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ABSTRACT

Secure computation has demonstrated its potential in several practical use-cases,
particularly in privacy-preserving machine learning (PPML). Robustness, the
property that guarantees output delivery irrespective of adversarial behaviour, and
efficiency, are the two first-order asks of a successfully deployable PPML frame-
work. Towards this, we propose the first robust, highly-efficient mixed-protocol
framework, MPCLeague that works with four parties, offers malicious security,
and supports ring. MPCLeague has a multifold improvement over ABY3 (Mo-
hassel et al. CCS’18), a 3-party framework achieving security with abort, and
improves upon Trident (Chaudhari et al. NDSS’20), a 4-party framework achiev-
ing security with fairness. MPCLeague’s competence is tested with extensive
benchmarking for deep neural networks such as LeNet and VGG16, and support
vector machines.

Recent advancements in machine learning (ML) have shown progress in various applications such
as autonomous driving (Schwarting et al., 2018), voice assistance (Xiong et al., 2018), and even
surpassed humans in healthcare applications such as classifying echocardiograms (Madani et al.,
2017). To address the issue of privacy of individuals who contribute to the training data, the field
of privacy-preserving machine learning (PPML) has been emerging, which allows to carry out ML
tasks in a privacy-preserving way. Further, to aid the compute-intensive PPML tasks, the paradigm
of secure outsourced computation (SOC) has gained popularity, where clients can outsource the
training/prediction computations to computationally powerful servers that can be availed on a ‘pay-
per-use’ basis from Cloud service providers. Lately, secure multiparty computation (MPC) based
techniques (Mohassel & Zhang, 2017; Mohassel & Rindal, 2018; Riazi et al., 2018; Makri et al.,
2019; Wagh et al., 2019; Chaudhari et al., 2019; 2020; Patra & Suresh, 2020; Byali et al., 2020) for
PPML in SOC setting have gained interest, where a server enacts the role of a party in the MPC
protocol. MPC (Yao, 1982; Goldreich et al., 1987; Chaum et al., 1988) allows mutually distrusting
parties to compute a function in a distributed fashion while guaranteeing privacy of the parties’
inputs and correctness of their outputs against any coalition of t parties.

Efficiency is the first ask of a PPML framework. We work towards this goal in the 4-party (4PC)
setting (honest majority) (Gordon et al., 2018; Chaudhari et al., 2020; Byali et al., 2020; Koti et al.,
2020). Robustness is yet another essential of a successfully deployable PPML protocol via MPC.
Robustness or guaranteed output delivery (GOD) ensures that all honest protocol participants receive
the output of the computation irrespective of the adversarial behaviour. In the SOC setting, carrying
out the computation via a robust MPC protocol among the servers prevents the adversary from
aborting the computation and guarantees correct output delivery to the clients, regardless of the
adversary’s misbehaviour. Thus, a robust protocol prevents the adversary from repeatedly causing
the computations to rerun, thereby saving a client’s valuable time and resources. Preventing repeated
failures, robustness upholds the trust and interest of clients in the system. Several works (Mohassel
& Rindal, 2018; Wagh et al., 2019; Patra & Suresh, 2020; Chaudhari et al., 2020) realizing PPML
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via MPC settle for weaker guarantees such as abort1 and fairness2. Achieving the strongest notion
of GOD without degrading performance is an interesting goal which is the focus of this work.

To enhance practical efficiency, many recent works (Baum et al., 2016; Damgård et al., 2018; Keller
et al., 2018; Chaudhari et al., 2019; 2020; Patra & Suresh, 2020; Byali et al., 2020) resort to the
preprocessing paradigm, which casts protocols into two phases; a preprocessing phase where input-
independent (but function-dependent), computationally heavy tasks can be computed, followed by
a fast online phase. This paradigm is well suited for PPML in SOC where ML algorithms are
evaluated several times, and the algorithm is known beforehand. Further, recent works (Demmler
et al., 2015; Damgård et al., 2018; 2019) propose MPC protocols over 32 or 64 bit rings to leverage
CPU optimizations. We follow the preprocessing paradigm and work over ring.

MPC protocols can be categorized as low-latency and high-throughput, where the former, based
on garbled circuits (GC), require higher communication than the latter. High-throughput protocols
work over secret shared data over the boolean ring Z2 or arithmetic ring Z2` and aim at mini-
mizing the communication overhead (bandwidth) at the expense of non-constant rounds. While
high-throughput protocols enable efficient computation of functions such as addition, multiplication
and dot-product, other functions such as division are best performed using garbled circuits. Fur-
ther, activation functions such as ReLU used in Neural Networks (NN) training, alternate between
multiplication and comparison, where multiplication is better suited in the arithmetic world and
comparison is more efficient when performed in the boolean world. Hence, MPC protocols working
over different representations (arithmetic/boolean/garbled circuit based) can be mixed to achieve
better efficiency. This motivated the need for mixed protocols (Demmler et al., 2015; Mohassel &
Zhang, 2017; Mohassel & Rindal, 2018; Aly et al., 2019; Rotaru & Wood, 2019; Chaudhari et al.,
2020; Patra et al., 2020) where each protocol is executed in a world where it performs the best.
However, switching between different worlds necessitates efficient conversions to alternate between
different (sharing) representations. In this work, we propose, to the best of our knowledge, the first
robust mixed-protocol PPML framework via MPC with four parties in honest majority setting.

Related Work: The mixed-protocol framework for MPC was first shown to be practical by
TASTY (Henecka et al., 2010), which combined garbled circuits with homomorphic encryption.
Motivated by ABY (Demmler et al., 2015) that combines arithmetic, boolean and garbled style
computation, and proposes protocols to switch between the arithmetic/boolean/garbled worlds for 2
parties, ABY3 (Mohassel & Rindal, 2018) and SecureNN (Wagh et al., 2019) extend the idea to 3
parties and apply the technique to the ML domain. The recent work of ABY2.0 (Patra et al., 2020)
improves upon the ABY framework, providing a fast online phase, with applications to PPML. Re-
lying on secret-sharing based protocols, (Wagh et al., 2020) also provides a 3PC framework for deep
learning and is comparable to (Mohassel & Rindal, 2018), but is not suitable for the WAN setting.
In 4PC, Trident (Chaudhari et al., 2020) provides an efficient mixed-protocol PPML framework
that improves over ABY3 and provides security with fairness. Recently, SWIFT (Koti et al., 2020)
presents an efficient, robust PPML framework with protocols as fast as the fair protocols of Trident
and twice faster than GOD protocols of FLASH (Byali et al., 2020), but lacks support for neural
network training.

1 OUR CONTRIBUTIONS

We design the first robust 4PC mixed-protocol framework, with applications to PPML training and
inference, tolerating at most one malicious corruption, that efficiently combines arithmetic, boolean
and garbled worlds. Towards this, we propose two robust GC-based protocols, tailor-made to act
as the garbled world for our mixed protocol framework with a trade-off in online latency and pre-
processing communication. Our mixed framework efficiently combines our garbled world with an
improved variant of arithmetic/boolean world based on SWIFT (Koti et al., 2020), and provides ef-
ficient end-to-end conversions to switch between the worlds. We assume a one-time key setup phase
and work in preprocessing model, which paves the way for a fast online phase.

Robust and Improved Arithmetic/Boolean 4PC. Working over the ring Z2` , we propose new
protocols for 2,3 and 4 input multiplication, allowing multiplication of 3 and 4 inputs in one shot
in the latter cases. Naively, a 3/4-input multiplication given access to 2-input multiplication will

1This property may allow the corrupt parties alone to learn the output.
2This property ensures delivery of output, to all participants or none, depending on the adversarial behaviour.

2



Published as a conference paper at ICLR 2021

inflate the communication cost and rounds by at least 2×. Our contribution lies in keeping the
online communication cost and the online round requirement invariant of the number of inputs while
trading off the offline cost. The technical core of this result is a new 2-input multiplication protocol,
inspired by (Koti et al., 2020), which allows easy extension to the multi-input setting while retaining
the communication cost as that in (Koti et al., 2020). Coupled with optimized parallel prefix adder
circuit from (Patra et al., 2020), our multi-input multiplications bring in a 2× improvement in online
rounds, as well as an improvement in online communication of secure comparison protocol, thereby
yielding improvements in ReLU protocol used in PPML algorithms. Further, inspired by (Mazloom
et al., 2020), we show, for the first time in GOD setting, how multiplication with truncation can be
performed without any overhead. All these bring in huge efficiency gains for PPML.

Robust 4PC Mixed-Protocol Framework. The efficiency lift of our framework compared to exist-
ing frameworks stands on the following useful observation– a large portion of computation in most
of the MPC-based PPML framework is done over the arithmetic and boolean world; they switch
to the garbled world to perform the non-linear operations (e.g., softmax) that are expensive in the
arithmetic/boolean world and switch back to the arithmetic/boolean world immediately after. We
leverage this phenomenon in two ways. First, we propose a robust tailor-made GC-based protocol,
which wins over the existing works of (Ishai et al., 2015; Byali et al., 2018) when deployed in the
mixed framework by offering an amortized round complexity of 1 for many instances. Since the
mixed framework will need many instances of this protocol, it enjoys the impact of amortization.
The construction needs 2 GC communication. When combined with our improved (compared to
Koti et al. (2020)) multi-input multiplication-based arithmetic/boolean world, we obtain a mixed-
protocol framework, MPCLeague1, which attains a much faster online phase than the state-of-the-art
fair framework of Trident (Chaudhari et al., 2020). We introduce a second version of robust GC-
based protocol, again tailor-made for mixed-protocol setting, that requires communicating only 1
GC at the expense of 2 (amortized) rounds. This version, when combined with our improved arith-
metic/boolean world, just with the 2-input multiplication, results in a framework, MPCLeague2,
that outperforms the state-of-the-art fair framework of Trident (Chaudhari et al., 2020) in terms
of the total communication cost, yet with a slower online phase than MPCLeague1.3 Second, we
depart from the existing methods and provide efficient end-to-end conversion techniques such as
Arithmetic-Garbled-Arithmetic instead of piece-wise combinations of Arithmetic to Garbled fol-
lowed by a Garbled to Arithmetic conversion. Such a conversion benefits from not having to gen-
erate a full-fledged garbled-shared output after the garbled computation. This results in end-to-end
conversions that need just a single round for the first variant of our garbled world (cf. Table 2). The
above two changes bring in huge impact performance-wise.
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Figure 1: Training: in terms of PTon and CTon (cf. Table 3)

PPML and Benchmarking. We demonstrate the practicality of our framework by benchmarking
the training and inference phases of deep Neural Networks (NN) such as LeNet (LeCun et al.,
1998) (NN-3) and VGG16 (Simonyan & Zisserman, 2014) (NN-4), Convolutional Neural Networks
(CNN) (NN-1, NN-2), and the inference phase of Support Vector Machines (SVM). We benchmark
our protocols against SWIFT (Koti et al., 2020) 4PC (tackles only inference) and Trident (Chaudhari
et al., 2020) from 4PC regime, and SWIFT 3PC (tackles only inference) and ABY3 (Mohassel &
Rindal, 2018) from 3PC regime. The protocols are benchmarked over a Wide Area Network (WAN),
instantiated using n1-standard-64 instances of Google Cloud4. The machines are equipped with 2.3
GHz Intel Xeon E5 v3 (Haswell) processors supporting hyper-threading, with 8 vCPUs, and 30 GB

3Recall that 3/4-input multiplication results in extra overhead in preprocessing phase compared to 2-input
multiplication. This pulls down the total communication cost of the resultant framework. This is why MP-
CLeague2 resorts to standard 2-input multiplication to defeat Trident with respect to total communication cost.

4https://cloud.google.com/
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of RAM Memory. We use a bandwidth of 50 MBps. We implement our protocols using the publicly
available ENCRYPTO library (Cryptography & at TU Darmstadt, 2017) in C++17.

We evaluate the protocols for a variety of parameters as given in Table 3 which are based on runtime
and communication. The two versions of our robust framework, MPCLeague1 and MPCLeague2
cater to different deployment scenarios. While MPCLeague1 is designed to provide fast online re-
sponse time, MPCLeague2 provides an overall improvement in communication over the fair frame-
work of Trident (Chaudhari et al., 2020). The asymmetric roles of the parties in our framework (2
active parties as opposed to 3 in Trident) makes it an apt fit in cloud deployment scenarios, where
one pays the price for the communication and running time of the hired servers. Hence, we also
consider monetary cost (Cost) (Miao et al., 2020) in our benchmarking, which is dependent on the
communication and cumulative runtime5 of the hired servers. We compare the monetary costs of
the protocols using the pricing of Google Cloud Platform6, where for 1 GB and 1 hour of usage, the
costs are USD 0.08 and USD 3.04, respectively. To improve the performance, we also perform load
balancing. Hence, for inference, we also use online throughput (TP) as a benchmarking parameter
following Chaudhari et al. (2020); Mohassel & Rindal (2018) as it helps to analyse the effect of
improved communication and round complexity in a single shot.

Performance Comparison. We compare MPCLeague1 and MPCLeague2 with Trident in Table 1

Table 1: Comparison of Trident (Chaudhari et al., 2020) with the two versions
of MPCLeague for deep neural networks (NN-4).

Ref Training & Inference Training Inference

Comon Timeon Comtot Timetot Cost Cost TP

Trident # G# G# # G# # #

MPCLeague1   #  #   

MPCLeague2 G# #  G#  G# G#

– ‘Com’ - Communication, ‘Time’ - Runtime, ‘Cost’ - Overall Monetary
Cost, ‘TP’ - Online Throughput, on - online, tot - total (cf. Table 3)
–  - best, G# - 2nd best, # - least best (w.r.t parameter considered).

based on runtime, com-
munication and monetary
cost (cf. Table 3 for pa-
rameters and Table 7 for
concrete values). As per
the table, MPCLeague1
has the best runtime (both
online and total) when
compared to the others.
This is attributed to the
savings in round brought
in by multi-input multi-
plication. Particularly for training, the savings in rounds is also due to the use of our cus-
tomised garbled world which results in efficient conversions with a 2× improvement (over Tri-
dent) in online rounds (cf. Table 2). This has a huge impact on the round complexity of
training. Thus, for protocols which demand a fast response-time, MPCLeague1 is best suited
due to its fast online phase. On the other hand, MPCLeague2 slightly underperforms com-
pared to Trident (loss < 1%) due to additional rounds incurred in verification. However, this
gap closes-in for deeper networks. Comparison of our framework with Trident with respect to
online runtime for training and inference is summarised in Fig. 1 and Fig. 2, respectively.
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Figure 2: Inference in terms of PTon and CTon (cf. Table 3)

With respect to online
communication, MP-
CLeague1 performs best
due to improvements
brought in by multi-input
multiplication. However,
with respect to the total
communication, MP-
CLeague2 outperforms
as it requires 1 less
GC compared to MP-
CLeague1 and also due to
the absence multi-input
multiplication (which introduces extra overhead in the preprocessing communication).

With respect to monetary cost (cf. §A.2.4 for concrete estimations), for training, MPCLeague1 has
the highest cost (16% increase over Trident) because of the higher preprocessing communication

5Cumulative runtime is the sum of the up-time of all the hired servers.
6See https://cloud.google.com/vpc/network-pricing for network cost and

https://cloud.google.com/compute/vm-instance-pricing for computation cost.
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as mentioned earlier. Further, although MPCLeague2 is on par with Trident in terms of communi-
cation, its monetary cost is less (saving of 12.5%), owing to the presence of only 2 active parties
compared to the 3 in Trident, which helps in reducing the combined runtime. As opposed to training,
MPCLeague1 outperforms the rest for inference because the weightage given to communication is
very less over the weightage given to the runtime while estimating the monetary cost Since for the
case of inference, MPCLeague1 witnesses a 30% decrease in runtime but an 84% increase in com-
munication when compared to MPCLeague2, the effect of increased communication is nullified by
the savings in rounds while estimating the monetary cost. This results in MPCLeague1 having the
best cost (28% less than Trident). MPCLeague2 also improves over Trident, for inference, by 24%.

For inference, throughput (cf. Table 4 for concrete numbers) helps to capture the combined effect of
runtime and communication for multiple executions. Here, MPCLeague1 is a clear cut winner owing
to the minimal online communication, better round complexity and presence of only 2 active parties.
The reduced number of online parties also help MPCLeague2 to win over Trident. Concretely, both
MPCLeague1 and MPCLeague2 have at least 2× improvement over Trident.

CONCLUSION

We presented robust mixed protocol-framework for 4PC with one corruption and demonstrated its
practicality by benchmarking for NN, CNN and SVM. We provide two variants of our framework
–MPCLeague1 and MPCLeague2– with a trade-off in terms of the online runtime and overall com-
munication. While MPCLeague1 has a better online performance over Trident, MPCLeague2 has a
better overall performance. Further, our framework outperforms the 3PC framework (with abort) of
ABY3 by several orders of magnitude where we trade the strongest security and better efficiency for
sub-optimal resilience.
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A APPENDIX

A.1 COMPARISON OF CONVERSION PROTOCOLS WITH EXISTING FRAMEWORKS

Comparison of the two versions of our framework with respect to ABY3 (Mohassel & Rindal, 2018)
and Trident (Chaudhari et al., 2020) with respect to the conversion protocols appears in Table 2.

A.2 BENCHMARKING RESULTS

A.2.1 BENCHMARKING PARAMETERS

Benchmarking parameters used for comparing the performance of our framework with the existing
ones appear in Table 3.

A.2.2 DETAILED BENCHMARKING RESULT

Here we provide the detailed benchmarking results with respect to the latency, communication cost
and monetary cost considering the parameters in Table 3. The results are summarized in Table 7.

A.2.3 ONLINE THROUGHPUT FOR INFERENCE

Table 4 summarises the online throughput for inference.

A.2.4 MONETARY COST

The monetary costs of the protocols are given in Table 5, Table 6. MPCLeague1 provides the best
price for inference while MPCLeague2 provides the best price for training. This demonstrates that
although MPCLeague1 has a higher preprocessing communication, the savings in online rounds
play an important role in reducing the total price to be paid for inference. Whereas, for training,
MPCLeague2 does not incur any extra overhead in communication (it does not rely on multi-input
multiplication and uses only 1 GC), which leads to reducing the overall price compared to Trident.
Also, since we pay the price for using only 2 active parties, this helps in obtaining better prices
compared to Trident for inference and training. Concretely, our savings range up to 12.5% for
inference and 28.3% for training over Trident.

7

https://arxiv.org/abs/2004.02229v1


Published as a conference paper at ICLR 2021

Table 2: Sharing conversions of ABY3 Mohassel & Rindal (2018), Trident Chaudhari et al. (2020), MP-
CLeague1, and MPCLeague2

Protocol Reference
Communication
(Preprocessing)

Rounds
(Online)

Communication
(Online)

Arithmetic to
Garbled to
Arithmetic

ABY3 |CS3,A3,F|+ `κ 2 4`κ
Trident |CS2,S2+,F|+ 2`κ+ ` 2 `κ+ 3`

MPCLeague1 2|CF|+ 6`κ+ ` 1 2`κ+ `
MPCLeague2 |CF|+ 3`κ+ ` 2 `κ+ 2`

Arithmetic to
Garbled to

Boolean

ABY3 |CA3,F|+ κ 2 3`κ
Trident |CS2,F|+ 2`κ+ ` 2 `κ+ 3`

MPCLeague1 2|CF|+ 6`κ+ ` 1 2`κ+ `
MPCLeague2 |CF|+ 3`κ+ ` 2 `κ+ 2`

Boolean to
Garbled to
Arithmetic

ABY3 |CS3,F|+ `κ 2 4`κ
Trident |CS2+,F|+ 2`κ+ ` 2 `κ+ 3`

MPCLeague1 2|CF|+ 6`κ+ ` 1 2`κ+ `
MPCLeague2 |CF|+ 3`κ+ ` 2 `κ+ 2`

Boolean to
Garbled to

Boolean

ABY3 |CF|+ `κ 2 3`κ
Trident |CF|+ 2`κ+ ` 2 `κ+ 3`

MPCLeague1 2|CF|+ 6`κ+ ` 1 2`κ+ `
MPCLeague2 |CF|+ 3`κ+ ` 2 `κ+ 2`

Arithmetic to
Boolean

ABY3 12` log2 `+ 12` 1 + log2 ` 9` log2 `+ 9`
Trident 3` log2 `+ 2` 1 + log2 ` 3` log2 `+ `

MPCLeague 3` log2 `+ ` log2 `
∗ 3` log2 `+ `

Boolean to
Arithmetic

ABY3 12` log2 `+ 12` 1 + log2 ` 9` log2 `+ 9`
Trident 3`2 + ` 1 3`

MPCLeague 3`2 + ` 1 3`

– Notations: ` - size of ring in bits, κ - computational security parameter.
– GC notations: CS2 - 2-input garbled subtraction circuit; CS2+ - 2-input garbled subtraction circuit with its
decoding information; CS3 - 3-input garbled subtraction circuit (with input: x, y, z, output: x− y − z); CA3

- 3-input garbled addition circuit; C1,...,i - set of GCs C1, . . . ,Ci; |C1,...,i| - size of C1,...,i.
∗: can be reduced to log4 `.

Table 3: Benchmarking parameters

Notation Description

Ton,i Online runtime of party Pi.
Ttot,i Total runtime of party Pi.
PTon Protocol online runtime; maxi{Ton,i} .
PTtot Protocol total runtime; maxi{Ttot,i} .
CTon Cumulative online runtime; ΣiTon,i .
CTtot Cumulative total runtime; ΣiTtot,i .
Common Online communication.
Commtot Total communication.

TP
Online throughput;
(no. of queries handled per minute in the online phase)

Table 4: Online Throughput (#predictions/minute) for Inference

Ref. SVM NN-1 NN-2 NN-3 NN-4

ABY3 247.10 752.94 118.06 52.96 0.39
SWIFT (3PC) 1613.45 4129.03 4122.27 1877.75 342.27
SWIFT (4PC) 3331.89 9035.29 9031.45 3898.48 1022.15

Trident 1749.43 5154.36 5153.64 2064.52 511.07
MPCLeague1 5585.45 13356.52 13352.51 6269.39 1067.62
MPCLeague2 3206.68 8126.98 8123.92 3728.16 1022.15
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Table 5: Monetary Costs for Training (1 mini-batch, 103 iterations)

Ref. NN-1 NN-2 NN-3 NN-4

ABY3 318$ 2530$ 10200$ 1350000$
Trident 28$ 37$ 175$ 2880$

MPCLeague1 61$ 70$ 248$ 3340$
MPCLeague2 26$ 34$ 160$ 2520$

Table 6: Monetary Costs for Inference (105 predictions)

Ref. SVM NN-1 NN-2 NN-3 NN-4

ABY3 2750$ 1100$ 2610$ 6220$ 546000$
SWIFT (3PC) 919$ 448$ 451$ 964$ 3930$
SWIFT (4PC) 868$ 418$ 420$ 902$ 3390$

Trident 1150$ 456$ 457$ 1130$ 4340$
MPCLeague1 568$ 324$ 327$ 688$ 3110$
MPCLeague2 796$ 347$ 347$ 828$ 3290$

Table 7: Benchmarking results for ML training and inference with comparisons with Trident Chaudhari et al.
(2020), ABY3 Mohassel & Rindal (2018), SWIFT Koti et al. (2020). Parameters considered are PTon, PTtot,
CTon, CTtot, Common and Commtot(cf. Table 3 for details). Time in given in seconds and communication in
MB.

Parameter Protocol ML Training ML Inference

NN-1 NN-2 NN-3 NN-4 SVM NN-1 NN-2 NN-3 NN-4

Protocol Execution
Time Online

(PTon)

ABY3 1.24× 101 7.27× 101 2.87× 102 3.84× 104 1.55× 101 5.10× 100 5.48× 100 1.38× 101 1.56× 102

SWIFT (3PC) 4.76× 100 1.86× 100 1.86× 100 4.09× 100 1.27× 101

SWIFT (4PC) 4.61× 100 1.70× 100 1.70× 100 3.94× 100 1.25× 101

Trident 2.11× 100 2.20× 100 7.93× 100 3.79× 101 4.39× 100 1.49× 100 1.49× 100 3.72× 100 1.23× 101

MPCLeague1 1.71× 100 1.79× 100 5.41× 100 2.57× 101 2.75× 100 1.15× 100 1.15× 100 2.45× 100 7.67× 100

MPCLeague2 2.31× 100 2.40× 100 8.13× 100 3.81× 101 4.79× 100 1.89× 100 1.89× 100 4.12× 100 1.27× 101

Protocol Execution
Time Total

(PTtot)

ABY3 3.36× 101 2.25× 102 9.85× 102 1.28× 105 1.57× 101 5.47× 100 6.52× 100 1.65× 101 4.90× 102

SWIFT (3PC) 5.19× 100 2.42× 100 2.42× 100 4.96× 100 1.54× 101

SWIFT (4PC) 4.89× 100 2.17× 100 2.17× 100 4.71× 100 1.51× 101

Trident 5.53× 100 6.26× 100 2.16× 101 2.57× 102 4.49× 100 1.77× 100 1.77× 100 4.31× 100 1.47× 101

MPCLeague1 5.21× 100 5.76× 100 1.75× 101 1.85× 102 3.04× 100 1.61× 100 1.61× 100 3.22× 100 1.03× 101

MPCLeague2 5.71× 100 6.27× 100 2.02× 101 1.98× 102 4.89× 100 2.17× 100 2.17× 100 4.71× 100 1.51× 101

Cumulative Protocol
Execution Time Online

(CTon)

ABY3 2.85× 101 1.54× 102 4.76× 102 5.92× 104 3.12× 101 1.03× 101 1.13× 101 2.85× 101 3.76× 102

SWIFT (3PC) 9.61× 100 3.81× 100 3.81× 100 8.27× 100 2.54× 101

SWIFT (4PC) 9.30× 100 3.50× 100 3.50× 100 7.96× 100 2.51× 101

Trident 6.33× 100 6.60× 100 2.38× 101 1.14× 102 1.32× 101 4.46× 100 4.46× 100 1.12× 101 3.69× 101

MPCLeague1 3.50× 100 3.68× 100 1.09× 101 5.14× 101 5.59× 100 2.38× 100 2.38× 100 4.99× 100 1.54× 101

MPCLeague2 4.80× 100 4.99× 100 1.65× 101 7.64× 101 9.70× 100 3.97× 100 3.97× 100 8.43× 100 2.56× 101

Cumulative Protocol
Execution Time Total

(CTtot)

ABY3 8.04× 101 5.15× 102 2.13× 103 2.80× 105 3.16× 101 1.12× 101 1.37× 101 3.47× 101 1.20× 103

SWIFT (3PC) 1.07× 101 5.29× 100 5.29× 100 1.05× 101 3.22× 101

SWIFT (4PC) 1.02× 101 4.94× 100 4.95× 100 1.01× 101 3.20× 101

Trident 1.72× 101 1.91× 101 5.97× 101 6.56× 102 1.35× 101 5.39× 100 5.39× 100 1.28× 101 4.32× 101

MPCLeague1 1.47× 101 1.60× 101 4.31× 101 4.46× 102 6.45× 100 3.83× 100 3.83× 100 7.15× 100 2.22× 101

MPCLeague2 1.56× 101 1.70× 101 4.83× 101 4.47× 102 1.01× 101 4.90× 100 4.90× 100 1.01× 101 3.18× 101

Communication
Online

(Common)

ABY3 1.22× 103 1.07× 104 4.30× 104 5.77× 106 4.26× 100 8.23× 100 7.62× 101 1.70× 102 2.33× 104

SWIFT (3PC) 0.95× 100 0.04× 100 0.16× 100 3.54× 100 5.26× 101

SWIFT (4PC) 0.59× 100 0.03× 100 0.10× 100 2.33× 100 3.52× 101

Trident 7.74× 100 4.55× 101 5.62× 102 1.17× 104 0.59× 100 0.03× 100 0.11× 100 2.33× 100 3.52× 101

MPCLeague1 7.98× 100 4.53× 101 5.47× 102 1.15× 104 0.56× 100 0.03× 100 0.10× 100 2.23× 100 3.37× 101

MPCLeague2 7.74× 100 4.55× 101 5.62× 102 1.17× 104 0.59× 100 0.03× 100 0.11× 100 2.33× 100 3.52× 101

Communication
Total

(Commtot)

ABY3 3.06× 103 2.56× 104 1.03× 105 1.35× 107 9.95× 100 1.93× 101 1.78× 102 4.01× 102 5.44× 104

SWIFT (3PC) 2.20× 100 0.11× 100 0.47× 100 9.59× 100 1.48× 102

SWIFT (4PC) 1.37× 100 0.06× 100 0.25× 100 5.59× 100 8.42× 101

Trident 1.60× 102 2.51× 102 1.52× 103 2.84× 104 1.42× 100 0.06× 100 0.26× 100 5.59× 100 8.42× 101

MPCLeague1 5.93× 102 6.93× 102 2.58× 103 3.62× 104 2.85× 100 0.11× 100 0.45× 100 1.03× 101 1.51× 102

MPCLeague2 1.59× 102 2.40× 102 1.46× 103 2.62× 104 1.42× 100 0.06× 100 0.25× 100 5.47× 100 8.20× 101
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