
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020 709

Optimal Server Selection for Straggler Mitigation
Ajay Badita , Student Member, IEEE, Parimal Parag , Member, IEEE,

and Vaneet Aggarwal , Senior Member, IEEE

Abstract— The performance of large-scale distributed compute
systems is adversely impacted by stragglers when the execution
time of a job is uncertain. To manage stragglers, we consider a
multi-fork approach for job scheduling, where additional parallel
servers are added at forking instants. In terms of the forking
instants and the number of additional servers, we compute the
job completion time and the cost of server utilization when the
task processing times are assumed to have a shifted exponential
distribution. We use this study to provide insights into the
scheduling design of the forking instants and the associated
number of additional servers to be started. Numerical results
demonstrate orders of magnitude improvement in cost in the
regime of low completion times as compared to the prior works.

Index Terms— Straggler mitigation, distributed computing,
shifted exponential distribution, completion time, scheduling,
forking points.

I. INTRODUCTION

LARGE scale computing jobs require multi-stage com-
putation, where computation per stage is performed in

parallel over a large number of servers. The execution time of
a task on a machine has stochastic variations due to many con-
tributing factors such as co-hosting, virtualization, hardware
and network variations [1]. A slow server can delay the onset
of next stage computation, and we call it a straggling server.
One of the key challenges in cloud computing is the problem
of straggling servers, which can significantly increase the job
completion time [2]–[4]. Straggler mitigation is a particularly
important problem, considering this the organizations such as
VMWare and Amazon have spent substantial effort optimizing
the operation of virtualization technologies for massive-scale
systems [2]. This paper aims to find efficient scheduling
mechanisms for straggler mitigation by analyzing how the

Manuscript received April 25, 2019; revised November 9, 2019;
accepted January 22, 2020; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor K. Jagannathan. Date of publication February 28, 2020;
date of current version April 16, 2020. This work was supported in part
by the Science and Engineering Research Board under Grant DSTO-1677,
in part by the Department of Telecommunications, Government of India, under
Grant DOTC-0001, in part by the Robert Bosch Center for Cyber-Physical
Systems, in part by the Centre for Networked Intelligence (a Cisco
CSR initiative) of the Indian Institute of Science, Bengaluru, in part
by the VAJRA Fellowship, in part by the National Science Foundation
under Grant CNS-1618335, and in part by Cisco. (Corresponding author:
Vaneet Aggarwal.)

Ajay Badita and Parimal Parag are with the Department of Electrical and
Communications Engineering, Indian Institute of Science, Bengaluru 560012,
India (e-mail: ajaybadita@iisc.ac.in; parimal@iisc.ac.in).

Vaneet Aggarwal is with the School of Industrial Engineering and the School
of Electrical and Computer Engineering, Purdue University, West Lafayette,
IN 47907 USA (e-mail: vaneet@purdue.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2020.2973224

replication of straggling tasks affects the mean service com-
pletion time and the mean server utilization cost of computing
resources.

The idea of replicating tasks in parallel computing has been
adopted at a large scale via the speculative execution in both
Hadoop MapReduce [1], and Apache Spark [5]. The use of
redundancy to reduce mean service completion time has also
attracted attention in other contexts such as cloud storage
and networking [6], [7]. These works focus on the queuing
aspects at the storage servers. Replication is a special case
of general redundancy mechanism and is considered in this
paper. Replication is also referred to as forking in popular
scheduling parlance. Replicating a job on multiple servers
affords us the parallelism gains, while it comes at the cost of
server utilization. We consider a dynamic replication strategy,
where an unfinished task is sequentially forked over multiple
servers at certain forking times. We thus provide an efficient
tradeoff between the mean service completion time and the
mean utilization cost of computing resources.

Recently, the authors of [8] provided a framework for
analyzing straggling tasks for a computing job. The authors
of [8] considered executing K jobs (or tasks), where one
copy for each job was started at time t = 0. They had a
single forking point at the instant of job completion of a
fraction (1 − p) of all K jobs. At this forking point, each
of the remaining pK incomplete jobs is replicated r times.
Two variants, where the original tasks were killed or kept at
the forking point were considered. In this setting, the mean
service completion time and the mean server utilization cost
of computing resources per job were computed in the limit as
K → ∞, where the execution time follows either a shifted
exponential or a Pareto distribution. The analysis assumes a
single forking point, corresponding to the time where multiple
replicas are run for an unfinished job.

In contrast, we provide a multi-fork analysis of the com-
puting jobs, with a selection of number of servers for repli-
cation at each forking point. Specifically, we assume K jobs,
all starting at t0 = 0 and an identical sequence of m forking
points for each job, denoted by ti for i ∈ [m] � {1, . . . , m}.
We initialize each task on n0 parallel servers at instant
t0 = 0. At each forking point ti, we start additional ni

replicas for each unfinished job. If a job is unfinished for
any time t ∈ [ti, ti+1), then it has Ni =

�i
j=0 nj active

replicas. This procedure is illustrated in Fig. 1, where we
plot the time-evolution of number of active replicas for a
single unfinished task. With multiple forking points, the mean
service completion time and average server utilization cost
are evaluated where the server execution times are assumed

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5886-8801
https://orcid.org/0000-0002-3757-904X
https://orcid.org/0000-0001-9131-4723

710 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

Fig. 1. We illustrate the two-forking for a single task with total number
of servers N = 12, by plotting the time-evolution of number of active
replicas N(t). We consider the example when the sequence of number of
forked servers is (n0, n1, n2) = (4, 5, 3), the sequence of forking times is
(t0, t1, t2) = (0, 2, 4), and the service completion time is S1 = 5. For this
case, the server utilization cost W = n0S1 + n1(S1 − t1) + n2(S1 − t2).

to be i.i.d. following a shifted exponential distribution, and
the forking points are separated by at least the shift of the
distribution.

The results of single forking point analysis show that
starting with multiple copies per job at time t0 = 0 can
perform much better than starting with a single copy per job
as proposed in [8], when the forking time is below a certain
threshold. Numerical evaluations show orders of magnitude
improvement in the average server utilization cost for a fixed
service completion time. The proposed framework thus shows
that the single forking point strategies used in the literature
may be significantly suboptimal, and one must judiciously
select the number of servers to run at each forking time.
Further, having more forking points help achieve a better
tradeoff between the mean service completion time and the
mean server utilization cost.

A. Related Work

It has been observed that task execution times have signif-
icant variability, partly due to resource sharing by multiple
jobs [9]. The slowest tasks that determine the job execution
time are known as “stragglers”. One of the key approaches
to mitigate the effect of stragglers is to either re-launch a
delayed task, or pre-emptively assigning each such task to
multiple servers and taking the result of first completing server
per task and canceling the same completed task at remaining
servers. It is known that cancellation overhead can reduce
the parallelism gains afforded by the additional servers [10].
However, for simplicity of analysis and to obtain insight into
optimistic performance gains, we assumed idealized assump-
tion of negligible cancellation overhead.

Speculative execution have been studied in [11], which
acts after the tasks have already slowed down. Proactive
approaches launch redundant copies of a task in a hope that
at least one of them will finish in a timely manner. The
authors of [12] perform cloning to mitigate the effect of
stragglers. The authors of [8] analyzed the latency and cost for
replication-based strategies for straggler mitigation. A machine
learning approach for predicting and avoiding these stragglers
has been studied in [13].

The problem of analyzing the completion of replicated par-
allel tasks is equivalent to having multiple redundant requests.
The authors of [14] present an analysis of redundant requests
where each job enters the queue at multiple servers. Service
time completion can be generalized to finding mean waiting
time of a stream of arriving redundant requests, and has been
studied in the context of distributed storage. We note that the
queueing studies for streaming arrival of requests exist only for
fixed redundancy per request, and are difficult to characterize
analytically even for this case. This implies that each job is
forked to the identical number of servers, and job is completed
by joining identical number of service completions. Tight
numerical bounds are provided in [6], analytical bounds are
presented in [7], [15]–[17], analytical approximations appear
in [18], exact analysis for small systems in [19], exact analysis
for random independent scheduling for asymptotically large
number of servers in [20], and an exact analysis of tail index
for Pareto-distributed file sizes in [21].

Even though we are not considering the streaming arrival of
requests, our setting is a generalization of the fixed redundancy
scheduling approach studied in the above-mentioned works,
since the number of parallel servers available to each task is
a time-varying function in our problem setting.

B. Main Contributions

Our main contribution is the design of a multi-forking
straggler mitigation policy that can efficiently trade-off mean
service completion time and mean server utilization cost, by
sequentially starting a number of replicas at forking points.
The key contributions are summarized below.

1) We analytically compute the mean service completion
time and mean server utilization cost for any finite
number of forking points when the completion time of
each job on any server is independent and identically
distributed according to a shifted exponential distribution
with shift c and rate μ, and the inter-forking times
ti − ti−1 � c for each i ∈ [m] � {1, 2, . . . , m}.

2) For a single forking point, the mean service completion
time and mean server utilization cost are analytically
computed for all values of forking instants t1, initial num-
ber of replicas n0, and additional replicas n1. We demon-
strate that for single forking point t1, having initial
number of replicas n0 = 1 is sub-optimal since both
the performance metrics decrease with initial number of
replicas n0 � n∗

0, where the inflection point n∗
0 � 1 when

the forking point t1 � t∗1.
3) Numerical results for multi-forking show orders of mag-

nitude improvement in the tradeoff between the two met-
rics when compared to the baseline case of single-forking
with single replica initialization of [8].

4) We performed numerical studies for single and
multi-forking when the job execution times are assumed
to have heavy-tailed distributions such as Pareto and
Weibull. We also studied single and multi-forking on a
real compute cluster. We verified that the insights derived
from the analytical studies for the shifted exponential
distribution continue to hold in all three cases.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: OPTIMAL SERVER SELECTION FOR STRAGGLER MITIGATION 711

C. Organization

The rest of the paper is organized as follows. Section II
describes the model used in the paper. Section III provides
the analytical results, where the mean service completion
time and the mean server utilization are characterized for
multiple forking points, with single forking being a special
case. Section IV explores further properties with single forking
point. Sections V and VI provide a tradeoff between the mean
service completion time and the mean server utilization for
single and multiple forking points, respectively. We also com-
pare our approach with that in [8]. Section VII provides the
experimental results on a real compute cluster, Intel DevCloud.
Section VIII concludes the paper, with directions for future
work.

II. SYSTEM MODEL

We consider a distributed computation system with K jobs
and KN identical servers, with the cost of server utilization λ
per unit time. Each server n ∈ [KN] � {1, . . . , KN} has an
independent and identically distributed (i.i.d.) random service
time Tn with distribution function F for each scheduled
job on this server. Uncertainty in execution time at various
servers due to independent background processes, motivates
our assumption of independently random execution time at
each server. Identical distribution at each server is motivated
primarily by analytical tractability, and the fact that we expect
similar randomness at each identical server in a homogeneous
cloud. Thus, following the existing literature [6]–[8], [10],
[18], [21], we adopted this commonly-used assumption for
analysis.

It has been shown in [7], [17], [22], [23] that shifted expo-
nential well models the service time distribution in distributed
computation networks. That is, it suggests that service time for
each computation task can be modeled by aggregation of two
components: a constant overhead and a random exponentially
distributed component. Motivated by these studies together
with the goal of analytical tractability, we assume the service
time distribution to be a shifted exponential with rate μ and
shift c, such that the complementary distribution function
F̄ = 1 − F can be written

F̄ (x) � P{t0 > x} =

�
1, x ∈ [0, c],
e−μ(x−c), x � c.

(1)

We assume that KN servers are partitioned into K disjoint
sets of N servers, where each set of N servers can be utilized
by a single job. The service completion time for job k ∈ [K]
sequentially scheduled over N servers is denoted by Sk and
its server utilization cost is denoted by Wk. Then the service
completion time for all K jobs (also known as the makespan
of the jobs) is the maximum of service completion times of
all K jobs, and is denoted by

S = max
k∈[K]

Sk. (2)

Similarly, the average server utilization cost for K indepen-
dent jobs is defined as the average of server utilization cost

for all K jobs, and is denoted by

W =
1
K

�
k∈[K]

Wk. (3)

We are interested in the optimal trade-off between mean
service completion time ES and mean server utilization cost
EW for K jobs over these KN servers. We will see that
starting all the servers initially minimizes the mean service
completion time, whereas it leads to maximum server utiliza-
tion cost. Hence, we adopt an identical sequential policy for
each of the K jobs. A job k ∈ [K] starts with n0 parallel
servers at time t0 = 0, and sequentially adds ni servers at
instant ti > ti−1 until we utilize all the N servers. We let m
denote the number of sequential addition of servers such that
n0 + · · · + nm = N .

That is, we are considering K parallel jobs, where each job
is replicated on N servers sequentially. Sequential addition
of servers is motivated by the fact that service times are
random and there is a cost associated with the on-time of each
server. Hence, we should commission additional service only
when absolutely necessary. For analytical tractability, we have
further assumed K parallel jobs to be uncoupled and we
add extra servers in an identical fashion for each unfinished
job at the same forking times. One can couple the K jobs,
by adding additional servers performing coded version of the
tasks, such that any K task completions suffice [7], [15], [29].
However, this can incur encoding and decoding delay of the
computational tasks [10], and requires mixing of K sub-tasks
which may not always be desirable.

We will consider the general case of m � 1, and find the
mean service completion time and the mean server utilization
cost for the case when the inter server addition interval
ti − ti−1 � c. Next, we will consider the specific case of
single forking when m = 1 and ti − ti−1 > 0.

We note that the problem is important even when there are
stochastic arrivals since this procedure of forking can be used
for any arriving job. Even though the exact queueing analysis
for multi-forking with stochastic arrivals remains open, we
provide insights on sequential scheduling of K initial jobs
assigned to total N servers each. In particular, the results in
this paper can provide an understanding of how many servers
to use at each forking time to optimize the mean service
completion time ES and the mean server utilization cost EW .

III. ANALYSIS

We observe that service completion time Sk for each job
k ∈ [K] is independent due to independence of server com-
pletion times. Further, since we employ the identical forking
strategy for each job, the service completion time Sk for each
job k ∈ [K] has an identical distribution as well. From the
i.i.d. service completion times for individual job, it follows
from (2) that FS(x) = FK

S1
(x). From the positivity of service

completions times, we have

ES =
�

R+

F̄S(x)dx =
�

R+

(1 − (1 − F̄S1(x))K)dx. (4)

From the similar arguments, we can conclude that the server
utilization costs (Wk : k ∈ [K]) are i.i.d., and from the

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

712 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

linearity of expectations, we have

EW = EW1. (5)

It follows that we should first find the complementary distrib-
ution of service completion time FS1(x) and the mean server
utilization cost EW1 for any single task.

A. Single Task

At instant ti, we switch on ni servers that continue being
utilized until the service completion time S1 for a single task.
Hence, the total cost of server utilization in terms of service
completion times S1 for single task is

W1 = λ
m�

i=0

ni(S1 − ti)+, (6)

where (x)+ � max{x, 0}.
Let the time-interval Ii � [ti, ti+1) and we define

tm+1 = ∞. Clearly, the disjoint intervals Ii partition the
positive reals and any t ∈ R+ belongs to a unique interval
Ii for some i ∈ [m]0 = {0, 1, . . . , m}. Let t ∈ Ii, then we
have n� servers switched on at time t� for l � i. The event
that the service completion time is longer than duration t is
identical to the event that none of the servers started before
this time t have finished until this time t. Let T�,p denote the
service completion time for the pth server started at time t�,
then for time t ∈ Ii we can write

P{S1 > t} = P

i�
�=0

{ min
p∈[n�]

(T�,p + t�) > t}

= P

i�
�=0

�
p∈[n�]

{T�,p > t − t�}.

From the i.i.d. service completion time for all servers, we can
write the complementary distribution function of service com-
pletion time S1 as

F̄S1(t) =
i�

�=0

F̄ (t − t�)n� , t ∈ Ii. (7)

For a single task, we have Ni �
�i

�=0 n� servers working in
parallel during the interval [ti, ti+1). If the task is unfinished
until time ti, then n� servers switched on at instant t� < ti
have been working on this task since then. Hence the server
utilization until time ti is denoted by

τi �
i�

�=0

n�(ti − t�). (8)

Shifted exponential distribution of server completion time Tn

defined in (1), is akin to a constant start-up time c for the
server after which the random service time Tn−c is distributed
exponentially with rate μ. Hence, the servers switched on at
time instant ti only begin the random part of the service at
time ti + c. Accordingly, we define shifted intervals Ĩi � [ti +
c, ti+1 + c) = c+ Ii where Ni servers are working in parallel.
In the following, we use the notation [m]0 = {0, 1, . . . , m}.

Lemma 1: Consider a single task being served by N
servers started sequentially at times (tj : j ∈ [m]0) in
batches of (nj : j ∈ [m]0). When the job completion time
for each server has an i.i.d. shifted exponential distribution as
defined in (1), then the complementary distribution of service
completion time for a single task is given by

F̄S1(t) = e(−μNi(t−ti−c)−μτi), t ∈ Ĩi. (9)
Proof: Let t ∈ Ĩi, then from the definition of service

completion time, we can write

P{S1 > t} = P

i�
�=0

n��
p=1

{T�,p > c + (t − t� − c)}.

Since the job completion time at each server is i.i.d. with the
common shifted exponential distribution defined in (1), we get

P{S1 > t} = exp(−μ

i�
�=0

n�(t − t� − c)), t ∈ Ĩi.

The result follows from the definition of τi from equation (8),
and the definition of aggregate number of forked servers
Ni =

�i
�=0 n� at ith forking time ti.

Lemma 2: Consider a single task being served by N
servers started sequentially at times (tj : j ∈ [m]0) in batches
of (nj : j ∈ [m]0). When the job completion time for each
server has an i.i.d. shifted exponential distribution as defined
in (1), then the mean server utilization cost is given by

EW1 = λ
m�

i=0

ni

� ti+c

ti

F̄S1(t)dt + λ
m�

i=0

Ni

�
Ĩi

F̄S1(t)dt.

(10)

Proof: From the equation (6) for the service utilization
cost for a single task, the linearity of expectations, and
positivity of random variables (S1 − ti)+, we can write the
mean server utilization cost as

EW1 = λ
m�

i=0

niE(S1 − ti)+ = λ
m�

i=0

ni

� ∞

ti

F̄S1(t)dt.

We can write the integral over [ti,∞) as the sum of integrals
over its partition {[ti, ti + c), Ĩi, Ĩi+1, . . . , Ĩm}. Exchanging
summations over indices i ∈ [m]0 and j � i, we get the
result.

For general m, there is no straightforward way to evaluate
the integral

� ti+c

ti
F̄S1(t)dt when ti+1 − ti ∈ (0, c). This is

because the integration has to account for the servers started
between ti and ti + c, which makes the integral evaluation
cumbersome. For simplicity, we stick with the case when
ti+1 − ti � c for all i ∈ [m]0. The results for ES and
EW in this case will be provided in Corollary 2. However
for the single forking case when m = 1, we will derive the
results when t1 − t0 > 0 and not necessarily larger than c in
Section III-C.

B. Parallel Tasks

Next, we find the mean of service completion time and
the mean of server utilization cost for K parallel tasks on

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: OPTIMAL SERVER SELECTION FOR STRAGGLER MITIGATION 713

N servers each, using the complementary service distribution
F̄S1 for a single task, defined in (9). Formally, we describe
our setup below.

Problem 1: Consider K parallel tasks, where each single
task is being served by N servers starting in batches of
(nj : j ∈ [m]0), sequentially at times (tj : j ∈ [m]0) such
that the total number of servers is N and timing thresholds
are at least c distance apart. That is, we have the following
constraints, t0 = 0, tm+1 = ∞, and

m�
j=0

nj = N, tj+1 − tj � c, j ∈ [m]0.

When the job completion time for each server has an i.i.d.
shifted exponential distribution as defined in (1), find the mean
of the service completion time to finish all K parallel tasks
and the mean of the server utilization cost.

The time evolution of number of active replicas for a single
task Sk is illustrated in Fig. 1. When a task is completed
from any replica, the number of active replicas for that task
becomes zero. The overall service completion time S of the
K tasks is the maximum of the completion of each of the K
tasks, i.e. S = maxk∈[K] Sk. We need the following Lemma to
evaluate the mean service completion time.

Lemma 3: We can write the following integrals for comple-
mentary distribution of service completion times. For i ∈ [m]0,
we have�

t∈Ĩi

F̄S(t)dt=− 1
Niμ

K�
k=1

	
K

k

(−1)k

k

�
e−kμτi−e−kμτi+1

�
.

(11)

For 1 � i � m, we can write� ti+c

ti

F̄S(t)dt = −
K�

k=1

	
K

k

(−e−μτi)k

kNi−1μ

�
ekμNi−1c − 1

�
,

(12)

where the total number of active servers in interval Ĩi is
Ni =

�i
�=0 n� and server utilization until time ti + c is

τi =
�i

�=0 n�(ti − t�).
Proof: From the fact that FS(x) = FK

S1
(x) and the

binomial expansion of (1 − x)K , we can write

F̄S(t) = 1 − (1 − F̄S1(t))
K = −

K�
k=1

	
K

k

(−1)kF̄ k

S1
(t).

Using the definition of single task service distribution in (9)
and definitions of Ni and τi, we can integrate F̄ k

S1
(t) over

interval Ĩi, to get�
t∈Ĩi

F̄ k
S1

(t)dt =
1

kNiμ
(e−kμτi − e−kμτi+1).

To integrate F̄ k
S1

(t) over the interval [ti, ti +c), we notice that
[ti, ti+c) ⊆ Ĩi−1 since ti−1+c � ti by hypothesis. Therefore,
we can write� ti+c

ti

F̄ k
S1

(t)dt =
1

kNi−1μ
(e−kμ(τi−Ni−1c) − e−kμτi).

The result follows from combining the above expressions.

Corollary 1: We can futher simplify the above integrals
for complementary distribution of service completion times of
Lemma 3. For integers 0 � i ∈ m, we have�

t∈Ĩi

F̄S(t)dt=
1

Niμ

K�
k=1

1
k

�
(1−e−μτi+1)k−(1−e−μτi)k

�
.

(13)

For 1 � i � m, we can write� ti+c

ti

F̄S(t)dt =
(eμNi−1c − 1)

Ni−1μ

K�
k=1

1
k

(1 − (1 − e−μτi)k).

(14)
Proof: We define the following integrals as a function of

number of tasks

h1(K) =
�

t∈Ĩi

F̄S(t)dt, h2(K) =
� ti+c

t=ti

F̄S(t)dt.

We next observe the following identity for binomial
coefficients

1
k

	
K

k

=

1
k

	
K−1

k

+

1
K

	
K

k

, k ∈ [K].

Multiplying with a geometric term in k and summing over all
k ∈ [K], we get

−
K�

k=1

	
K

k

αk

k
=−

K−1�
k=1

	
K−1

k

αk

k
+

1−(1+α)K

K
.

Hence, we conclude that

h2(K) = h2(K−1)+
(1−e−μτi)K−(1−e−μ(τi−Ni−1c))K

KNi−1μ
,

h1(K) = h1(K − 1) +
(1 − e−μτi+1)K − (1 − e−μτi)K

KNiμ
.

The results follow by taking the summation of h1(k) and
h2(k) over k ∈ [K] with initial conditions h1(0) = h2(0) = 0.

Now, we have all the necessary results to compute the means
of service completion time and cost server utilization for K
parallel tasks.

Theorem 1: For the Problem 1, the mean service comple-
tion time is

ES = c +
1
μ

K�
k=1

1
k

1

Nm
+

m�
i=1

ni

NiNi−1
(1 − e−μτi)k

�
,

(15)

and the mean server utilization cost is

EW1 = λcn0 +
λ

μ
+

λ

μ

m�
i=1

nie
−μτi

	
eμNi−1c − 1

Ni−1

.

(16)
Proof: We will first find the mean server utilization cost

for single task. From (10), we have

1
λ

EW1 = n0

� t0+c

t0

F̄S1(t)dt +
m�

i=1

ni

� ti+c

ti

F̄S1(t)dt

+
m�

i=0

Ni

�
Ĩi

F̄S1(t)dt.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

714 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

First, we notice that
� t0+c

t0
F̄S1(t)dt = c since t0 = 0 and

there is initial startup delay of c for all shifted exponential
job completion times. Taking K = 1, and substituting equa-
tion (11) for integers 0 � i � m and equation (12) for integer
1 � i � m, in the above equation, we get

1
λ

EW1 = n0c +
1
μ

m�
i=1

nie
−μτi

Ni−1
(eμNi−1c − 1)

+
1
μ

m�
i=0

(e−μτi − e−μτi+1).

The result for mean server utilization cost follows from the
telescopic sum and the fact that τ0 = 0, τm+1 = ∞.

To compute the mean of service completion time S, we use
its positivity to write ES =

�
R+

F̄S(t)dt. By writing the
integral over positive reals, as the sum of integrals over the
partition {[0, t0 + c), Ĩ0, Ĩ1, . . . , Ĩm}, we get

ES =
� t0+c

0

F̄S(t)dt +
m�

i=0

�
Ĩi

F̄S(t)dt.

Substituting the fact that t0 = 0, τ0 = 0, τm+1 = ∞,� c

0
F̄S1(t) = c, and equation (13) in the above equation,

followed by exchanging summations over indices k and i,
we get the result.

As a special case of Theorem 1, we can obtain the mean
service completion time and the mean server utilization cost
for a single task, as is given in the following corollary.

Corollary 2: For a single task served by N servers with
multiple forks, the mean service completion time is

ES = c +
1

Nμ
+

1
μ

m�
i=1

ni

NiNi−1
(1 − e−μτi), (17)

and the mean server utilization cost for single task is

EW = λcn0 +
λ

μ
+

λ

μ

m�
i=1

nie
−μτi

	
eμNi−1c − 1

Ni−1

. (18)

We show that making the forking instants smaller and
increasing number of servers at any forking instant can reduce
the service completion time, irrespective of the common
service time distribution.

Proposition 1: For K parallel tasks, each forked sequen-
tially on N identical servers with random i.i.d. execution
times with the common distribution function F , the following
statements are true.

(i) Consider two increasing sequences of forking times t =
(t0, . . . , tm) and t′ = (t′0, . . . , t′m) each with identical
sequence of forked replicas such that t′i � ti at each
stage 0 � i � m. Then ES(t) � ES(t′).

(ii) Consider sequences of forked replicas n = (n0, . . . , nm)
and n′ = (n′

0, . . . , n
′
m) with identical sequence of

forking instants t = (t0, . . . , tm) such that n′
j � nj for

stages 0 � j � m. Then ES(n) � ES(n′).
Proof: The detailed proof is given in Appendix A, which

uses stochastic dominance.
Second condition in the above theorem is very strict in that

for a fixed forking time sequence t, the two forked replica

sequence is such that the number of forked replicas at each
forking time are always larger for one sequence. We would like
the theorem to hold for the following weaker condition: for
a fixed forking time sequence t and the two server sequences
n, n′ such that the cumulative number of server sequences
N � N ′ are point-wise ordered. Notice that, in this case
we would have to use specific properties of the service-time
distribution at each server, and it links the forking instant
sequence and the server sequence. In the following result,
we will show that the result could be refined for the shifted
exponential distribution.

Theorem 2: Let there be K parallel tasks, each forked
sequentially on N identical servers with random i.i.d. exe-
cution times with the common distribution function F being
the shifted exponential as defined in (1). Consider sequences
of forked replicas n = (n0, . . . , nm) and n′ = (n′

0, . . . , n
′
m)

with identical sequence of forking instants t = (t0, . . . , tm)
such that for each stage 0 � i � m,

i�
j=0

n′
j �

i�
j=0

nj , and
i�

j=0

n′
jtj �

i�
j=0

njtj .

Then ES(n) � ES(n′).
Proof: Following the arguments in Theorem 1, it suffices

to show the monotonicity of the complementary distribution
function of service times for single task. It follows from the
theorem hypothesis that Ni =

�i
�=0 n� �

�i
�=0 n′

� = N ′
i and

τ ′
i =

�i
�=0 n′

�(ti − t�) �
�i

�=0 n�(ti − t�) = τi for all stages
i ∈ [m]0. Therefore, for any time u ∈ Ĩi,

F̄
S

(n)
1

(u) = e−μNi(u−ti−c)−μτi

� e−μN ′
i(u−ti−c)−μτ ′

i = F̄
S

(n′)
1

(u).

Hence, the result follows.
Remark 1: For single-fork case starting with forking points

0 = t0 < t1, the condition
�i

j=0 n′
jtj �

�i
j=0 njtj in

Theorem 2 reduces to n′
1 � n1. Hence, if both the systems

have identical number of servers, i.e. n0 +n1 = n′
0 +n′

1, then
n′

0 � n0, and both the theorem conditions hold.

C. Single Forking Parallel Tasks

We consider the single forking case for K parallel tasks
when m = 1 and t1 > 0. Formally, we define the problem
below.

Problem 2: Consider K parallel tasks, where each single
task is being served by N servers starting in two batches of
(n0, n1), sequentially at times (0, t1) such that the total num-
ber of servers is N = n0 +n1. When the job completion time
for each server has an i.i.d. shifted exponential distribution as
defined in (1), find the mean of the service completion time to
finish all K parallel tasks and the mean of the server utilization
cost.

Since n1 = N−n0, we have only two variables n0 and t1 in
this case. Further, we have t2 = ∞ and we can write τ = n0t1.
For the ease of further analysis, we would define following
normalized constants. We define the amount of work done
by all servers N1 = N in parallel each having independent
random execution time distributed exponentially with rate μ

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: OPTIMAL SERVER SELECTION FOR STRAGGLER MITIGATION 715

in the shift-interval c as α � cμN . We denote the normalized
forking time by u � t1/c and the initial fraction of servers by
x � n0/N .

Theorem 3: For the Problem 2, the scaled mean service
completion time is

1
c
ES = 1 +

1
α

K�
k=1

1
k

	
1 +

1 − x

x
(1 − e−αxu)k

, (19)

and the scaled and shifted mean server utilization cost
μ
λEW1 − (1 + α) for single task equals⎧⎪⎪⎨
⎪⎪⎩

α(1 − x)
	

e−αx(u−1) − e−αxu)
αx

− 1

, u � 1,

α(1 − x)
	

(1 − e−αxu)
αx

− u

, u � 1.

(20)

Proof: The result for the mean service completion time
ES can be obtained by substituting m = 1 in the equation (15).
To compute the mean server utilization cost for t1 � c,
we substitute m = 1 in the equation (16). For t1 < c, we need
to evaluate the integral

� t1+c

t1
F̄ k

S1
(t)dt. In this case, we have� t1+c

t1

F̄S1(t)dt =
� c

t1

F̄S1(t)dt +
� t1+c

c

F̄S1(t)dt.

Since F̄S1(t) = 1 for t � c due to initial startup delay c,
and there are n0 parallel independent servers working at the
exponential rate μ in the interval [t1, t1 + c), we have� t1+c

t1

F̄S1(t)dt = c − t1 +
1

n0μ
(1 − e−μn0 t1).

The result follows from aggregating both the cases.

IV. OPTIMAL SINGLE FORKING

We have the expression for mean of service completion
and server utilization for single forking case in Theorem 3.
We study the impact of forking time and initial number of
servers on these two performance metrics.

Proposition 2: Consider the single forking for K parallel
tasks, each forked sequentially over N parallel servers, each
forked task having i.i.d. random service times with the common
shifted exponential distribution with shift c and rate μ.

The partial derivative of the mean service completion time
with respect to normalized forking time u is

∂ES

∂u
= c(1 − x)(1 − (1 − e−αxu)K).

The partial derivative of the mean service completion time
with respect to the initial fraction of servers x is

∂ES

∂x
= − c

αx2

K�
k=1

1
k

(1 − e−αxu)k +
u

x

∂ES

∂u
.

The partial derivative of the mean server utilization cost
with respect to the normalized forking time u is

∂EW1

∂u
=

⎧⎪⎨
⎪⎩

−λ

μ
α(1 − x)e−αxu(eαx − 1), u � 1,

−λ

μ
α(1 − x)(1 − e−αxu), u � 1.

The scaled partial derivative μ
αλ

∂EW1
∂x of the mean server

utilization cost with respect to the initial fraction of servers x
equals⎧⎪⎨
⎪⎩

1−e−αxu

�
(
1
x
−1)((u−1)eαx−u)+

(eαx−1)
αx2

�
, u � 1

u+(
1
x
−1)ue−αxu− 1

αx2
(1−e−αxu), u � 1.

Proof: Results follow by taking partial derivatives of
mean server utilization and mean service completion task with
respect to normalized forking time u and initial fraction of
servers x.

Even though the initial fraction of servers x lie in the set
{ 1

N , . . . , 1}, we approximate it by a real number x ∈ [1
N , 1] to

get insight on the dependence of the above two performance
metrics on this fraction.

Theorem 4: The following statements are true for the single
forking problem.

(i) The mean service completion time is an increasing func-
tion of forking time t1.

(ii) The mean service completion time is a decreasing func-
tion of initial fraction x.

(iii) The mean server utilization cost is a decreasing function
of forking time t1.

(iv) There exists a unique optimal initial fraction of servers
x∗ ∈ [1

N , 1] that minimizes the mean server utilization
cost. For normalized forking time u � v3, the optimal
initial fraction is x∗ = 1/N . For normalized forking time
u < v3, the optimal initial fraction is the unique solution
to the following implicit equation, where eαxu equals⎧⎪⎨
⎪⎩

(
1
x
− 1)((u − 1)eαx − u) +

(eαx − 1)
αx2

, u ∈ [1, v3),

−(
1
x
− 1) +

1
αx2u

(eαxu − 1), u < v3 ∧ 1,

(21)

where the normalized forking point threshold v3 is
the unique solution to the implicit equation, where
cμ
N ecμv3 + (N−1)cμ

N equals⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

	
cμ(N − 1)(v3 − 1)

N
+ 1

(ecμ − 1),

(1 − cμ

N
)
(ecμ − 1)

cμ
> 1,

1
v3

(ecμv3 − 1),

(1 − cμ

N
)
(ecμ − 1)

cμ
� 1.

Proof: The proof is provided in Appendix B.

V. NUMERICAL STUDIES: SINGLE FORKING

We numerically evaluate the behavior of mean service
completion time and mean server cost utilization for single
forking below, with total number of servers N = 12 for each of
the K = 10 parallel tasks, taking λ = 1. We have analytically
studied the case when service time at each server is an i.i.d.
random variable having a shifted exponential distribution, and
we present the numerical studies for the single forking case
with shifted exponential distribution. We note that the insights

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

716 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

Fig. 2. Mean service completion time ES as a function of initial number
of servers n0 ∈ {1, . . . , 11} for single forking of K = 10 parallel tasks at
different forking times t1 ∈ {c, 2c, . . . , 9c}.

Fig. 3. Mean server utilization cost EW as a function of initial number
of servers n0 ∈ {1, . . . , 11} for single forking of K = 10 parallel tasks at
different forking times t1 ∈ {c, 2c, . . . , 9c}.

obtained from this study hold for heavy-tailed distributions
such as Pareto and Weibull distribution as well, and the
supporting numerical results are presented in Appendix F-A
and Appendix F-B.

We have taken the job completion times at each server to be
an i.i.d. random variable having a shifted exponential distrib-
ution with the shift parameter c = 8 and the exponential rate
μ = 0.01. From the discussion in Appendix E-C, we observe
that cμ = 0.08 < N − 2 = 10 < x′, and hence cv3 � 1.
Specifically, we can numerically compute the forking time
threshold v3 ≈ y

cμ ≈ 47 where ey = 1 + 11y is satisfied
by y ≈ 3.741. That is, for any forking point t1 � 47c, we can
have optimal number of initial servers n∗

0 � 1. For the given
system parameters, we plot the mean service completion time
in Fig. 2 and mean server utilization in Fig. 3 as a function
of initial servers n0 ∈ {1, . . . , 11} for values of forking
times in t1 ∈ {c, 2c, · · · , 9c}. We corroborate the analytical
results obtained in Theorem 4, by observing that mean service
completion time increases and the mean server utilization cost
decreases with increase in the forking time t1. We further
observe that the optimal number of initial servers n∗

0 � 1
for mean server utilization cost for different values of forking
time t1. In addition, we notice the decrease in the mean service
completion time as the number of initial server n0 increases.

These results point to an interesting tradeoff between the
two metrics. First observation is that forking time gives a
true tradeoff between these two metrics. Second and more
interesting observation is that there exist a minimum number of
initial servers for each forking time, until which point we can
decrease both the mean service completion time and the mean
server utilization cost. This also points to the sub-optimality
of single-forking with unit server in [8].

The authors of [8] considered a single fork analysis where
at t = 0, one copy of the task is started and when pn jobs
are complete, each unfinished job is replicated r times. The
analysis considered two possibilities, one where the currently
running job is kept running at the forking point and second
where it is killed. It was shown that keeping the currently
running job performed better for both mean service completion
time and mean server utilization cost, when the service dis-
tribution is shifted exponential. We compare our results with
the baseline results obtained in the [8, Theorem 2] for the
case when the straggler job is kept running at the forking
point. We restate the above-mentioned Theorem, adapted to
our notation, for easy reference.

Lemma 4: [8, Theorem 2] Consider K parallel computing
tasks, each started on a single server each, i.e. t0 = 0, n0 = 1.
If r replicas of each unfinished task are started, after (1−p)K
tasks are completed, and the execution time of each task is
assumed to be i.i.d. ShiftedExp(c, μ), then the mean service
completion time and the mean server utilization cost metrics
for K → ∞, are

ES =
2r + 1
r + 1

c +
1

(r + 1)μ
(ln K−r ln p + γEM)

EW = c +
1
μ

+ pc + pr
(1 − e−μc)

μ
,

where γEM ≈ 0.577 is the Euler-Mascheroni constant.
Though our model is quite different than the one studied

here, we will make broad comparisons. We let n0 = 1 for this
model and let t1 to be the mean time to finish (1− p)K tasks
with K parallel servers working at rate μ. Then

μK(t1 − c) ≈ K(1 − p).

Further, at instant t1, we have n1 = N − 1 = rp new
servers being started per job. Therefore, we can take the
forking point to be t1 = c + (1−p)

μ and the total number of
servers to be N = 1 + rp. Given total number of available
servers N and forking time t1, we can compute the fraction
of completed tasks p = 1−μ(t1−c) and the number of replicas
r = (N−1)

p . In Fig. 4, we have plotted the mean of service
completion times with respect to mean server utilization cost
when λ = 1 for the single forking proposed in [8] as the
baseline curve and our proposed single forking varying the
initial number of servers n0 ∈ {1, . . . , 11}, when the forking
time t1 ∈ {2c, 4c, 6c, 8c}. We see that our trade-off curves
are well inside the baseline curve. Specifically, we observe
significant reduction in the mean server utilization cost for
optimal server initialization when compared to single-server
initialization of [8], for the identical mean service completion
time in both the cases.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: OPTIMAL SERVER SELECTION FOR STRAGGLER MITIGATION 717

Fig. 4. Mean server utilization cost EW as a function of mean service
completion time ES when we vary the number of initial servers n0 ∈
{1, . . . , 11} for single forking of K = 10 parallel tasks at different forking
times t1 ∈ {2c, 4c, 6c, 8c}. The service distribution of each replica is
assumed to be i.i.d. shifted exponential with shift parameter c = 8 and
exponential rate μ = .01. We have plotted the same curve for initial servers
n0 = 1 for single forking for K = 10 parallel tasks for these different
values of forking times t1, for the baseline (r, p) model where r = (N−1)

p
and p = 1 − μ(t1 − c).

VI. NUMERICAL STUDIES: MULTIPLE FORKING

In a multi-forking scenario the free variables are number
of forked servers (n0, . . . , nm−1, nm) under the constraint of
finite number of servers N per task, i.e.

�m
i=0 ni = N , and the

forking instants (t0 = 0, t1, . . . , tm). It is a multi-dimensional
optimization problem and not easy to evaluate. The single
forking results in Section IV leads us to believe that even
for the general case of multiple forking points with i.i.d.
execution times having shifted exponential distribution, there
should be a tradeoff between the two metrics of mean server
utilization cost EW and the mean service completion time ES.
We attempt two approaches to understand this tradeoff.

A. Joint Cost for Large N

To explore this tradeoff, we formulate the joint optimization
in terms of a tradeoff parameter β as

MP : min ES + βEW

such that (15), (16), t0 = 0
variables n0, · · ·nm, t0, · · · , tm (22)

We note from Fig. 4 that based on the value of β, the
tradeoff point chosen will be different. Thus, finding the
forking instants and the number of servers added at each
forking point, are important. For the optimization problem,
we chose the total number of servers N , to be unbounded.
For (n0, . . . , nm) an integer sequence, the above problem
is a mixed-integer programming problem, and known to be
hard. As such, we relax the integer constraints and allow ni

to be real valued, in which case the problem reduces to a
linear programming problem and can be solved using interior
point algorithm [24]. We round off the values of ni to nearest
integers to get a heuristic integral solution.

For this multi-objective optimization defined in (22), chang-
ing the value of β provides a tradeoff between the two metrics.

Fig. 5. Tradeoff between mean service completion time and mean server
utilization cost, obtained by changing the value of β. The service distribution
of each replica is assumed to be i.i.d. shifted exponential with shift parameter
c = 1 and exponential rate μ = 1.

For numerically solving the multi-objective optimization, we
take the parameters of shifted exponential distribution as shift
c = 1 and service rate μ = 1, the server utilization cost
per unit time λ = 1, the number of parallel tasks K = 25,
and the number of forking points m = 4. We depict the
tradeoff between mean service completion time and mean
server utilization cost for the proposed heuristic algorithm in
Fig. 5.

We compare the performance of multi-forking obtained by
the proposed heuristic algorithm to the baseline single-forking
approach proposed in [8]. We can compute the linear cost of
the optimization problem in (22) for any tradeoff parameter β,
by obtaining the mean service completion time and the mean
server utilization cost from Lemma 4. Fig. 5 shows a signifi-
cant improvement of the proposed model as compared to that
in [8] for the tradeoff between the two metrics. For a service
completion time lower than 2, there is significant reduction
in the mean server utilization cost, thus showing the huge
savings that the multi-forking can provide. The performance
gains are due to two factors, initializing the task on multiple
servers at time t = 0 and multi-forking. We observed that the
improvement due to multi-forking was small in this setting
and the corresponding tradeoff curve for single forking looks
very similar, and hence we do not provide the tradeoff curve
for single-forking in this setting.

We note that the lowest mean service completion point
in Fig. 5 corresponds to starting large number of servers at
t = 0 since having large number of servers at t = 0 achieves
the lowest completion time. However, if the number of total
servers is bounded by a number N as is the case in our
single forking analysis, the points on the very left in the mean
service completion time may not be achievable. In other words,
the curve will get truncated on the left side with an upper
bound on N .

B. Comparison With Optimal Single Forking

In general, finding the optimal forking points and the
corresponding number of servers to be forked at each forking
point, is not an easy task. In the following, we compare

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

718 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

Fig. 6. This figure illustrates achievable points with shifted exponential
execution times for mean server utilization cost and mean service completion
time for two-forking with different values of forked servers m0, m1 and
N − m0 − m1 at forking points t0 = 0, s ∈ {c, 2c, 3c, 4c, 5c} and
t = 9c, respectively. For comparison, we also plot the tradeoff points of
single-forking at forking time t = 9c varying the number of initial servers
n0.

optimal single forking to sub-optimal two-forking to quantify
potential gains of multi-forking for i.i.d. shifted exponential
execution times. We assume the system parameters to be
c = 8, μ = 0.01, K = 10, N = 12, λ = 1. We consider two
different setups for the comparison, depending on the location
of the other forking with respect to t. The single forking can
be thought of as two-forking with zero forked servers at this
other forking point.

As a first case, we take the other forking point s < t. In this
case, the single forking can be thought of as a two-forking
sequence ((0, n0), (s, 0), (t, N − n0)). For all possible values
of 0 � m0, m1 such that m0 + m1 � N , we consider
two-forking sequences ((0, m0), (s, m1), (t, N − m0 − m1)).
We plot the tradeoff curve between mean service completion
time and mean server utilization cost for the single and
two-forking sequences in Fig. 6 for the values of forking points
t = 9c and s ∈ {c, 2c, 3c, 4c, 5c}, varying the number of
forked servers n0 ∈ [N] in single-forking case and m0, m1 in
two-forking case. We observe that for some feasible choice
of forked servers m0, m1 and forking point s < t, the
two-forking system achieves better tradeoff points as compared
to the single-forking system.

For the other case, we take the second forking point
s > t. In this case, the single forking can be thought of as
a two-forking sequence ((0, n0), (t, N − n0), (s, 0)). For all
possible values of 0 � m0, m1 such that m0 + m1 � N ,
we consider two-forking sequences ((0, m0), (t, m1), (s, N −
m0 −m1)). We plot the tradeoff curve between mean service
completion time and mean server utilization cost for the single
and two-forking sequences in Fig. 7 for the values of forking
points t = 9c and s ∈ {10c, 12c, . . . , 18c}, varying the number
of forked servers n0 ∈ [N] in single-forking case and m0, m1

in two-forking case. We observe that for any choice of forked
servers m0, m1 and forking point s > t, the two-forking
system achieves better tradeoff points as compared to the
single-forking system.

Looking closely, we observe that setting the other forking
point s < t in two-forking can achieve better tradeoff points
for the mean service completion time below a threshold.

Fig. 7. This figure illustrates achievable points with shifted exponential
execution times for mean server utilization cost and mean service com-
pletion time for two-forking with different values of forked servers m0,
m1 and N − m0 − m1 at forking points t0 = 0, t = 9c and s ∈
{10c, 12c, . . . , 18c}, respectively. For comparison, we also plot the tradeoff
points for single-forking at forking time t = 9c varying the number of initial
servers n0.

In contrast, setting the other forking point s > t helps
two-forking achieve significantly better tradeoff points when
the mean service completion time is above that threshold. We
also remark that at this threshold, the mean server utilization
cost is minimum for single-forking. Hence, two-forking can
further reduce the mean server utilization cost when compared
to single-forking. Thus, an investigation of optimal forking
points and the number of forked-servers at the different
forking points is an important future research direction. We
observe that the insights obtained for the shifted exponential
distribution continue to hold for heavy-tailed distributions such
as Pareto and Weibull as well, and the supporting numerical
results are presented in Appendix G-A and Appendix G-B.

VII. EXPERIMENTS ON INTEL DEVCLOUD SERVERS

Intel DevCloud is a cloud computing service made available
by Intel [25] for several profiles of researchers, students and
professional engineers.1 Intel DevCloud is a compute cluster,
consisting of multiple servers called compute nodes, storage
servers, and the login node. Each node has Intel Xeon proces-
sor of the Skylake architecture (Intel Xeon Scalable Processors
family), an Intel Xeon Gold 6128 CPU, on-platform memory
of 192 GB and a Gigabit Ethernet interconnect. To maximize
the utilization of the compute cluster, one can submit jobs
either by running Jupyter Notebook session on one of the
compute nodes or by accessing the login node using an SSH
client in a text-based terminal to a job queue dedicated to the
authenticating account. For best performance, we created new
environments with core Python 3 using Intel Distribution for
Python. When a job is submitted to the queue, the scheduler
picks the first available compute node for that job.

A. Setup

In our experiment, we reserved one node per job and submit-
ted multiple single-node jobs at forking points by launching a
distributed-memory parallel job explicitly requesting multiple

1The authors would like to thank Intel for giving us access to the cluster
for this project.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: OPTIMAL SERVER SELECTION FOR STRAGGLER MITIGATION 719

compute nodes, which correspond to the servers on which
the job is forked. This ensures that all the forked jobs start
at the same forking time on the compute nodes to which
the jobs are forked. Single node jobs are submitted through
a job script file using the qsub command. We submitted a
parallel job using the command mpirun, which launches the
single node job at multiple nodes, by creating MPI program
using Message Passing Interface (MPI) library called Intel MPI
which is installed on all nodes. From here after, in this section,
we refer parallel job to replicated single-node jobs which is
requesting multiple compute nodes at once.

B. Objective

In this experimental set up, we have K jobs. For both
single-forking and two-forking, we take each of the K jobs to
be an identical algebraic computation with approximate mean
completion time of 600 seconds. As a test-case, each algebraic
job is taken as the repeated addition of two numbers in a loop,
that runs 6 × 109 times. This section aims at answering the
following questions.

1) Given K jobs, KN servers, and a forking mechanism,
is it possible to get a tradeoff between the avearge server
utilization cost and average service completion time on
real cloud setup?

2) Are the tradeoff curves for this practical setup qualita-
tively similar to the one predicted by the analytical study
for random execution times modeled to be distributed as
a shifted exponential?

C. Experiment

To cater to this requirement, we initialized a parallel job
requesting n0 compute nodes at time t0 = 0 for each of
the K jobs. In the single-forking experiment, at time t1
seconds, we initialized a parallel job requesting n1 compute
nodes for each of the unfinished jobs and waited for the
completion. Similarly, in the two-forking experiment, at times
t1, t2 seconds, we again initialized parallel jobs requesting
n1, n2 compute nodes, respectively, for each of the unfinished
jobs and waited for the completion. As soon as one of the
replica of a ith job is finished we logged that time stamp Si

into a log file and killed the other replicas of that particular
ith job immediately using the qdel command.

Using the observed job completion times (Si) and forking
time and server sequences, we compute the two performance
metrics: the server utilization cost and the service completion
time, by using the equations (6), (3), and (2) for each run
j ∈ [J] for J = 1 × 104 runs. In addition, we also computed
the empirical distribution of job completion times, which is
plotted in Fig. 8.

D. Evaluations

We evaluate the single forking setup on Intel DevCloud with
K = 10 parallel tasks and with each task being replicated
on total number of N = 12 servers. We ran this experiment
J = 1 × 104 times for the given system parameters. For the
kth task in jth run, we denote the service completion time
and the server utilization cost by S

(j)
k and W

(j)
k respectively.

Fig. 8. This figure illustrates the empirical distribution of job completion
times that are collected during the Intel DevCloud experiments. The job here
is a algebraic computation of addition of two numbers, repeated 6 × 109

times.

Fig. 9. Empirical average of service completion time Ŝ as a function of
initial number of servers n0 ∈ {1, . . . , 11} for single forking of K = 10
parallel tasks at different forking times t1 ∈ {10, 20, . . . , 90} when jobs are
executed on Intel DevCloud.

Hence, we computed the empirical average of service comple-
tion time and server utilization costs as

Ŝ � 1
J

J�
j=1

max
k∈[K]

S
(j)
k , Ŵ � 1

J

J�
j=1

1
K

K�
k=1

W
(j)
k . (23)

We plot the empirical average of service completion time Ŝ
in Fig. 9 and empirical average of server utilization cost Ŵ
in Fig. 10 as a function of initial servers n0 ∈ {1, . . . , 11}
for values of forking times t1 ∈ {10, 20, · · · , 90} seconds. In
Fig. 11, we plot the empirical average of service completion
times with respect to empirical average of server utilization
cost when λ = 1 for the single forking varying the initial
number of servers n0 ∈ {1, . . . , 11} for the forking times t1 ∈
{10, 20, · · · , 90} seconds. We also evaluate the two-forking
setup on Intel DevCloud with the same parameters. Given the
first forking point at t, the second forking point at s > t,
two-forking sequences ((0, m0), (t, m1), (s, N − m0 − m1)),
the tradeoff is plotted in Fig. 12.

E. Results

From Fig. 8, we observe that the empirical distribution of
the job execution times at each node has characteristics of a
shifted exponential distribution. The empirical distribution has

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

720 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 2, APRIL 2020

Fig. 10. Empirical and task average of server utilization cost Ŵ as a function
of initial number of servers n0 ∈ {1, . . . , 11} for single forking of K = 10
parallel tasks at different forking times t1 ∈ {10, 20, . . . , 90} when jobs are
executed on Intel DevCloud.

Fig. 11. Empirical and task average of server utilization cost Ŵ as a function
of empirical average of service completion time Ŝ by varying the number of
initial servers n0 ∈ {1, . . . , 11} for single forking of K = 10 parallel tasks
at different forking times t1 when jobs are executed on Intel DevCloud.

Fig. 12. This figure illustrates achievable points on Intel DevCloud cluster
for empirical and task averaged server utilization cost and empirical average
of service completion time for two-forking with different values of forked
servers m0, m1 and N − m0 − m1 at forking points t0 = 0, t = 30 and
s ∈ {40, 50, 60, 70}, respectively. For comparison, we also plot the tradeoff
points for single-forking at forking time t = 30 varying the number of initial
servers n0.

a distinct constant shift corresponding to the start delay, and
the random part of the job execution time doesn’t have long
tails.

We substantiate the analytical results obtained in Theorem 4
for single-forking, by observing that the mean service

completion time ES decreases with increase in initial number
of servers n0. Further, the tradeoff suggests that the number of
initial servers n0 is an important consideration for an efficient
system design. The insights obtained in this experiment for
two-forking are identical to those obtained from the shifted
exponential service distribution.

VIII. CONCLUSIONS AND FUTURE WORK

This paper considers a multi-fork analysis for running cloud
computing jobs. We analytically computed the mean service
completion time and the mean server utilization cost for
multiple computation jobs, when the job execution time at
each server is assumed to be i.i.d. with a shifted exponential
distribution. We show that having multiple forking points for
speculative execution of jobs provide significantly improved
tradeoff between the two performance metrics. As a special
case, we also show that starting with a single server in specu-
lative execution of tasks is sub-optimal. This paper considers
replication as a strategy for speculative execution.

We empirically verified that the insights derived from the
shifted exponential distribution continue to hold when the
job execution times at individual servers have heavy-tailed
distributions such as Pareto and Weibull. We also conducted
this study on a real compute cluster, and verified that the
empirical distribution of the job execution time has a constant
shift and light tails. This implies that a shifted exponential
distribution capture the service time well in real compute
clusters. As a result, the insights derived from the analytical
study continue to hold on the studied compute cluster as well.

Recently, coding-theory-inspired approaches have been
applied to mitigate the effect of stragglers [26]–[28]. Single
fork analysis with coding has been studied in [27], [29]. In [27]
k tasks of a job are started at t = 0 whereas in [29] the
authors considered starting multiple jobs at t = 0 for a better
tradeoff. Considering multi-fork analysis with such general
coding flexibilities remains an important future direction. We
hope that the framework provided in this article can be
utilized to quantify the performance gains of multi-forked
coded replicas.

Further, this work considers the performance metrics for a
single job system. Analysis of overall completion time of jobs
when there is a sequence of job arrivals is an open problem.
When the system load is low, the request queue has a single
job with high probability, and our work provides insights for
the queueing system in this regime.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the funding agencies.

REFERENCES

[1] D. Cheng, J. Rao, Y. Guo, and X. Zhou, “Improving mapreduce
performance in heterogeneous environments with adaptive task tuning,”
in Proc. 15th Int. Middleware Conf. (Middleware). Bordeaux, France:
ACM, 2014, pp. 97–108.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: OPTIMAL SERVER SELECTION FOR STRAGGLER MITIGATION 721

[2] P. Garraghan, X. Ouyang, R. Yang, D. Mckee, and J. Xu, “Straggler
root-cause and impact analysis for massive-scale virtualized cloud
datacenters,” IEEE Trans. Services Comput., vol. 12, no. 1, pp. 91–104,
Jan. 2019.

[3] X. Ouyang, P. Garraghan, C. Wang, P. Townend, and J. Xu,
“An approach for modeling and ranking node-level stragglers in
cloud datacenters,” in Proc. IEEE Int. Conf. Services Comput. (SCC),
San Francisco, CA, USA, Jun. 2016, pp. 673–680.

[4] Y. Guo, J. Rao, C. Jiang, and X. Zhou, “Moving hadoop into the cloud
with flexible slot management and speculative execution,” IEEE Trans.
Parallel Distrib. Syst., vol. 28, no. 3, pp. 798–812, Mar. 2017.

[5] G. Vernik, M. Factor, E. K. Kolodner, E. Ofer, P. Michiardi, and F. Pace,
“Stocator: A high performance object store connector for spark,” in Proc.
10th ACM Int. Syst. Storage Conf. (SYSTOR). Haifa, Israel: ACM, 2017,
p. 27.

[6] N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Trans. Commun., vol. 64, no. 2, pp. 715–722,
Feb. 2016.

[7] Y. Xiang, T. Lan, V. Aggarwal, and Y.-F.-R. Chen, “Joint latency and cost
optimization for erasure-coded data center storage,” IEEE/ACM Trans.
Netw., vol. 24, no. 4, pp. 2443–2457, Aug. 2016.

[8] D. Wang, G. Joshi, and G. W. Wornell, “Efficient straggler replication
in large-scale parallel computing,” ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 4, no. 2, pp. 1–23, Apr. 2019.

[9] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[10] K. Lee, R. Pedarsani, and K. Ramchandran, “On scheduling redundant
requests with cancellation overheads,” IEEE/ACM Trans. Netw., vol. 25,
no. 2, pp. 1279–1290, Apr. 2017.

[11] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[12] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in USENIX Symp. Net. Sys.
Desgn. Impl. (NSDI). Lombard, IL, USA: USENIX, 2013, pp. 185–198.

[13] N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, “Multi-
task learning for straggler avoiding predictive job scheduling,” J. Mach.
Learn. Res., vol. 17, no. 1, pp. 3692–3728, 2016.

[14] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing latency via redundant requests: Exact analysis,” ACM SIG-
METRICS Perf. Eval. Rev., vol. 43, no. 1, pp. 347–360, 2015.

[15] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 989–997, May 2014.

[16] Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint latency and
cost optimization for erasurecoded data center storage,” SIGMETRICS
Perform. Eval. Rev., vol. 42, no. 2, pp. 3–14, Sep. 2014.

[17] A. O. Al-Abbasi and V. Aggarwal, “Video streaming in distributed
erasure-coded storage systems: Stall duration analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1921–1932, Aug. 2018.

[18] A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed coded storage systems,” IEEE Trans. Inf. Theory, vol. 65,
no. 8, pp. 4683–4698, Aug. 2019.

[19] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and
A. Scheller-Wolf, “Queueing with redundant requests: Exact analysis,”
Queueing Syst, vol. 83, nos. 3–4, pp. 227–259, Aug. 2016.

[20] W. Wang, M. Harchol-Balter, H. Jiang, A. Scheller-Wolf, and R. Srikant,
“Delay asymptotics and bounds for multitask parallel jobs,” Queueing
Syst, vol. 91, nos. 3–4, pp. 207–239, Apr. 2019.

[21] A. O. Al-Abbasi, V. Aggarwal, and T. Lan, “TTLoC: Taming tail
latency for erasure-coded cloud storage systems,” IEEE Trans. Netw.
Serv. Manage., vol. 16, no. 4, pp. 1609–1623, Dec. 2019.

[22] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[23] R. Bitar, P. Parag, and S. E. Rouayheb, “Minimizing latency for secure
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Aachen, Germany, Jun. 2017, pp. 2900–2904.

[24] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm
for large-scale nonlinear programming,” SIAM J. Optim., vol. 9, no. 4,
pp. 877–900, Jan. 1999.

[25] Intel Devcloud. Accessed: Oct. 10, 2019. [Online]. Available:
https://software.intel.com/en-us/devcloud

[26] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. Int. Conf.
Mach. Learn. (ICML), vol. 70, 2017, pp. 3368–3376.

[27] M. F. Aktas, P. Peng, and E. Soljanin, “Straggler mitigation by delayed
relaunch of tasks,” SIGMETRICS Perform. Eval. Rev., vol. 45, no. 2,
pp. 224–231, 2018.

[28] S. Sasi, V. Lalitha, V. Aggarwal, and B. Sundar Rajan, “Straggler mit-
igation with tiered gradient codes,” 2019, arXiv:1909.02516. [Online].
Available: http://arxiv.org/abs/1909.02516

[29] A. Badita, P. Parag, and V. Aggarwal, “Sequential addition of coded
tasks for straggler mitigation,” in Proc. IEEE Int. Conf. Comp. Commun.
(INFOCOM), to be published.

[30] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and
D. E. Knuth, “On the LambertW function,” Adv. Comput. Math., vol. 5,
no. 1, pp. 329–359, Dec. 1996.

[31] D. A. Barry, J.-Y. Parlange, G. C. Sander, and M. Sivaplan, “A class of
exact solutions for Richards’ equation,” J. Hydrol., vol. 142, nos. 1–4,
pp. 29–46, Feb. 1993.

[32] D. A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C. J. Cunningham, and
F. Stagnitti, “Analytical approximations for real values of the Lambert
W-function,” Math. Comput. Simul., vol. 53, nos. 1–2, pp. 95–103,
Aug. 2000.

Ajay Badita (Student Member, IEEE) received the
B.Tech. degree from JNTU, Kakinada, in 2011, and
the M.Tech. degree from NIT, Rourkela, in 2015,
both in electronics and communication engineer-
ing. He is currently pursuing the Ph.D. degree
with the ECE Department, Indian Institute of Sci-
ence. His research interests include delay-sensitive
communication, and computing and storage in
distributed systems.

Parimal Parag (Member, IEEE) received the
M.Tech. and B.Tech. degrees from IIT Madras
in 2004, and the Ph.D. degree from Texas A&M
University in 2011, all in electrical engineering.
Prior to that, he was a Senior System Engineer
(R&D) at ASSIA Inc., Redwood City, CA, USA,
from 2011 to 2014. He is currently an Assistant
Professor with the ECE Department, Indian Institute
of Science. He was a coauthor of the 2018 IEEE
ISIT Student Best Paper. He was a recipient of
the 2017 Early Career Award from the Science and
Engineering Research Board.

Vaneet Aggarwal (Senior Member, IEEE) received
the B.Tech. degree from the IIT Kanpur, India,
in 2005, and the M.A. and Ph.D. degrees
from Princeton University, Princeton, NJ, USA,
in 2007 and 2010, respectively, all in electrical
engineering.

He was a Senior Member of Technical Staff
Research with AT&T Labs-Research, NJ, USA, from
2010 to 2014, an Adjunct Assistant Professor with
Columbia University, NY, USA, from 2013 to 2014,
and an VAJRA Adjunct Professor with Indian Insti-

tute of Science (IISc), Bengaluru, India, from 2018 to 2019. He has been
an Associate Professor with Purdue University, West Lafayette, IN, USA,
since January 2015. His current research interests include communications
and networking, cloud computing, and machine learning. He was a recipient
of the Princeton University’s Porter Ogden Jacobus Honorific Fellowship
in 2009, the 2017 Jack Neubauer Memorial Award recognized as the Best
Systems Paper published in the IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY, and the 2018 INFOCOM Workshop Best Paper Award. He is
serving on the editorial boards for the IEEE TRANSACTIONS ON COMMU-
NICATIONS, the IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND

NETWORKING, and the IEEE/ACM TRANSACTIONS ON NETWORKING.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:08:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

