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Observability of Discrete-Time LTI Systems
Under Unknown Piece-Wise Constant Inputs

Vipul Kumar Sharma and Pavankumar Tallapragada

Abstract—This letter is on observability of discrete-time
LTI systems under unknown piece-wise constant inputs
with sufficiently slow, but arbitrary update times. Assuming
knowledge of the update times, we characterize the unob-
servable subspace and show that with sufficiently many
measurements in each inter-update interval of the input,
the unobservable subspace remains fixed. We explore the
implications of the result for privacy in event-triggered
control through an illustrative example.

Index Terms—Networked control systems, sampled-
data control, observability under unknown input, event-
triggered control, privacy.

. INTRODUCTION

BSERVABILITY under unknown inputs has been a topic
O of interest to the controls community for several decades.
Motivated by the recent research trend of event-triggered
control, we revisit the classical problem of observability.

A. Literature Review

The literature on observability of linear time invariant (LTT)
systems under unknown or partially known inputs stretches
back to late 1960s. Some early works on the topic are [1]-[4].
More recent works on the topic include sliding mode observer
for unknown input and state estimation [5], observability under
unknown inputs in the context of singular differential alge-
braic systems [6], structural input and state observability [7],
time-delayed observers [8], [9] and in the context of switched
systems [10], [11]. It is well known that if a continuous-time
LTI system is observable under known inputs then periodic
sampling retains that property except for some pathological
sampling periods [12]. The increasing popularity of event-
triggered control [13]-[16] raises the question of observability
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under aperiodic sampling, a topic on which there is currently
very limited work [17].

The topic of this letter is also relevant for privacy in
event-triggered control. While there exist some papers on
privacy preserving or secure event-triggered control, such
as [18]-[22], there is no work that studies the privacy impli-
cations of existing event-triggered controllers. Such a study
is particularly important given that in event-triggered control
there is implicit information in the event times about the state
of the system [23].

Contributions: In this letter, we characterize the unobserv-
able subspace of a discrete-time LTI system under unknown
piece-wise constant input but known, possibly aperiodic,
update times of the input. In particular, we give a result that if
the updates in the input are slow enough then with sufficiently
many measurements in each inter-update interval of the input,
the unobservable subspace remains fixed with time. We apply
this result to a system with event-triggered control in the pres-
ence of an eavesdropper (ED), which is an entity that seeks
to determine private data, such as the state of the system. We
assume that the ED has access to the sensor measurements,
the control input update times and the triggering rule, which
implicitly determines the input update times. We demonstrate,
through an example, that if the triggering rule is event based
then the state can be identified by ED up to a bounded set,
whose “size” decreases with time to zero. This illustrates how
such an ED can breach the privacy of the system under the
knowledge of the event-triggering rule. On the other hand, for
time-triggered updates of the input, this ED can infer nothing
about the component of the state in the unobservable subspace.

In the context of observability under unknown inputs, to
the best of our knowledge, there is no existing work on
observability under an aperiodically updated, unknown piece-
wise constant input. In the context of event-triggered control,
this letter is the first one to explore the privacy implica-
tions of existing event-triggered controllers. Such a study
is timely given the increasing popularity of event-triggered
control.

Notation: We let R, Z and Ny be the set of real num-
bers, integers and the set of natural numbers including zero,
respectively. For x € R", we let ||x|| be the Euclidean norm
of x. We use the notation [K;, K;+1)7, for [K;, Kiy1) N Z. We
use similar notations for closed, open and the other half-open
intervals. We use 0 to denote zero matrices of appropriate
dimensions. For vectors v and w, we use (v, w) to represent
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the vector [vI, wl]7. We use M', Ker(M) and Im(M) for the
pseudo-inverse, null-space and the image space of the matrix
M, respectively. We let Z be the orthogonal complement of
a subspace Z. We use I, to represent the identity matrix of
dimension r.

[I. PROBLEM FORMULATION

We consider a discrete-time linear time-invariant system

x(k 4+ 1) = Ax(k) + Bu(k) (1a)
y(k) = Cx(k) (1b)

where x(k) € R", u(k) € R™, y(k) € R? are the plant state, the
control input and the measurement, respectively. We assume
that the input is piece-wise constant, i.e.,

u(k) = u(K) Vk € [Ki, Kiy1)z, (1o

where K:={Kj};cN, is the increasing sequence of input update
times. We call the set of time steps [K;, Ki+1)z as the ith inter-
update interval.

A. Assumptions

We make the following assumptions about the system (1)
and the input (lc).

A1 Matrices B and C are full column rank and full row rank
matrices, respectively.

A2 Pair (A, C) is observable.

A3 Input signal u(.) is unknown. The update times K; are
known and the inter-update times satisfy K11 — K; >
n—+ 1 for all i € No.

Note that there is no loss of generality in Assumption (A1),
i.e., if B is not full column rank, then we can choose a matrix
B whose columns form a basis for the column space of B and
for each u there is a unique & such that Bu = Bii. At the same
time, for each i there is at least one u such that Bu = Bil.
Thus, the effect of the input u# on the system is the same as
that of & Similarly, assuming C is full row rank is only to
ensure that there are no redundant outputs that are obtained
as a linear combination of other outputs.

B. Reformulation as an Impulsive System

To study the unobservable subspace of the system (1) with
unknown piece-wise constant input, as described in (lc), we
reformulate the system into an autonomous system with state
“jumps” at the input update times. We consider the unknown
piece-wise constant input as an additional state variable i.
Hence, the augmented state of the system is z(k):=(x(k), u(k)).
During the i inter-update interval, (k) is constant and it

“jumps” to u(k) at the time steps k € {K;}. Thus, letting
- A B -
Az[o Im], c=[c o]

we can write the dynamics (1) as

Az(k), Yk+1) ¢ K,

2k + 1) = { [Ax(k) + Biu(k) (2a)
[ w4+ 1) ] Vk+1) ek

y(k) = Cz(k). (2b)

Thus, the full system is given by the collection of A, B, C, K
and u(K) for all K € K.

Note that (2) is an exact reformulation of system (1). Thus,
we can study the question of observability under unknown
piece-wise constant u(.), with known update times, in the con-
text of the impulsive system (2). To systematically analyze this
question, we introduce the following definition.

Definition 1: For the system (2), we define the unobserv-
able subspace at time k given a horizon w > k, Z(w, k), as the
set of all z such that there exist initial x(0) and a piece-wise
constant control input with input update times C such that
z(k) = z and the output is uniformly zero on [0, w]z. Thus,
formally Z(w, k) is the set

{ze R"™™ : 3xg € R", Jug, e R" VK; € K.
st for (2), x(0) = xo, (K = ug, VK: € K,
z(k) =z, y() =0 Vjel[0,wlz}. (3)

C. Objectives

Under Assumptions (A1)-(A3), the objectives of this letter
are the following.

1) Characterize the unobservable subspace and observ-
ability of system (1), equivalently (2), under unknown
input.

2) Explore the implications for privacy in event-triggered
networked control systems.

We explore this question in the following two sections. In
Section III, we address the question under the assumption of
constant but unknown input. Then, in Section IV we extend
the analysis to the case of piece-wise constant unknown inputs
but with known update times.

[1I. OBSERVABILITY UNDER CONSTANT
UNKNOWN INPUT

Observability of system (2) with a constant unknown input
can be studied with the observability matrix associated with
the pair (A, C), i.e., O(w), where

- c ] [ C 0 T
CA CA CB
CA? CA? C(A+ DB
o(w):= CcA3 = CA3

CA2+A+DB|-

- o
cAv=l CY W SAB

CA;\/—l
Clearly, observability of the system (1) under a constant
unknown input, I = {0}, is directly related to observability
of system (2) in the classical sense. With IC = {0}, Z(w, k)

in (3) reduces to
Z(w, k) = {z e R"™™ : 375 e R"™™ s.t. for (2)

2(0) = z0, z(k) =z, y() =0 Vje[0,wlz}. (5)
In particular, it is easy to see that under a constant unknown
input, Z(w, 0) = Ker(O(w)). The following lemma character-

izes Ker(O(w)) and hence the unobservable subspace of the
system (2) under constant unknown input.
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Lemma 1: Suppose that Assumption (A2) holds. Then for
all w>n+ 1, Ker(O(w)) = Ker(R), where

.— (A_In) B
R._[ - 0] ©)

Thus, under a constant unknown input, K = {0},
Z(w,0) = Ker(O(w)) =Ker(R) Vw>n+1.
Proof: From (4), we see that z = (x, ) € Ker(O(w)) iff

CA'x =0, fori=0,
. l_l .
CAx+C| Y A |Bi=0 Vie[l,w—1]z. (Tb)
Jj=0

(7a)

Subtracting the i from the (i + 1)™ equation in (7), we get
CA(A—IL)x+Bi) =0 Vie[0,w—2]z. (8)

Under Assumption (A2), the only vector v that satisfies CA'v =
0 for all i € [0, n— 1]z is v = 0. Thus, (8) and (7a) imply that
Ker(O(w)) = Ker(R) Yw > n + 1. The result now follows as
Z(w, 0) = Ker(O(w)) if K = {0}. |

Remark 1: Notice that the matrix R in (6) is in essence the
Rosenbrock’s system matrix [24] of system (1) for the discrete-
time DC frequency. This is not surprising since in Lemma 1,
we seek precisely the “transmission blocking” plant states and
constant control inputs.

Also, given that O(w) has n + m columns, one may expect
that Z(w, 0) would, in general, remain constant only for w >
n + m. However, Lemma 1 in fact says that Z(w, 0) remains
constant for all w > n + 1.

In the following result, we give a simple property of
Ker(O(w)) that plays a very important role in the setting of
piece-wise constant unknown input.

Corollary 1: Suppose that Assumptions (A1) and (A2) hold
and w > n 4+ 1. Then the following statements are true:

(@) If (x,u;) € Ker(O(w)) and (x, up) € Ker(O(w)) then
up = up.

(b) If (x1,u) € Ker(O(w)) and (x2,u) € Ker(O(w)) then
X1 = X2.

Proof: From Lemma 1, we know that Ker(O(w)) = Ker(R).
Then, claim (a) follows from the full column rank of B in
Assumption (Al). Claim (b) follows from observabiliy of the
pair (A, C) in Assumption (A2), which implies that [(A Z,I")]
has full column rank.

We now go on to characterize Z(w, k) when IC = {0}. In
particular, if I = {0}, (5) indicates that the dimension of
Z(w, k) is no larger than that of Z(w, 0). Further, we also
know that Z(w, 0) is an A-invariant subspace [24] for all w >
n + 1. Thus, we can say that Z(w, k) € Z(w,0). But the
following result says that Z(w, k) = Z(n+1,0) for all k > 0
and w>n+ 1.

Theorem 1: Consider the system (2) with a constant
unknown input and suppose Assumptions (A1) and (A2) hold.
Further, suppose that z(0) € Ker(R). Then z(k) = z(0) for all
k > 0. As a consequence, Z(w, k) = Z(n+1,0) for all k >0
and w>n+1.

Proof: Since Z(w, 0) is an A-invariant subspace, we know
that Z(w, k) € Z(w,0), and from Lemma 1, we know that
Zw,0) = Z(n+1,0) = Ker(R) for all w > n+ 1. Thus, it
suffices to show that Ker(R) C Z(w, k).

Now, since z(0) = (x(0), i(0)) € Ker(R), we have

x(1) = Ax(0) + Bu(0) = x(0).

Further, as the control input is constant, u(k) = u(0) for all
k > 0. Further, if x(k) = x(0), we have

x(k + 1) = Ax(k) + Bu(k) = Ax(0) + Bu(0) = x(0). (9)

Using mathematical induction, we conclude that z(k) =
z(0) Yk € Nyp. Thus, (5) implies that z(0) € Z(w, k), that
is Z(w,0) = Ker(R) € Z(w, k), which then means that
Zw, k) =Zw,0) forall k>0and w>n+ 1. [ |

Note that, this result holds even if A is singular. Further, it is
interesting that if z(0) € Z(w, 0) with w > n+ 1, then z(k) =
z(0) for all k > 0, which goes beyond A-invariance of the set
Z(w,0). As we will see, this has an interesting implication
for observability under an unknown piece-wise constant input,
which is our next topic of discussion.

IV. OBSERVABILITY UNDER PIECE-WISE
CONSTANT UNKNOWN INPUT

We now seek to characterize Z(w, k) under an unknown
piece-wise constant input, as given in (3). Given the extra
degrees of freedom provided by uk; for K; € K it seems plau-
sible, unlike in the constant input case, that in general Z(w, k)
may not be a subset of Z(w, 0).

Remark 2: Due to the causal nature of the system (2), we
can say that, for all w € Ny and for all £k < w, Z(w, k) does
not depend on update times greater than w. Thus, we define
the truncated set of update times up to w as

Ky ={KeK:K=<whU{w}={Ko, Ki,...,Knuw)

which is the set of all update times up to and including w. Note
that we include Kywy = w € K,, even if w ¢ K. However,
as the input u(w) can only affect the outputs y(k) for k > w,
we see that Z(w, k) is unaffected by whether w € K or not.
Hence, we can obtain Z(w, k) by supposing K = K, has only
finitely many input updates.

Now, in order to characterize Z(w, k), let

y = (K, yKi+1), ..., yKir1 — 1)),

which is the vector containing all the measurements in the i
inter-update interval in /C,,. Then, we can write

Y = 0(q)z(K), qi = Kir1 — K;i Vi€ [0,Nw))z. (10)

Although z(K;) = (x(K;), i(K;)), note that in (10), only x(0)
and #1(K;) can be chosen arbitrarily. The rest of x(K;) are deter-
mined by the dynamics (2). In particular, from variation of
constants, we know that

Ki+1—Ki—1
> @B(k).

j=0

x(Kip1) = AR1=Kix(K;) + (11)
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Now, we can say that

Zw, k) = {z € R™™ : Jy; e R"P | Vi e [0, N(w))z,
s.t. for (2), z(K) =vi, (11), z(k) =z,

Cx(w) =0, 0(g)z(K) =0 Vie[0,Nw))z}. (12)

Now, we are ready to present our results on observability under
unknown piece-wise constant control.

Theorem 2: Consider system (2) with unknown piece-wise
constant input and suppose Assumptions (Al)-(A3) hold.
Further, let w € Ny be such that w — K; > n + 1 for
all K; € K, \ {w}. Finally, suppose that k € [0, w]z. If
2k) = z = (x,0) € Zw,k) then z(j) = z = (x, )
for all j € [0,w — 1]z and x(w) = x. As a consequence,
Z(w, k) = Ker(O(n + 1)) = Ker(R) for all k € [0, w]z.

Proof: Our starting point is (12). Observe that
Assumption (A3), Lemma 1 and the fact that w — K; > n+ 1
for all K; € Ky, \ {w} together imply that O(g;)z(K;) = 0
iff z(K;) € Ker(O(n + 1)) = Ker(R) for all i € [0, N(w))z.
This fact together with (11) and the induction similar to the
one in (9) implies that x(K;y1) = x(K;) Vi € [0, N(w))z.
Further, Corollary 1(a) implies that u(K;y+;) = u(K;) and
hence z(K;) = z(Kp) for all i € [0, N(w))z. Now, applying
Theorem 1 on each of the inter-update intervals in X, in
isolation and using (12), we obtain the first claim of the
result. The second claim is now a consequence of (12) and
the fact that z(k) = z(Kp) € Ker(O(n + 1)). [ |

Note that Theorem 2 allows the possibility that Z(w, k) can
be something other than Ker(O(n + 1)) for w that violate the
assumption that w — K; > n+ 1 for all K; € K, \ {w}. For
all other w, Theorem 2 says that the unobservable subspace is
the same. Given this, we let

Z = Ker(O(n+ 1)) = Ker(R).

Further, for brevity, we also let O:=0(n + 1).
Next, we want to define the known and the unknown parts
of the state and the control input. To this end, letting

vk k+j) = &), ...

we can write the output relation as

(k4 ),

y(K; : Ki +n) = 0z(K;) = O1x(K;) + OLu(K;) VK; € K,

where O and O; are the first n and last m columns of the
matrix O, respectively, such that O =: [O1 O;]. Note that by
row operations, the last n block rows of O, can be reduced to
the first n block rows of O1B. Then, Assumptions (Al)- (A2)
imply that O; and O> have full column rank. Hence, there
exists a unique #(K;) compatible with each pair of x(K;), and
a feasible output sequence y(K; : K; + n). Further,

i(K;) = O [y(Ki : Ki+n) — O1x(K))].

Definition 2: We denote the known and the unknown parts
of z(k) with r(k) and ¢ (k), respectively, which we define as

r(0) == 0'y(0 : n), £(0) € Z, s.t. z(0) = r(0) + £(0)
& (k), 88 (k) = ¢ (k) = AFz(0) VkeNy
& (k), & (k) = r(k) == AFKir(Ky) V€ [Ki, Kir1)z,

where
X'(Kp) = [L, 0JA% KDk, )
i (K;) = O}[y(K: : Ki +n) — O1x" (K]

We also call x4 (k), &t (k) as the unknown and x"(k), &t" (k) as
the known parts in plant states and input, respectively. )

Note that r(0) can only be computed after n + 1 mea-
surements. Similarly, for each K; € K, ' (K;) depends on
y(K; : Ki + n). This implies that r(k) can only be evaluated
with an initial delay of n + 1 time-steps in each inter-update
interval, that is to say that (k) can only be evaluated at time
step max{k, Ly + n}, where Ly = max{K € K : K < k}. On
the other hand, ¢ (k) cannot be determined only from the mea-
surements though we know that ¢ (k) remains ¢(0) for all k.
In the next result, we show that the known and the unknown
parts, r(k) and ¢(k), add up to z(k) for all k£ > 0.

Corollary 2: Consider the system (2) under piece-wise con-
stant unknown input and suppose Assumptions (Al)-(A3)
hold. Then ¢ (k) = ¢(0) and z(k) = r(k) + ¢ (k) Yk € Np.

Proof: Theorem 1 ensures that ¢(k) = ¢(0) Yk > 0. Next,
we show by induction that z(K;) = r(K;) + ¢(K;) VK; € K,
which along with (2) implies that z(k) = r(k) + ¢ (k) for all
k € [K;, Kiy1)7 VK; € K. By definition r(0) € Z+ and hence
z(0) = r(0)4¢(0). Now suppose that z(K;) = r(K;)+¢ (K;) for
K; € K. Then the definition of x"(K;41) implies that x(K; 1) —
X (Kiy1) = x5 (Kiy1) = 1% (0). Next, since

Oz(Kiy1) = y(Kiy1

we can say that (z(K;1+1) —r(Ki+1)) € Z. Then, Corollary 1(a)
implies that a(K; 1) — o (Kiv1) = a°(Kip1) = a5(0) as
(x4 (0), 26 (0)) € Z. ]

The known part r(k) can be thought of as the estimate of
the plant state and the unknown input given sufficient measure-
ments. Theorem 2 and Corollary 2 indicate that the uncertainty
about the unknown part ¢ (k) cannot be reduced, from the sub-
space Z, after the first n+ 1 time steps even if there are many
updates to the control. However, with additional information
such as the triggering rule in event-triggered control, we show
in the next section that this uncertainty can be reduced. As a
result, there can be a loss of privacy in event-triggered control.
In contrast, in time-triggered control, there is no additional
information in the update times and hence the uncertainty
remains a subspace.

: Kip1 +n) = 0Or(Kiy1),

V. PRIVACY IMPLICATIONS FOR EVENT-TRIGGERED
STABILIZATION

In this section, we explore the implications of the results in
Section IV for privacy in event-triggered stabilization. Through
an example, we show that uncertainty about the unknown part
can be reduced to a bounded subset of Z in finite time.

We consider a system with event-triggered state feedback
transmissions from the plant to the controller over a network
and in the presence of an eavesdropper (ED). We depict this
setup in Figure 1. We assume that the eavesdropper has knowl-
edge about the system matrices A, B and C in (1) and the
event-triggering rule (ET). While these can be known even
offline, we also assume that ED has access to some online
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Fig. 1. Event-triggered control in the presence of an eavesdropper. Fig. 2. Evolution of the known and the unknown parts of the

information, namely the sensor measurements and the event
times {K;}. However, we assume that ED cannot measure the
plant state x(.) or the control input #(.).

Consider system (1) with the pair (A, B) stabilizable and a
matrix S such that (A + BS) is schur stable. We let the input
be a zero-order hold control

(k) = Sx(K;) Vk € [Ki, Kit+1)z, 13)

where K := {K;};cn, is the increasing sequence of input update
times determined implicitly by an event-triggering rule. We
assume that ED has knowledge of the update times K; when
they occur. However, we assume that ED has no knowledge
about the matrix S or even the form of the control, except that
it is piece-wise constant.

We consider the triggering rule from [25], where an event
occurs at time step k, i.e., Kj11 =k, if

|[x(K) — x(R)[| = pl|x(K)]].- (14)

Reference [25] provides a range of values of w for which
the triggering rule (14) ensures asymptotic stabilization of the
plant state to the origin. We define ¢ = (x5, &) = ¢(0) for
brevity. Then, from Corollary 2, x(k) = x" (k) + x%. Thus, the
event-triggering rule can be written as: K; 1 = k if
" (k) + x| < &er(Ki) —x"(B)]]. 15)
We assume that system (1) and the update times K gener-
ated by the triggering rule (14) satisfy Assumptions (A1)-(A3).
Assumption (A3) is not restrictive in this context as one could
choose a small enough sampling period for time-discretizing
the underlying continuous time system in order to ensure
Assumption (A3) is satisfied. With this review of event-
triggering rule, we now look at the privacy implications for
this stabilization task.

A. Privacy Implications

We consider plant state to be confidential information and
hence a matter of privacy. Specifically, the smaller the error
bound on ED’s estimate of the plant state the greater is the
loss of privacy. We assume that ED can accurately evaluate
x"(k), the known part of the plant state x(k). Hence the uncer-
tainty in ED’s estimation of the states is entirely due to the
unknown part in the state. We assume that ED has access to
the information Z(k) at time k, where

I(k) =1{A,B,C, {y(j)}ll-‘zo, Kk, ET rule (14) }.

We let L£(k) be the uncertainty set at time-step k, which is
the set of all possible values of x¢ that are compatible with

plant state at the event times in the event-triggered stabilization task.
Here xf and x,.r denote the ith component in the vectors x¢(K;) and
x"(Kj). We see that the unknown part in plant states remains time
invariant and the known part in the plant states evolves such that
limg, s 400 X (K)) + Xt =0.

information available to ED up to time k. Then, we measure
the breach in privacy through the “size” of these uncertainty
sets as a function of time step k.

Notice that sensor output measurements alone cannot reduce
the uncertainty set £(k) to something smaller than X', which
is the projection of Z onto the plant-state space. Thus, there
is a reduction only at the event times K;. Hence, we consider
L(k) only for k = K; € K. In particular, using (15), which is
equivalent to the ET rule (14), we first define S(K;) as the set
of all x* compatible with (15) at k = K;. Thus,

SKp) ={xe X : |lx+x"(Kill = b))},
where b(i) = liL||x’(Ki_1) — x"(K;)||. Then,

LK) = Nj_; S(K)), (16)

and non-increasing with events. If in the event-triggering
rule (14) or equivalently (15) w is such that it ensures asymp-
totic stability of the origin of the plant state x then the
uncertainty sets £(K;) are bounded, lim;_, o, (i) = 0 and as a
result £(K;) converges to the true value of the unknown part
of the plant state.

Now, we give an illustrative example showing the loss of
privacy about the plant state information.

B. An lllustrative Example

Consider system (1) with input (13) under
Assumptions (A1)-(A3). We let the parameters of the
system be

1 0.0022 0
A= [—0.0044 1.0066]’ B= [0.0022}’ c=[o 1]

S =[1 —4]and u = 49.0636. This value of u ensures that the
inter-event times are larger than n 4+ 1 = 3. In this example
X is a line spanned by the vector (1,0). We consider the
initial plant state x(0) = (0.8, —0.4) and notice that x;(0) =
(1.1198, 0).

The evolution of the known and unknown part of plant-
states in the event-triggered feedback stabilization task is
shown in Figure 2. This verifies the results in Theorem 2
and Corollary 2. Also note that x"(k) approaches negative
of x% (k) = x%(0) asymptotically. Further, the uncertainty sets
L(K;) are intervals of the line X. In Figure 3, we show the
evolution of the left and the right ends of the intervals L(K;).
We can see here that the length of the line segments L£(K;)
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the uncertainty sets L(K;). In this figure, we see that the size of the
uncertainty set, i.e., |[£(Kj)| is bounded and decreasing with events.

reduces with events. Also note here that no initial estimate
needs to be provided for the uncertainty set. Hence, we can
see that ED can identify the unknown part of the plant state
within a quantifiable bound even in finite time. Moreover, the
bound shrinks with each event and converges to zero asymp-
totically. Thus, in this example, with the knowledge of only
the system parameters A, B and C, sensor measurements, the
event times and the event-triggering rule, ED is able to breach
the privacy of the plant state.

VI. CONCLUSION

In this letter, we characterized the unobservable subspace of
discrete-time LTI systems under unknown piece-wise constant
inputs when the input update times are known. In particular,
we showed that if the input inter-update times are long enough
and if there are enough measurements in each inter-update
interval, then the unobservable subspace remains fixed. We
then explored the consequences of this result for privacy in
event-triggered control. We showed that if an eavesdropper
knows the system matrices, the input update times and the
event-triggering rule then it can estimate the plant state up to
a bound that decreases with time to zero.
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