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Multiple Support Recovery Using Very Few
Measurements Per Sample

Lekshmi Ramesh*”, Chandra R. Murthy

Abstract—In the problem of multiple support recovery, we are
given access to linear measurements of multiple sparse samples in
R<. These samples can be partitioned into £ groups, with samples
having the same support belonging to the same group. For a given
budget of m measurements per sample, the goal is to recover the
£ underlying supports, in the absence of the knowledge of group
labels. We study this problem with a focus on the measurement-
constrained regime where m is smaller than the support size k
of each sample. We design a two-step procedure that estimates the
union of the underlying supports first, and then uses a spectral algo-
rithm to estimate the individual supports. Our proposed estimator
can recover the supports with m < k measurements per sample,
from O (k*¢*/m*) samples. Our guarantees hold for a general,
generative model assumption on the samples and measurement
matrices. We also provide results from experiments conducted on
synthetic data and on the MNIST dataset.

Index Terms—Compressed sensing, support
concentration inequalities, spectral clustering.

recovery,

1. INTRODUCTION

E STUDY the problem of multiple support recovery
W using linear measurements, where there are n random
samples X1,..., X, taking values in R?, such that for each
i € [n], supp(X;) € {S1, ..., S} almost surely,' with S; C [d]
and S; NS; = 0 for all i # j. We assume that the samples X;
are sparse and that |S;| =k < d, i € [(]. We are given low
dimensional projections of these samples using m X d matrices
®q,...,P,. In our setting, we focus on the regime where we
have access to very few measurements per sample, namely, when
m < k. Given access to the projections Y; = ®;X;,i € [n],
and the projection matrices, we seek to recover the underlying
supports {S1,...,Se}.

This is a generalization of the well-studied problem of recov-
ering a single unknown support from multiple linear measure-
ments [1]-[5], which has been applied to solve inverse problems
in imaging, source localization, and anomaly detection [6]—[9].
It is also related to the study of sparse random effects in mixed
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linear models [10], [11]. Mixed linear models are a generaliza-
tion of linear models where an additional additive correction
component is included to model a class-specific correction to
the average behavior. This residual correction term is commonly
known as the random effect term. It is often assumed to be gener-
ated from an unknown prior distribution with zero-mean, coming
from a parametric family whose parameters are estimated by
using the class-specific data. The problem of multiple support
recovery is also discussed in [12], [13] under the assumption of
slowly varying supports.

There are two sets of unknowns in the setting described
above — the labels, indicating which support was chosen for
each sample, and the ¢ supports S1,...,Sy. Note that given
the knowledge of the labels, one could group together samples
with the same support, and use standard algorithms to recover
the support. However, in the absence of labels, the problem of
recovering the supports is much harder. A naive scheme could
be to just estimate each support individually, in which case
m = O(klog(d — k)) measurements per sample [14], [15] are
sufficient even in the presence of noise. But can we do better if we
exploit the joint structure present across the samples, since there
will be several samples that have the same support? In this work,
we show that one can operate in the measurement-constrained
regime of m < k, when a sufficiently large number of samples
is available.

A. Prior Work

For the special case with n = ¢ = 1, when there is a single k-
sparse sample of length d, it is known that m = O(k log(d — k))
measurements are necessary and sufficient to recover the support
[14] with noisy measurements, when the inputs are worst-case.
For the case with a single common support across multiple
samples (i.e., { =1 and n > 1), several previous works have
studied the question of supportrecovery in the m > k setting [1],
(2], [4].

On the other hand, in the m < k regime, it was shown recently
in [5], [16] that n = O((k?/m?)logd) samples are necessary
and sufficient, assuming a subgaussian generative model on the
samples and measurement matrices and that the measurement
matrices are drawn independently across samples. In fact, the
lower bound of [5] applies to the worst-case setting as well,
showing that while k overall measurements® suffice when m
exceeds k, at least (roughly) k? /m measurements are required
when m < k.

2The overall measurements in our model are nm.
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In [17], the problem of recovering the union of supports
from linear measurements is considered. The setting allows for
overlaps in the supports, but otherwise places no constraints.
The results when applied to the case of disjoint supports lead
to a requirement of m = O(k log d) measurements per sample,
and therefore are not applicable to our setting. Another line
of related works is on multi-task learning/multi-task sparse
estimation [18]-[20] that use hierarchical Bayesian models and
focus on recovering the samples, rather than the supports, and so
still require at least k£ measurements per sample. However, none
of these results shed light on how to recover multiple supports
when we are constrained to observe less than k£ measurements
per sample.

We also note that the setting we introduce can be used to
study the problem of performing inference tasks in a distributed
setting. This includes problems such as user profiling and heavy
hitters detection in a distributed setting [21]-[23]. In particu-
lar, the problem consists of n users with each user having a
d-dimensional vector. This vector represents, for example, the
profile of the user with scores/preferences for d attributes (e.g.
websites visited). The idea is that even though there will be a
large number of users, there will be a small set of £ “significant”
attributes that determine different user groups, with users in the
same group having preferences for similar attributes. One can
think of these profile vectors as being approximately sparse, or as
being exactly sparse by storing only the largest score values. The
goal of each user is to communicate in an efficient way the profile
vector to the center, so that the center can estimate, exactly or
approximately, the different groups of attributes. In our setting,
each user would compute a linear sketch of its profile (using the
sketch matrix shared from the center) and then communicate the
m-dimensional sketch to the center.

The measurement constrained regime is relevant here since
the availability of a large number of users can help to reduce the
sketch length per user (and therefore communication from user
to center) to less than k (this is the m < k regime that we study
in our work). In our work, we characterize the scaling of n that
is required to guarantee recovery of the different supports (the
significant attributes) at the center. Studying the disjoint support
case is a first step in this direction, and algorithms for the general
overlapping case can be built on ideas from the basic case.

There has also been some recent work in the literature on
mixture of sparse linear regressions that considers the related
problem of recovering multiple sparse vectors from linear mea-
surements [20], [24]-[28], and some recent developments on
a more general setting of mixture of low-rank models [29].
The mixture of sparse linear regressions problem shares some
similarities with the m = 1 case in our setting, but there are some
important differences. Unlike our setting, these works consider
the samples to be deterministic and do a worst-case analysis.
In particular, samples are drawn uniformly at random from a
fixed unknown set of ¢ vectors and then observed through linear
measurements. In our setting, on the other hand, it is the set of
¢ supports that is fixed and unknown, and the sample values can
be arbitrary. Further, when ¢ = 1 in the mixture of sparse linear
regressions setting, we have multiple observations from the
same unknown sparse vector, thus reducing the problem to the
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standard compressed sensing problem. On the other hand, with
¢ =m =1 in our setting, we obtain a single observation from
different sparse vectors sharing a common support. The latter
setting is harder and requires Q(k? log d) samples to recover the
common support [5].

B. Contributions and Techniques

Our approach builds on the following simple but crucial
observation: since each sample is k-sparse with support equal to
one of the §; (with the S; being disjoint), the sample covariance
matrix (1/n) Y7, X; X, exhibits a block structure under an
unknown permutation of rows and columns. This motivates the
use of spectral clustering to recover the underlying supports.
However, we only have access to low-dimensional projections
of the data. To circumvent this difficulty, we compute ®; Y; and
use these as a proxy for the data, and form an estimate of the
diagonal entries of the covariance matrix of the samples. We
build further on this idea and propose an estimator that first
determines the union of the ¢ supports from ®,Y; using the
estimator in [5]. We then construct an affinity matrix using the
proxy samples ®Y; and apply spectral clustering to estimate
individual supports from the union.

This clustering based approach to support recovery is new,
and very different from traditional approaches to sparse recovery
in the multiple sample setting. It reduces the support recovery
problem to that of recovering the structure of a certain block
matrix, a question which has been studied in the literature on
community detection on graphs [30]-[33], and for which many
algorithms are known. However, unlike the community detection
problem where an instance of the adjacency matrix is available
as an observation, the affinity matrix constructed in our case has
a more complicated structure and requires a separate, careful
analysis.

We show that using our algorithm, it is possible to recover all
the supports with fewer than k& measurements per sample. Our
algorithm is easy to implement and has computational complex-
ity that scales linearly with ambient dimension d and number of
samples n. Our main result is an upper bound on the sample
complexity of the multiple support recovery problem, stated in
Theorem 1. In similar spirit to [5], which studied the case of a
single unknown support in the measurement-constrained regime
of m < k, our work provides an algorithm for the multiple
support recovery problem in this regime. The analysis of our
algorithm involves studying spectral properties of the (random)
affinity matrix that has dependent and heavy-tailed entries. We
characterize these spectral quantities for the expected affinity
matrix, which we show has a block structure, and then use
results from matrix perturbation and matrix concentration to
obtain performance guarantees for our algorithm.

Also, we provide experimental results on synthetic and real
datasets, and show that the proposed algorithm is able to recover
the unknown supports with very few measurements per sample.
While our guarantees are for the case of disjoint supports, some
simple heuristics can be used to handle the case of overlapping
supports in practice, as we show in Section V.
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C. Organization

In the next section, we formally state the problem and the
assumptions we make in our generative model setting. This
is followed by a statement of our main result, which provides
an upper bound on the sample complexity of multiple support
recovery. We describe the estimator in Section III, and analyze
its performance in Section IV. We provide experimental results
in Section V. The technical results required for the proofs in
Section IV are available in the appendices, while algebraic
details of the proofs are provided in the full version the paper
available at [34].

D. Notation

For a matrix A, we denote its (u,v)th entry by A,,. For a
collection of matrices {A;} ,, we use A;(u,v) to denote the
(u, v)thentry of the ith matrix. Also, fora vector X j» X j; denotes
the ith component of X ;. For sets S and &', SAS' = (S\S') U
(8'\S) denotes their symmetric difference. For a vector a € R9,
supp(a) denotes the subset {i € [d] : a; # 0}, diag(a) denotes
the d x d diagonal matrix with entries of a on the diagonal,

and [d] denotes the set {1,2,...,d}. For a matrix A, we use

| Al op def SUp|4(,=1 || Az (|2 to denote the operator norm of A.

When A is symmetric, || A|| o, equals the magnitude of the largest
eigenvalue of A. We use the shorthand Z}' to denote independent
and identically distributed random variables 71, ..., Z,. For
u >0, we use I'(u) def fooo 2% le=%dz to denote the gamma
function evaluated at u.

II. PROBLEM FORMULATION AND MAIN RESULT

We consider a Bayesian setup for modeling samples
X1,..., X, taking values in R? with supp(X;) o {jeld:
Xi; #0} € {S1,..., 8¢}, where S; C [d] are unknown sets
such that |S;| = k. Specifically, we consider distributions
PO P® with?

supp (P(i)) = {z € R?: supp(z) = S;}, i€,

and n i.i.d. samples X1, ..., X,, taking values in R? and gener-
ated from a common mixture distribution

1 .
i ()
Ps,,..s. = 7 ;:1 P, ey
parameterized by the tuple (S ..., Sp). In fact, we assume that

P is a multivariate subgaussian distribution (see Appendix B
for the definition of a subgaussian random variable) with zero
mean and diagonal covariance matrix K, = diag()\;), where
the parameter \; is a d-dimensional vector for which supp()\;) =
Si, 1 € [¢]. More concretely, we make the following assumption.

Assumption 1: For a sample X; ~ P, j € [n], 4 € [¢], and
an absolute constant ¢, Epe) [X;X]] = diag();) with \; €
R4, supp()\;) = S;, and X has independent, zero-mean entries
with its ¢th entry X, satisfying X, ~ subG(cA;), ¢ € [d].

3We consider distributions P with densities fp with respect to the Lebesgue
measure and define supp(P) = {z € R%: fp(z) > 0}.
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Fig. 1.
[n], the support supp(X;) € {S1,.

computes estimates {51, .

Multiple support recovery from linear measurements. For every ¢ €
..,S¢}. Using {Y;, ®;}7 ,, the center
.., 8¢} of the true supports.

Furthermore, for each i € [¢] and t € S;, Ay = Ao > 0, and
Epa [X;lt] =p

For samples X1,..., X, generated as above, we are given
access to projections Y; = ®;X;, i € [n], where the matrices
®; € R™*4 are random and independent for different i € [n].
Fig. 1 gives a pictorial representation of the problem setting. Our
analysis requires handling higher order moments of the entries
of the measurement matrices, which motivates the following
assumption.

Assumption  2: The m xd measurement matrices
®4,...,d, are independent, with entries that are independent
and zero-mean. Furthermore, ®;(u,v) ~ subG(c'/m),
and the moment conditions E[®;(u,v)?]=1/m and

E[®;(u,v)%] = ¢,/m? hold for g€ {2,3,4}, where ¢,
and ¢ are absolute constants.

The assumption above holds, for example, when ®;(u, v) ~
N(0,1/m) or when ®;(u, v) are Rademacher, i.e., take values
from {1/y/m, —1/y/m} with equal probability. Also, these mo-
ment assumptions can be relaxed to hold up to constant factors
from above and below, i.e., E[®;(u, v)%4] = ©(1/m4).

Our goal is to recover the supports {Si,...,S¢} using
{Y;, ®;}"_,. The error criterion will be the average of the per
support errors, measured using the set difference between the
true and estimated supports. Specifically, denote by 2’47 4 the set
consisting of all £ tuples of subsets (S, . ..,Sy) such that S; C
[d],i € [¢],and S; N S; = (), forall i # j. Let X pq C X} ; be
such that |S;| = k, for all ¢ € [¢]. Denote by G, of {o:[{] =
[(]} the set of all permutations on [¢]. We have the following
definition.

Definition 1: An (n, e, §)-estimator for ¥y, ¢ 4 is a mapping
e: (Y, ®F) = (S1,...,8) € X, for which

£
P81 ..... Se <E|J € Gys.t. Z
=1

for all (S1,...,8¢) € Xk 0.4, where S;AS; denotes the sym-
metric difference between sets S; and Ss.

SiAS, i)

< M%) >1-4, (2)
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For fixed ¢,m, k,d, e, and 9, the least n such that we can
find an (n,e,d)-estimator for Xy 4 is termed the sample
complexity of multiple support recovery, which we denote by
n*(,m, k,d,e,d). In our main result stated below, we provide
an upper bound on n*(¢, m, k,d, e,0).

Theorem 1: Let m,k,d,¢ € N with log k > 2. Further, let
(logkf)? < m < k,and 1/k¢ < ¢ < 1/£. Then, under Assump-
tions 1 and 2, the sample complexity of multiple support recov-
ery satisfies

n*({,m,k,d, e, )
4
=0 (max {1 <M> (log k)* log k¢ log 1,
e\m )
k202
X

2 e ké(d(s— kl) })

Remark 1: For values of € lower than 1/¢k, the result from
Theorem 1 continues to hold with ¢ set to 1/¢k. This is because
¢ = 1/Lk corresponds to exact recovery of the supports.

We present the algorithm that attains this performance in the
next section, and prove the theorem in Section I'V-C.

Our estimator works in two steps by estimating the union of
supports first and then estimating each support, and the sample
complexity bound above is obtained by analyzing each of the two
steps. To the best of our knowledge, this is the first estimator that
can recover multiple supports under the constraint of m < k lin-
ear measurements per sample. We also note that for the problem
of recovering a single support exactly, it was shown in [5] that
roughly Q((k/m)?log k(d — k)) samples are necessary. Thus,
our sample complexity upper bound above matches this lower
bound quadratically. However, there is a gap between the lower
bound and the upper bound, which is an interesting problem for
future research.

III. THE ESTIMATOR

Our first step will be to recover the union of the ¢ underlying
supports, and then refine this estimate to finally recover the
individual supports. To estimate the union, we use the estimator
described in [16]. Following this, we use a spectral clustering
based approach to recover the individual supports. We provide
more details in the next two subsections.

A. Recovering the Union of Supports

We first observe that the samples X; have an effective co-
variance matrix whose diagonal has support equal to the union
of the supports, which allows us to use the results from [5]
to recover the union. Specifically, we form “proxy samples”
X;=®]Y; = ®] ®;X; and use the diagonal of the sample
covariance matrix of X; as an estimate for the diagonal of
the covariance matrix for X;. We will show that the k¢ largest
entries of the recovered diagonal correspond to the union of the

supports.

Formally, define Sy, def UleSi to be the union of the ¢

unknown disjoint supports and note that |Sy,| = k{. We use
the estimator described in [5] and form the statistic A € R? as
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follows. First, define vectors af, . .., a,, with entries

) def

(©),Y;)%, ield. 3)

Each a;, J € [n], can be thought of as a crude estimate for the
variances along the d coordinates obtained using the jth sample.
We then define the average of these vectors as

< def 1 &
A< ﬁZa;. )

This statistic captures the variance along each coordinate of
X;. Due to the averaging across samples, we expect a larger
value of the statistic along coordinates that are present in at
least one of the supports. On the other hand, coordinates that are
not present any support should result in a smaller value of the
statistic. As shown in [5], such a separation between the estimate
values indeed occurs when n is sufficiently large. The algorithm
declares the indices of the k¢ largest entries of ) as the estimate
for Syp. Letting A1) > -+ > A(xp) represent the sorted entries

of 5\, the estimate S, for the union is
Sun = {(1)77(k£)}5 (5)

where we assume the size of the union to be known. In practice, A
can be used to estimate the size of the union as well by sorting the
entries of A and using the index where there is a sharp decrease
in the values as the estimate for k¢, similar to the approach of
using scree plots to determine model order in problems such as
PCA [35].

B. Recovering Individual Supports

We now describe the main step of our algorithm where we
partition the coordinates in Sun recovered in the first step into
disjoint support estimates S, ..., S;. We will use ay,...,a,
described in (3) for this purpose. Since we now have an estimate
for the union, we will restrict @ to coordinates in S’un, and denote
themas a; € Rﬁ_e. Also, without loss of generality, we set S’un =
[ke).4

Our approach is the following: we construct a k¢ x k¢ affinity
matrix T and perform spectral clustering using this matrix,
which will partition the coordinates in [k/] into ¢ groups. The
main step here is to construct an affinity matrix 7" that can provide
reliable clustering, and we will use the per-sample variance
estimates a, ..., a, for this purpose. The idea is that for any
coordinate pair (u,v) € [kf] x [kf], if both v and v belong to
the same support, then we expect the product a;,a;, to have a
“large” value for most of the sample indices ¢ € [n]. On the other
hand, if u and v belong to different supports, then a;,,a;, will be
close to zero for most ¢ € [n]. Although each a, individually is
not a good estimate for the support of X, the averaging over n
makes the estimate reliable. Formally, we construct the k¢ x k/

4This is to keep notation simple. For a general Sun» we can have a func-
tion g : [k¢] — Sun that provides the mapping of each coordinate of a; to its
corresponding value in S, as indicated in step 7 of Algorithm 1.
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Ho H

}51
}52

Fig. 2. Block structure of the expected clustering matrix when £ = 2 and the
supports are disjoint, under appropriate permutation of rows and columns.

matrix 1" with entries

n
def 1

Tuv - E ajuajv7 (u,v) € [kf] X [kf] (6)

j=1

The key observation here is that the expected value of the random
matrix 7" has a block structure when the rows and columns are
appropriately permuted, and this block structure corresponds
to memberships of each of the indices in [kf] to one of the
underlying supports. This is illustrated in Fig. 2 for ¢ = 2, and
we will examine this structure in detail in the next section. A
well-known method to find these memberships is to use spectral
clustering [31], [36], which uses properties of the eigenvectors
of block-structured matrices to determine the partition. For in-
stance, when ¢ = 2, the sign of the second leading eigenvector of
E[T] provides a way to partition the coordinates in [k¢] into two
groups. When ¢ > 2, spectral clustering makes use of multiple
eigenvectors and a nearest neighbor step to identify the partition.
A full description of the solution in the general case is provided
in Algorithm 1.

In practice, we only have access to 7', and not E[7'] to which
the discussion above applies. In what follows, we show that the
eigenvectors of 7' itself suffice, provided we have sufficiently
many samples. At a high level, our analysis follows that of
spectral clustering in the stochastic block model (SBM) setting
and the goal is to show that the eigenvectors of E[T] and its
“perturbed” version 1" are close to each other. This can be shown
using the Davis-Kahan theorem from matrix perturbation theory,
which states that the angle between any two corresponding
eigenvectors of 7' and E[T] is small provided the error matrix
T — E[T7] has small spectral norm. The key challenge, therefore,
is to control ||T" — E[T||op-

Unlike typical settings, the entries of 7" are not independent,
in addition to being heavy tailed. Standard methods based on the
e-net argument are, therefore, difficult to apply in this setting.
One strategy could be to show exponential concentration around
the mean for each entry of T". Once each entry of 7" is bounded
with high probability, one can bound the Frobenius norm and
therefore the spectral norm of the error matrix. However, the
moment generating function (MGF) of each summand in (6) is
unbounded, so deriving a tail bound for the sum requires a more
careful tail splitting method (see, for example, [37, Exercise
2.1.7]), and leads to measurement matrix dependent quantities
that are difficult to handle. Due to the same reason, techniques
from matrix concentration that involve bounding the MGF of
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Algorithm 1: Multiple support recovery.

Input: Measurements {Y;}!" ;, Measurement matrices
{@i}iiy, ksl

Output: Support estimates 31, . ,Sg

1 Form variance estimates af, . . . , a,, with entries

aly = (®],Y5)%, i€ ld.
2 Compute
5\:

n
/
a;.
i=1

Sort entries of A to get 5\(1) >
estimate for union

S|

> S\(d) and output

S ={(Q1),...,(kO)}.
3 Restrict aj, . .., a), to the coordinates in Suns to get
ay,...,an. Also, let g : [kf] — Sy, denote the mapping

from the coordinates of a; to the true coordinate in S,,.
4 Construct affinity matrix 7 € R¥¢<#¢ a5

1 n
T=— g a;a; .
n-
i=1

5 Compute the ¢ leading eigenvectors 01, . .
and let these be the columns of V € R*¢!.

6 (The £-means step) Find
C = argmingey, |U — V||%, where Uy is the set of all
k{ x ¢ matrices with at most ¢ distinct rows.

7 Denote the indices of identical rows of C' as sets
S;,...,S}. Declare

Si - {g(j) € Sun 1J € S:}

.,’LA)Z of T

the summands [38, Theorem 6.1, Theorem 6.2] cannot be used
in our setting.

To circumvent this difficulty, we turn to a beautiful result by
Rudelson [39], that characterizes the expected value of the quan-
tity ||T" — E[T||op, when T is a sum of independent rank-one
matrices and only requires certain moment assumptions on the
summands. This is exactly our setting since (6) can equivalently
be represented as 7' = (1/n) Y., a;a; . An application of
Markov inequality followed by the Davis-Kahan theorem then
shows that the eigenvectors of 7' and [E[T] are close to each other.
We provide more details about the analysis in the next section.

IV. ANALYSIS OF THE ESTIMATOR
A. Recovering the Union: Analysis

Our analysis of the probability of exactly recovering Syn
using the estimator in (5) follows the approach in [5]. The key
difference is that the samples are now drawn from a mixture of
subgaussian distributions. In the next result, we show that if X
is drawn from the mixture described in (1), then it is subgaussian
with covariance matrix K, where Ay = A1 V - -+ V Ay, where
V denotes entrywise maximum. This helps us to determine the
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effective parameter that characterizes the input distribution, after
which we can use the result from [5]. We prove this result for the
two component mixture; it can be extended easily to the general
case.

Lemma 2: Let X and Y be zero-mean subgaussian ran-
dom variables with parameters a? and b2, respectively. Further,
let Px and Py denote the distributions of X and Y. Then,
the random variable Z with distribution given by the mixture
qPx + (1 — q)Py withq € [0, 1] is subgaussian with parameter
max{a?, b*}.

Proof: Upon bounding the MGF of Z, we see that

E [eez} =qE [eeX} +(1—-¢qE [eey]
62a2 62p2
<qge 2 4 (1—gqle >
0202
<e 2,
where ¢ = max{a, b}. O

Thus, the samples X7, Xo, ..., X,, have entries that are in-
dependent and subgaussian with covariance matrix K, where
A = A1 V- -+ V Ag. Therefore, results from [5] imply that we
canrecover Sy, from the variance estimate (4) by retaining the k¢
largest entries. In particular, a direct application of [5, Theorem
3] with support size set to k¢, gives us the following result.

Theorem 3: Let S’un described in (5) be the estimate for the
union Sy,. Then, for every § > 0,

Pr (Sun # Sun) <6,

provided m > (log k¢)? > 1, and

(kz2€2 ke(d — k€)>
n>c log ,

m?2 0

for an absolute constant c.

As we discussed in the introduction, if we had labels
for each sample indicating which support it belongs to, we
could directly use the estimator from [5] after grouping the
samples with the same support together. This would require
O((k*¢/m?)log k(d — k)) samples. On the other hand, when
the labels are unknown, the number of samples required even
to estimate the union of the supports is higher, as seen from the
theorem above.

B. Recovering Individual Supports: Analysis

Our analysis is based on the fact that the expected affinity
matrix has a block structure (under an appropriate permutation
of its rows and columns), which we prove in the next lemma.

Lemma 4 (Block structure of E[T]): Under Assumptions 1
and 2, for the matrix 7 € R¥**** in (6), E[T] has entries given
by

:U’Oaifu =,
s, if u # v, (u,v) € S; x S; forany i € [¢],
144, otherwise,

E [Tuv] =

where the parameters g, (45, and 11g depend on k, m, and ¢ and
can be explicitly calculated.
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The proof of Lemma 4 appears in [34] and involves computing
the expected values of expressions containing higher order terms
in ®; and X;. Before we proceed, we note the following exten-
sion of the “median trick” (see, for example, [40]) which shows
that the dependence of sample complexity on d is at most a factor
of O(log 1/9), provided we can find an (n, £, 1/4)-estimator.

Lemma 5 (Probability of error boosting): For ¢ € (0,1) and
¢ € N, if we can find an (n, e, 1/4)-estimator for Xy 4, then
we can find an (n[8log %] , 3¢, 0)-estimator for Xy, ¢ 4.

We provide the proof in Appendix Al.

Thus, from here on, we fix our error requirement to § = 1/4
and seek (n,e,1/4)-estimators with the least possible n. We
characterize the performance of the clustering step in the follow-
ing theorem. The analysis of this step is conditioned on exact
recovery of the union Sy, in the first step.

Theorem 6: Letvy > --- > vy denote the ordered eigenval-
ues of E[T] € R¥**¢ and define Ay = vy — 41 when £ > 2.
For every € € [1/¢k,1/(), there exists an (n, ¢, 1/4)-estimator
for Xy, ¢ ke provided

> max{L [E [T] lop}
eAZ
for an absolute constant c.

The result above applies to any setting where we have i.i.d.
samples ai,...,a, whose covariance has a block structure
under permutation, and the goal is to group the coordinates of
a; based on the unknown block structure. We provide the proof
of Theorem 6 at the end of this section.

The next two results provide us with bounds on the spectral
quantities ||E[T7[|o, and Ay, and on E[max;c(,) ||a;||3] appear-
ing in Theorem 6.

Lemma 7: Under Assumptions | and 2, we have

k¢ Nk

k3¢
2
||E[T} Hop < Pm*Q + )\Ow,andAg > 7

Lemma 8: For every ¢ € N and ¢ € [n], we have E[||a;||1] <
q
(T ()N (W) . Further, when log k > 2, it follows that

E {mﬁllaié} -log k¢,
Sk

2 log k1—2—
E[maxe|n)[|a;]|3] < n@eFE[[ja[|3* "] =T .

The proof of Lemma 7 is provided in [34] and the proof of
Lemma 8 appears in Appendix A2. We close this section with
the proof of Theorem 6.

Proof of Theorem 6: Recall that the proof is conditioned on
exact recovery of the union S,. Further, for notational simplic-
ity, we set Sy, = [k¢]. We divide the proof into two steps.

Step 1. Relating probability of error to perturbation.

Denote the event that Algorithm 1 labels more than ck¢
coordinates incorrectly by £. The following result relates the
error probability to a perturbation bound.

Lemma 9 (Error to perturbation bound): Let V' and V, re-
spectively, be k¢ x ¢ matrices with ith column given by v; and
v;, 1 < i < {, where v1,...,vy and 01, ..., 0, denote the nor-
malized eigenvectors of E[T'] and T', respectively, corresponding
to their £ largest eigenvalues. Then,

Pr(£) <Pr <||f/ —VOl|p > % 5;) , 7
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where O € R?** is a random orthonormal matrix and the prob-
ability on the right hand side is over the joint distribution of 14
and O.

The proof of this lemma builds on the analysis in [36] and
requires us to use some properties of V', which we note in the
lemma below.

Lemma 10 (Properties of V): For 1 < i < k¢, denote by v°
the 7th row of V. Then, the following properties hold:

1) (Identity of rows of V capture the partition) v* = v’ if and
only if 7 and j belong to the same support, i.e., i, j € S;
for some ¢ € [£].

2) (Minimum distance property) For any two distinct rows v*
and v/, |[v* — 7|3 > 2/k.

We provide the proof of Lemma 10 in Appendix A3.

Proof of Lemma 9: We begin by observing that it suffices to

show that

H@hﬁk<C—Vmbz f>, ®)

where C' is the matrix found in Step 6 of Algorithm 1 and
is random since V is random. Indeed, by Lemma 10, V' has
¢ distinct rows, whereby VO, too, has ¢ distinct rows since
O is orthonormal. That is, VO € U,. Therefore, by triangle
inequality, we get

[C—=VO|r <||C—=V]|r+|[VO-V|p )
= pin |[U—=V]r+[VO-V]r  (10)
<2(|VO = V||p, (11)

where the final bound holds since V' O belongs to U,. Thus, (8)
will imply (7). Note that even if the matrix O were to depend
on V and V and therefore be random, the result above holds
with probability one, and the only property we require from O
is orthonormality.

It remains to establish (8). To that end, we define

T fie [kl : 'O — o < 1/V2k}, (12)

where v' and ¢! are the ith row of V' and C, respectively. Our
claim is that Algorithm 1 does not make an error in labeling the
coordinates in Z, unless |Z¢| > k(. To see this, note that for
any two distinct indices %, j € Z we have

||vi07ijH2 < ||viOfch2+ijOfch2 (13)

<O =2+ [l = 2+ [/ O = |l

(14)
2 , ,
<\/Zk+|c = o

Thus, if ¢ = ¢/, we must have [[v'O —vIO|2 < \/2/k,
which by the second property in Lemma 10 implies that v'O =
vJ0. Therefore, when the labels given by the algorithm for
coordinates i and j coincide (this happens only when ¢! = ¢/),
then v'O = v7O. But then, by the first property in Lemma 10,
the coordinates ¢ and j must have been in the same part of S.

5)

2199

We have shown that the indices in Z that are assigned the same
label by the algorithm must come from the same part in S. We
still need to verify that coordinates from the same part in S do
not get assigned to different parts. We show this cannot happen
unless |Z¢| > ek/, and this is where we use the assumption that
e < 1/¢. Indeed, if |Z¢| < ekl < k, then at least one element
from each part Sy, ..., Sy must be in Z, since |S;| = k for every
1. By our previous observation, elements in each of these parts
in Z must be assigned different labels by the algorithm, which
means that it must assign at least ¢ different labels to the elements
in Z. Thus, if the algorithm assigns two elements in the same
part S; different labels, it will assign more that ¢ different labels,
which is not allowed.

Therefore, all the indices in Z are correctly labeled when
|Z¢| < ekt. Then, clearly, in this case the error event £ does
not hold. It follows from the definition of Z that

Pr (&) <Pr(|Z¢ > ek¢)

<Pr (‘ {z et = v'O))o > \/12?} ‘ > 5k€> (17)

gm(c—vm@>f)7

(16)

(18)

where in the final step we used the fact that the second step im-
plies [C' — VO[% = S ||¢ — v/ 0|2 > ek/2k. This com-
pletes the proof of (8).

O

Step 2: Controlling the perturbation.

In view of Lemma 9, we only need to control the perturbation
|V — VOl p. We do this using the following extension of the
Davis-Kahan theorem, which also fixes the choice of O.

Theorem 11 (Perturbation of eigenspace): [41] Let A and
Abed x d symmetric matrices with eigenvalues vy > -+ > vy
and 7y > .-+ > Dy, respectively. Let V and V be d x ¢ matrices
consisting of the ¢ leading normalized eigenvectors of A and A,
respectively. Then, there exists an orthonormal matrix O € R**
such that

. Zﬁmln{\/ZHA — Allop, ||A — Al|p}

IV —VOlr
Vg — Vo4

. (19)

By applying this result with 7" and E[7] in the role of A and
A, respectively, we get that there exists an orthonormal matrix
O such that

- 2V2

IV=VOllr < x~ min{V||T = E [T] ||op, |T~E [T] ||},
(20)

fef .. . . .
where Ay = vy — V¢+1. Combining this bound with our earlier
bound from Lemma 9, we get

Pr(£) <Pr <||T —E[T]lop > Aif) 1)
8
< Ve EIT —E[T]op] , (22)

where the last step uses Markov’s inequality.
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To bound the expected value on the right hand side, we use
the following extension of a result of Rudelson [39]. As pointed
out earlier, the original bound in [39] was restricted to isotropic
Z;s, and we show that it extends to arbitrary i.i.d. Z;s with an
extra factor. The proof is provided in Appendix A4.

Theorem 12 (Extension of a result in [39]): Let Z € RN be
a random vector such that A =E[ZZ"]. Let Zy,...,Z, be
independent copies of Z. Then, there exists an absolute constant

¢ such that
E lznjzzzT—A <! a® + ay/a2 + 4]/ A,
n P 145 o = 2 2 op )
(23)
where

- \/E [ma;c s [1Z:3] log N
o =C .
n

Using this bound in (22) with N = k/, we obtain

4
Az

The proof is completed upon noting that o can be made
smaller than 1/2 using n. > cE[max;c, [|as]|3] log k¢, in which
case ay/a? + 4[|E[T]][op < ay/8max{1, [[E[T][|op}. The er-
ror probability above can thus be made less than 1/4 if n >
c(log ke) max{1, [E[T)l|op} Elmax;cy,y lai[3]/(AZe). O
In the next section, we combine the results from Theorems 3
and 6 to show the sample complexity bound of Theorem 1.

Pr(€) < (a2+a a? + 4||E[T] ||Op>. (24)

C. Proof of Theorem 1

The proof of Theorem 1 now follows by combining guarantees
for the union recovery step from Theorem 3 and the clustering
step from Theorem 6.

We begin by applying Theorem 3 to get that Sun coincides
with S, = Uf_, S; with probability close to 1. Throughout, we
condition on this event occurring. However, to avoid techni-
cal difficulties, we assume that a different set of independent
samples is used to recover Sy, than those used to recover
Si, ..., 8¢ — thus, the overall number of samples needed will
be the sum of samples needed for union recovery in Theorem 3
and the sample complexity determined in our analysis below. In
particular, the clustering step dominates the sample complexity
of our algorithm.

Next, upon substituting the bounds from Lemma 7 and
Lemma 8 into Theorem 6, we see that for e-approximate re-
covery of the supports it suffices to have

N

c
n > — . nlogk
e 0m2 Aok2

2
x (m’“{’;ﬂ(log k>2) +log(ke) (25)
4 p4
— g%nﬁ(log k)* log(k(). (26)
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Fig. 3. Probability of approximate support recovery with d = 100, € = 0.2,
¢ = 2, and varying k/m ratios.

For n > c((1/¢)(kl/m)* - (log k)*log(kl)), niosk = 0(1),
which completes the proof in view of the sufficient condition
for n above.

V. SIMULATIONS
A. Synthetic Data

In this subsection, we evaluate the performance of Algorithm
1 on synthetic data for various parameter values. Through these
simulations, our goal is to see how the performance of the
algorithm varies as a function of the ratio k/m and ¢ for a
fixed d.

We first choose d = 100, ¢ = 2 and consider three differ-
ent values of k/m. We generate two disjoint subsets S; and
Sy of [d], each of size k. Then, for a given n, we generate
n/2 samples with each support, with values on the support
drawn from the standard normal distribution in R*. Measure-
ment matrices {®,}?, are generated independently with i.i.d.
N(0,1/m) entries and multiplied with the samples to obtain
measurements {Y;}?_ ;. These measurements are given as input
to the support recovery algorithm, which produces estimates for
the union, as well as the individual supports, which we denote
by S and S,. For each value of (k,m,n), we run 100 trials
and declare it a success if the error Y-, |$¢A80(i)| < 2¢k.
The plot in Fig. 3 shows the success rate over the 100 trials
as a function of the number of samples n, with ¢ set as 0.2.
Note that the number of measurements taken per sample, m,
is much smaller than the support size, k, of each sample. We
can see from Fig. 3 that for a fixed probability of success, the
number of samples required increases with k/m, which agrees
with the result in Theorem 1. In Fig. 4, we show the variation in
the probability of approximate recovery as a function of n for the
number of supports ¢ = {2,3,4,5}, with k and m (and hence
their ratio) held fixed. We can see that the number of samples
required to achieve a given probability of recovery increases
with £. Our current experiments however do not reveal whether
the dependence on these parameters is tight.
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Fig. 4. Probability of approximate support recovery with d = 100, € = 0.2,
m = 4, k = 10, and varying /.

B. MNIST Dataset

As an application involving natural data, we consider the
problem of reconstructing handwritten images from very few
linear measurements. We apply the multiple support recov-
ery algorithm to the MNIST dataset [42], which consists of
60,000 images of handwritten digits, each of size 28 x 28. Each
(grayscale) image is a sample in our setting, and the support of
the sample essentially identifies the digit. This dataset fits well
into our hypothesis that there is a small set of unknown supports
underlying the data — handwritten images corresponding to the
same digit can be thought of as having roughly the same pattern
(support) in the pixel domain. Thus, the vectorized version of
images of the same digit will have approximately the same
support. We note that the task here is to recover the images
of the digits from low dimensional projections, and not to learn
a classifier using the dataset.

In our experiments, the vectorized version of each image
(a 784 x 1 vector) is projected onto m = 100, 200 or 500 di-
mensions using Gaussian measurement matrices described in
Assumption 2. Given these low dimensional projections, the goal
is to identify the underlying digits. We fix ¢ = 2 and consider
the example of digits 1 and 5 as shown in Fig. 5. The support
size of each digit is roughly in the range 150 — 200. It can be
seen that Algorithm 1 can identify the distinct digits even when
m < k. Also, the labels of the ground truth digits (supports) can
be different from the recovered ones, as seen in Fig. 5(a), where
digits 1 and 5 are flipped. This is allowed, since our goal is to
recover all the supports up to a permutation of support labels.
For comparison, we used the Group LASSO algorithm on the
projected samples, which tries to recover the individual samples
(images) itself. However, it requires a much larger number of
measurements per sample (for example, about /m = 500 in this
case). In fact, previously known algorithms for sparse recovery
do not perform well in the low measurement regime of m < k,
and we have used Group LASSO as an example to illustrate this
fact.

We note that since these are handwritten digits, the support of
samples coming from the same digit can also vary to some extent.

2201

%

(a) m = 100, n = 2000

(¢) m = 200, n = 2000

(b) m = 100, n = 2000

(d) m = 200, n = 2000

(e) m = 500, n = 2000

(f) m = 500, n = 2000

Fig.5. Recovery performance of Algorithm 1 ((a),(c),(e)), and Group LASSO
((b),(d),()).

However, the averaging across samples in our estimator takes
care of this problem. Further, the supports from different digits
need not be disjoint. To handle overlaps, we use the observation
that A can provide an estimate for the intersection of supports as
well. The plot of sorted entries of A shows a sharp drop in values
at two locations, one around the intersection and another around
the union. We include this estimate of intersection of supports
into our final estimate. This method performs well in practice,
as can be seen in the results of Fig. 5, where digits 1 and 5 have
significant overlap.

C. Computational Complexity

The first step in our algorithm for estimating the union in-
volves computing the average variance along each of the d co-
ordinates and requires O(mnd) operations. The clustering step
involves computing the 7" matrix and its £ leading eigenvectors
which requires O(k*¢3 + k2¢%n) operations, followed by the
(-means step which requires O(k¢3) operations per iteration.
Other algorithms for recovering multiple supports do not per-
form well when m < k, and have computational complexity that
scales quadratically or worse with d. For instance, the sparse
Bayesian learning based algorithm from [18] has a complexity
of O(d?) per iteration, and LASSO-based procedures have a
complexity of O(d?) or O(d?) per iteration, depending on the
specific algorithm used.

VI. DISCUSSION

Throughout in this work, we assumed that the distinct supports
were pairwise disjoint sets. In the case of overlapping supports,
the structure of the expected affinity matrix, and consequently
its spectrum, changes. For the special case of ¢ = 2, overlapping
supports can be handled by a simple modification of the sign-
based estimate. Instead of partitioning the coordinates in the
union estimate based on the sign of the eigenvector, we now use
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athreshold 7 > 0 and declare coordinates with values in [—7, 7]
as belonging to both supports (values above 7 or below —7 are
assigned to different supports). The optimal 7 can be explicitly
characterized in terms of the parameters of the problem. Given
our current algorithm, a simple way to handle this case for
general ¢ would be to use fuzzy ¢-means, which returns scores for
each coordinate indicating how likely it is to belong to a certain
support. However, choosing a threshold to decide the supports
using the scores is difficult in general. Some other approaches
have been explored in the graph clustering literature, but these
do not apply directly to our setting. Other extensions of this
work include studying the performance of the algorithm under
different support sizes, and prior distribution with non-uniform
mixing weights. Also, our work shows a sufficient condition on
the number of samples required for multiple support recovery;
obtaining the necessary condition is a challenging task in gen-
eral and requires characterizing the distance between mixture
distributions. Using a component wise distance bound leads to
the same lower bound as in [5] (with an additional 1/¢ factor),
and obtaining a better lower bound seems difficult.

APPENDIX A
REMAINING PROOFS FROM SECTION IV-B

A. Proof of Lemma 5 (Probability of Error Boosting)

Given an (n,¢,1/4)-estimator for X, ¢ 4, we apply it to L
independent blocks of data. Specifically, denoting this estimator
by e, consider independent copies (Y (t), ®"(t)), 1 <t < L,
of (Y™, ®™). Fort € [L], let

(S1ty-- - Sp) = e(Y(1), @7 (1))
denote the output for the estimator applied to the ¢th block.

We now describe a procedure to output a final estimate for the

supports using the estimates (Sy ¢, . . . , Sg,¢) from the L blocks of

samples. Foreach t € [L], we check if thereisasetZ C [L]\{t}
of cardinality N > L/2 satisfying

— Si, AS, o] <2, Vit eT. 27
min - ZI DS, 0] < 26 27)
That is, we look for a ¢ for which (Sr,t, . ,S&t) are closeto L/2

other estimates. This indicates “robustness” of the estimate from
the ¢th block, making it an appropriate proxy for the median. Our
final estimate is (S, ...,S) = (Sl i S ), where ¢ is an
index which satisfies the property above.

We show that for L > [81n ] the estimator above constitutes
an (nL, 3¢, §)-estimator for 3y, ¢ 4. Indeed, denoting

Zt:]l<E|U€ggSt Z|SAS(7()t<E>

by our assumption for the estimator e we have

N
v
o~
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Furthermore, Z; are independent for different ¢ € [L]. Thus, by
Hoeffding’s inequality,

L I B
P(‘Sl7“-7S€) ZZt < 5 <e s,
t=1

In particular, for L > [81In 1], with probability exceeding 1 — 4
there exist® M > L/2 + lindices t1,...,ty € [L] and permu-
tations o1, ...,05 € Gy such that

V(S1,...,80) € Xk ra-

¢

B SAS ol <o YieM) @Y
Note that since | AA B| is a metric for subsets of [d], the estimate
(SU, LS ) fort = t1 satisfies (27) when (28) holds; in fact,
any index among {t1, ..., ty } can serve this purpose. However,
the estimate described earlier need not select any of these indices.
Yet, we now show that any other index chosen by the procedure
will work as well, provided (28) holds.

To that end, denote by 7’ the set {¢1,...,tp} of indices
satisfying (28), and recall the set Z found by our estimation
procedure earlier. Then, when |Z’| > L/2 + 1, which holds with
probability exceeding 1 — 4,

INT|> ||+ |7 - L > 1,

whereby there exists an index ¢ € [L] and permutations o, 7 €
Gy such that

] Z |S; ASJ( ¢+ <e and kf |§Z-ASE(Z-)¢\ < 2e.
i=1

It follows that the permutation 0’ = o o & ! satisfies

[
1 _
T Z |SiASUr(i)‘ < 3e,
i=1
which completes the proof. U

B. Proof of Lemma 8

As noted in the proof of Theorem 1, the clustering step in our
algorithm is analyzed under the assumption that the union of
supports is exactly recovered in the first step, whereby we can
set Sun = Sun-

We will first show the bound on E[max;c(,,) [|as]|3], followed
by the moment bound for E[||a;||3]. We start by noting that for

any q > 2,
E[max”aiﬂg} ) (max||ai|g>q (29)
i€[n] i€[n]
(Zwll%) ] (30)
=1
< (E Zlaillgb 31)
=1

SWithout loss of generality, we assume L to be even.
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2
2 q
—nt(sllalg)’ G2
where we used Jensen’s inequality in the third step. For log & >
2, upon setting ¢ = log k in the inequality above, we get

5 o log k 1o2k
E [ma o3| < n% (E [ )5**]
en

We now proceed to bound E[||a;||Z]. In the rest of the proof,
we will denote a; € R? by a, and with some abuse of notation,
denote by ®; the ith column of ®. By using the definition of a,
we have

(33)

q q
lal3* = ( > a?) = ( > (@] <1>sXs)4) (34)
1E€Sun 1€Sun
q
= ( >, (aIXs>4> (35)
1€Sun
q
= (Z(XJAiXsf) . (36)
1€Sun

f
where o; = CIDECDZ- as defined before and A4; def aia;r. To com-
pute the expectation of the term in the last step, we first condition

on ® and note that
d
> (X§AXs)

E Kgi(ngiXSf) ’
w07 (g7 S oxi s ) o

< (k0T Y E[(X A Xs)¥|@]

1€Sun

(37

where we used |Syy| = k¢, and the convexity of the function 22
forz > 0, ¢ € N. The quantity on the right essentially involves
the (2¢)th moment of a subexponential random variable (see
Appendix B for definition). To see that the quadratic form
X J A; Xs is subexponential, we use the Hanson-Wright inequal-
ity (cf. [43]) to get

P(|Xg AiXs — p| > t|®)

t2 t
< 2exp <—min{ , }), (38)
Nl Al Aol Asllop

where 1 = E[XJ A; X5|®] = Ao||c;]|3. Lemma 13 in Appendix
B can now be used to bound the moment in (37). Specifically,
we get

E[(Xg AiXs)*| D]

saq-<16>( (N A2 T (200020 4,2 ) o2y
(39)

< 3¢+ (16)71(29) A" cxi |3 (40)

2203

where we used || A;|| r = [|Ai]|op = ||vi||3. Next, taking expec-
tation over ¢, we obtain
E[(X3 4iXs)™] < dTCaNE [loil3’], @)

where ¢, = 3¢ - (16). Thus, combining the result above with
(37), we get

E[(ZS:( TAXs) )]

< TN KOS E [l ]3] (42)
1€Sun
ra o7 S8 o]
€S
+ Y E[llaslly?] ) 43)
1€8m\S
When i € S,

4 24
Ellel == | (13 + 3 (@2,?) (44)
jes\{i}

2q
<o (elody] e | (X @e2) | ). @9
Jjes\{i}
and when ¢ € S;,\S,
2q
e [loil] <& |(T(ore,?) 6)

jes

Since ®; has independent, subgaussian entries with parameter
1/m, we see that || ®;]|3 ~ subexp(c'/m, " /m) with ¢/ = 128
and ¢’ = 8 [5, Lemma D.2]. This gives, using Lemma 13,

24g . C/Qq C//4q
E (23] <2000 (10 S + T S ) @)

+ (E [|]5])*

1
< 4q(16)7¢1T (4g) — + 1, (48)

where we used ¢ > ¢’”?. Using similar arguments, we note

that ®;®;|®; is subgaussian with parameter |®;|3/m,
which implies that, conditioned on ®;,3" ;g\ ;(®; ®;)* is
subexp(c'(k — 1)||®;||3/m?2, ¢"||®;||2/m). Then, using Lemma

13 again, we get
2q
@/0,2) |

(2

jeS\{i}
E—1\1
< ¢, [r@)dq( — ) [y 4

« ragyen (L202)° ]
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2 leading eigenvectors of W BW ' has the desired property.

4 2% <]E Z (fb;r@j)Q ) To that end, first note that there are only ¢ unique rows
jeS\{i} in W, one unique row corresponding to each block. We

— 1\ 9 1 will show that V" also consists of ¢ unique rows, in exact

< c’qc’qI‘(q)( 5 ) <1 + QC;C/Q'JI‘(Qq)> correspondence with the rows of W. To do so, we will
m md follow [36, Lemma 3.1] and show that V' is essentially

' g 1 a row-transformed version of W, i.e., there exists an
T CqC F<2q)ﬂ invertible matrix H € R®** such that W H = V. We start
2% by considering the eigen decomposition
X (1 +c C/QQF(2q)1) + 224 (k_l) 1 1
e ma m (W'W)zB(W'W)z = UAU, (56)

k2 where A € R is diagonal and U € R*** is an orthonor-
< 5 297 (20) [ = . . 1 .
< 5™ (2q) m mal matrix. Left multiplying by W (W TW)~= and right

l . 1 . T _1 T h .
Combining these results and substituting into (43), we get multiplying by (W W)~2 W in the equation above, we

get,
a
E K > (XgAiXS)Q) } WBW' =WHAWH)", (57)
€S un e
) % . where H &' (WTW)’%U . Finally, right multiplying by
< T2 A" (K0)? W H and noting that (W H)TW H = I, we have
T = .
5 (ZE [”ai”;q] + Z E [||oz7;||;lq} ) (49) WBW' -WH=WH - A, (58)
ieS 1€8u\S implying that the columns of W H are the normalized
1o\ 20 eigenvectors of WBW .
< 50;2cl2qr(2q)/\(2)q(k£)q—1 <kI‘(2q) (> We have thus shown that V' = W H. Let v and‘wi denote
m the ith row of V and W, respectively. If v* =17 for
g\ 29 some i # j,then w'H = w/H. Since H = (W W)~ 2U
+ (kl — E)I'(2q) <> ) (50) isinvertible, this implies w® = w?. Conversely, if w’ = w’
forsomei # j,thenw'H = w’/ H, whichimplies v’ = v,
EVEE\ % 2) Using the fact that V = W H from (i), we have for v #
= 57?1 (T(29))* A5 (m> : (51) o,
Rescaling the exponent, we get [o" = 07|l2 = [[(w" — w)H] (59)
: >V 2Wnin (H), 60
E(la|§ —E [( > (XA X)) ] (52) = V20D “
1€Sun where vpin (H) def min g, —1 |lz"H|l2, and we used
/Tl @ |w? — w?|z = v/2 for w® # w’. Now,
< 5cg2c(D(0))* A8 (xﬁ) (53) e S
m Hrﬂinl |l H|5 = HrrHlinlx HH 'z (61)
2= Zf2=
Noting that ¢/(5¢2,,)1/4 < 45 - 8¢/ = ¢y, we obtain the result.(]
g ( q/2) = 0 _ Hn‘,‘ugl JTT(WWT)_1I (62)
C. Proof of Lemma 10 1 .

1) To show the first property, we note that the true covariance s (63)
matrix can be decomposed as E[T] = WBW T + (g — . S P 1
ps)1, where W € {0, 1}*¢* encodes the block structure, whereTweilused HH" = (W W)T 20U (WW ) : =
and B € R contains the distinct values from each (WW?7)~" and the fact that WW " = kdiag([). Putting
block. In particular, for 1 < i < kfand 1 < j < ¢, define everything together, we get

i ; 2
o JLifies;, 54) lo" =713 > £ (64)
’ 0, otherwise,

D. Proof of Theorem 12
and, for 1 <¢ < /fand1 < j </, define o o
The proof is similar to that of [39], and we highlight the steps

s, if © =7, needed to extend the result to general A. In particular, following
B = . (GR) . :
/i, otherwise. similar arguments as in [39], it can be shown that

i
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Since E[T]and W BW " have the same set of eigenvectors, E [H 1 Z VAR
we will show that the matrix V' € R**** consisting of the ¢ ne—
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Viog N "
< V%7 R [maxHZiH%] E|S zz|| |
n i€[n] =1 op
(65)
Now,
n 1 n
E 7T < - 7T
>zzf| | <us||2Yzzr-a| +ial,
=1 op =1 op
(66)
=n(B8+ || Allop), (67)
where 3 E ||| L 7,27 — Al |. 1t follows from (65)
op
and (67) that

g <

log N
o <2 B {max 23 5+ Ay 69

Letting o = ¢y/(log N)/n\/]E[maxie[n] | Zi||3], we have the

solution
1
<3 (a2 +ay/a?+ 4||A||0,,>,

which completes the proof.

(69)

APPENDIX B
MOMENT AND CONCENTRATION BOUNDS FOR SUBGAUSSIAN
RANDOM VARIABLES

Definition 2: A random variable X is subgaussian with vari-
ance parameter o2, denoted X ~ subG(o?), if
log E {eW—E[X])} < 0%6%)2, (70)

forall 6 € R.
Definition 3: A random variable X is subexponential with

parameters o2 and b > 0, denoted X ~ subexp(c?,b), if
logE {e“)(X*E[XD} < 62622, 71)

forall |0] < 1/0.
Lemma 13: Let X be a subexponential random variable with
parameters vZand b > 0, i.e., for every t > 0,

(ot
Pr(|X —E[X]|>1) <2exp < — mln{w, 21)}) (72)
Then, for ¢ € N, and an absolute constant c,

B [1X - BLX] ) < 20 (16)7 (Dl + 141 (2g) ).
(73)

Proof: We first express the tail bound for X in a form that
is easier to evaluate, and then use standard arguments (see, for
example, [44, Theorem 2.3]) to derive the moment bound. We
have,

2
Pr(| X —E[X]|>1t) < 2exp<—min{2i]2,2tb}> (74)

2205
—¢2
<2exp |t 75
< eXp<2(U2+bt)>, (75)
that is,
Pr <|X ~E[X]| > bu+ Vb2 + 2v2u) <e . (76)

With this tail bound, we can now derive the stated moment bound
by using

E[|X —E[X]*] =2¢ /w Pr(|X —E[X]|>1t)t>* 'dt.
' (77)

In particular, upon substituting t = bu + v/b%u? + 2v2u, we get

oo
E[(X —E[X])Qq} < 2q/0 e " (bu + Vb2u2 + 202u)? !

x(b+

which after simplification yields

b2u + v?

)du, (78)
Vb2u? + 202y

E {(X —E [X])Qq] <2¢-(16)4 <b2qF(2q) + v2qr(q)>.
(79)
O
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