies (35).
Proof: As discussed in Section III-B, a CMDP can be posed

as an LP. Since under Assumption 2, both the CMDPs (2)–(3)
and (36)–(37) are strictly feasible, we can use the strong duality
property of LPs [38] in order to conclude that the optimal value
of the primal and the dual problems for both the CMDPs are

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 16,2025 at 06:45:20 UTC from IEEE Xplore.  Restrictions apply. 



452 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 1, MARCH 2023

equal. Thus,

r� = sup
π

inf
λ

r̄(π) +

M∑
i=1

λi

(
cub
i − c̄i(π)

)
(38)

r�(ĉub) = sup
π

inf
λ

r̄(π) +

M∑
i=1

λi

(
ĉub
i − c̄i(π)

)
. (39)

Let π(1), π(2) and λ(1), λ(2) denote optimal policies and vector
consisting of optimal dual variables for the two CMDPs. It then
follows from (38) and (39) that, r� ≤ r̄

(
π(1)

)
+

∑M
i=1 λ

(2)
i(

cub
i − c̄i

(
π(1)

))
, and r�

(
ĉub

) ≥ r̄
(
π(1)

)
+

∑M
i=1 λ

(2)
i (ĉub

i −
c̄i
(
π(1)

)
). Subtracting the second inequality from the first

yields r� − r�
(
cub

) ≤ ∑M
i=1 λ

(2)
i

(
cub
i − ĉub

i

) ≤ (maxi∈[1,M ]{
cub
i − ĉub

i

}
)
(∑M

i=1 λ
(2)
i

)
≤ (

maxi∈[1,M ]

{
cub
i − ĉub

i

} )
η̂
η ,

where the last inequality follows from Lemma 13. �
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