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Abstract—Physically unclonable functions (PUFs) exploit the
inherent manufacturing variations for generating a device iden-
tifier. However, different devices may map to the same identifier
causing a “collision”. It is imperative to determine the probability
of such collisions before a PUF is deployed for an application.
We present a framework that computes the collision probabilities
based on its inter-device and intra-device variations. This frame-
work could be used for determining the collision probabilities,
tuning the PUF attributes as well as to compare different PUF
implementations. We demonstrate the use of our framework
for real-world applications by comparing the results from our
analyses with data from experiments and numerical simulation.

Index Terms—Physically unclonable function(PUF), Device ID,
Collision probability

I. INTRODUCTION AND MOTIVATION

Physically unclonable functions (PUFs) are emerging as an
alternative to conventional methods for generating a device
identifier. PUFs exploit the random variations in the device pa-
rameters occurring due to manufacturing tolerances to generate
distinct device identity. For instance, the random variations in
the offset voltages present in the DAC and ADC are exploited
to create a PUF using DAC-ADC back-to-back connection
[1]. Ring oscillator PUFs (RO PUFs)[2], Arbiter PUFs[3],
PUFs based on differential-pair mismatch[4], memory based
PUFs[5] are a few other examples of PUFs described in the
literature.

Device parameter measurements can be noisy. Variation of
the parameter values across measurements for the same device
is referred to as intra-device variation. On the other hand,
variation of the mean parameter values across different devices
is referred to as inter-device variation. Parameter values of the
devices are mapped to identifiers for device identification. For
correct identification, it is required that the device identifier be
unique and repeatable, i.e. the identifiers of different devices
must be different and repeated measurements for any device
must give the same identifier. However, due to noisy parameter
measurements and bounded manufacturing variations, param-
eters of two devices may map to the same identifier. This
situation is referred to as “collision”. We provide an alternate
definition of collision that is amenable to analysis. To ensure
that the collision probabilities are kept under check, we require
that inter-device variation be large and intra-device variation
be small. Clearly, for a large deployment, the mean parameter
values of these devices come closer leading to higher collision
probabilities.

A systematic estimation of collision probabilities is essential
before using a PUF for any application. This analysis assists in
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determining the maximum number of devices to ensure that
the collision probabilities are within permissible limits. We
provide a framework to study the impact of inter-device and
intra-device variations on collision probabilities.

A. Related work
Several approaches have been adopted to analyse and im-

prove the uniqueness and repeatability of the PUF generated
identifier. RO PUF[2] proposes the use of error-correcting
syndrome like BCH code to generate redundant bits. The inter-
device and intra-device parameter variations are computed
experimentally, and the false-positive and the false-negative
rates are computed probabilistically from these variations.
Similarly, Arbiter PUF[3] estimates the number of distinguish-
able devices based on inter-device and intra-device variations.
These approaches specific for digital PUFs can not be mapped
directly for analysis of analog PUFs. Several analog PUFs
convert the analog responses into digital codes and hence use
measures to improve the robustness of the PUF identifier. A
PCB-PUF[6] measures PCB impedance of traces and uses
these as signatures. To minimise the impact of noise, averaging
over multiple measurements is performed, and further few
least significant bits are discarded. The PUF based on DAC-
ADC connection[1] suggests binning of codes to improve the
repeatability.

B. Our contribution
The requirement for a unique device identifier comes with

a cost. A few applications can tolerate collisions, while PUF’s
infrastructure usage would require ideally zero collisions. e.g.,
when the PUF identifier is used for generation of authentica-
tion key, it is imperative that the identifier is collision-free.
However, if the identifier is used for detecting a node re-
placement, a few collisions might be permissible. We provide
a framework to estimate various collision probabilities for a
generic PUF as a function of number of devices, inter-device
and intra-device parameter variations. A few programmable
attributes during PUF implementation, such as accumulation
count [7] or averaging count [8], impact intra-device variation.
For instance, the authors in [7] suggest the accumulation
counts be increased as the number of devices in a deployment
increases. Our analysis can lead to a mechanism to tune these
attributes based on the number of devices in the deployment.
Our framework is generic and can be used across PUF designs.
Thus, this approach could be used to compare two different
PUF implementations or to analyse any future design of PUFs.

We have also performed experiments with 38 devices,
measuring three different parameters OSC, ADC1 and ADC2

for each device. We have 5000 measurements for each param-
eter for these devices. The experimental data validates our
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Fig. 1: Histogram of ADC2 for two devices showing normal
distribution for intra-device variation

modeling assumptions and the subsequent analysis. We make
the following unique contributions:

• We derive the probability of there being no collision for
a generic PUF as a function of number of devices and
standard-deviation of inter-device variation.

• We derive an upper bound on probability of there being
k distinguishable (collision-free) devices.

• We also provide an expression for the expected number
of distinguishable devices.

• We develop an experimental setup and collect data from it
to validate our analytical findings. We also use simulation
to verify analytical results for large number of devices.

II. BACKGROUND

A. Physically unclonable functions

Due to process variations, two devices, though fabricated
from the same fab and same process are not identical. A
PUF exploits this inherent randomness introduced during
manufacturing and creates a unique ‘fingerprint’, an identity
signature or trust anchor for the device[9][10]. Unlike other
identification methods, the identity generated by the PUF is
inherent to the device and is not externally attached. The
potential applications for PUFs include anti-counterfeiting,
identification, authentication, and key-generation[10].

PUF properties: We discuss two properties necessary for
using PUF based fingerprints as device identifiers, viz. re-
peatability and uniqueness.

• Repeatability: Due to the inherent noise present in all
electronic systems, the device parameters have random
variations. The environmental factors like changes in
temperature and voltage further add to the variations.
These intra-device variations must be within acceptable
limit so that the device signatures are repeatable.

• Uniqueness: Each device should generate a signature
which is different from other devices. In other words,
two different devices though having same hardware con-
figuration and executing same software code, should
generate distinct signatures. As measured values of device
parameters are noisy, we require that their means be as-
far-as-possible from one another.
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Fig. 2: Histogram of ADC1 showing normal distribution for
inter-device variation

B. Assumptions
We assume that means of parameter values of different

devices follow a normal distribution. As reported by several
semiconductor manufacturers, for many parameters, their vari-
ations across devices exhibit normal distribution[11][12]. The
monte-carlo analysis for parameters like offset voltage of a
comparator also shows a normal distribution [8]. We also
confirm this assumption through our experiments.

We also assume that measurement noises for all the devices
have identical distribution. i.e. intra-device variations for all
devices are identically distributed. In particular, parameter
values for two devices may have different mean but will have
same variance. The authors in [13] observe that intra-device
variations are also normally distributed. However, our analysis
does not assume intra-device variations being normal.

We illustrate intra-device and inter-device variations through
Figure 1 and Figure 2 respectively. These figures are based
on our measurements of ADC1 and ADC2 of 38 devices.In
Figure 1, we plot the histograms of 100 measurements of
ADC2 for two devices. The parameter values for device 1
are in the range of (-378, -145), whereas those for device 2
are in the range of (-158, 44). The means of parameter values
for device 1 and device 2 are -273 and -72, respectively, and
the standard deviations are 47 and 36 respectively. We also
see that intra-device variations of parameter values of the two
devices resemble normal distributions.

In Figure 2, we plot histogram of mean parameter values
of ADC1 for all the 38 devices. We see that these means also
have approximately normal distribution. We can attribute poor
resemblance with normal distribution to the small number of
devices in our experiment.

C. Collisions
We first illustrate the phenomenon of collision between two

devices. We then provide an alternate definition of collision
that is amenable to analysis.

PUF based device identification consists of two phases:
• Device binning: For each device, the designated parame-

ter is measured nB (nB � 1) times. Using the measured
values of all the devices as training data and supervised
learning(classification), the range of potential values is
divided into bins corresponding to each of the devices.

• Device identification: Whenever a device is required to
be identified, the parameter is measured nI(nI � nB ;nI

2
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can be one) times. The device is then identified to
correspond to the bin that contains the empirical average
of the nI measured values.

If during device identification, a device is mapped to the
bin corresponding to another device, the former one is said to
collide with the latter one. A device is said to be in collision
if it collides with any other device.

Let there be N devices with mean parameter values (for the
designated parameter) X1, . . . , XN . Following the discussion
in section II-B, Xn’s are i.i.d. Gaussian random variables say
Xn ∼ N(µ, σ2) ∀n; our analysis and results are insensitive to
µ, and so, we assume µ = 0 in simulation. Let X(1), . . . , X(N)

be the order statistics of X1, . . . , XN ; X(1), . . . , X(N) is a
permutation of X1, . . . , XN such that X(1) ≤ X(2) ≤ ... ≤
X(N). In particular,

X(1) = min
1≤n≤N

Xn and X(N) = max
1≤n≤N

Xn.

Let intra-device variations (measurement noises) for the de-
vices, which are symmetric, zero-mean random variables, have
distribution G. Also, let Y1, . . . , YN denote the empirical
means of nB measurements for the devices during the device
binning process. Then

P(Yn −Xn ≤ y) = GnB (nBy) := G
nB

(y),

where GnB denotes the distribution of sum of nB i.i.d. random
variables, each with distribution G. Let Y(1), . . . , Y(N) be the
ordered statistics of Y1, . . . , YN . We make the following two
assumptions regarding the data collection and binning process.

i) For 1 ≤ n ≤ N ,
[
Y(n−1)+Y(n)

2 ,
Y(n)+Y(n+1)

2

]
is the bin

corresponding to the device with empirical mean Y(n); we
assume X(0) = Y(0) = −∞ and X(N+1) = Y(N+1) = +∞.

ii) For any two devices n1 and n2, Yn1 < Yn2 if and only if
Xn1

< Xn2
. This is a reasonable assumption since typically

nB � 1.
Now let Z1, Z2...ZN be the empirical means of nI measure-

ments for the devices during the identification process. Clearly,
for all n, P(Zn−Xn ≤ z) = G

nI
(z). Let k be the index of the

device with mean parameter value X(n) and empirical mean
(during binning process) Y(n). The probability that kth device
is in collision can be expressed as follows:

Pcoll = P
(
Zk ≤

Y(n−1) + Y(n)

2

)
+P
(
Zk >

Y(n) + Y(n+1)

2

)
.

Let us see the two terms on the right hand side separately.

P
(
Zk ≤

Y(n−1) + Y(n)

2

)
= P((Zk −X(n)) ≤

Y(n−1) −X(n−1) + Y(n) −X(n)

2

−
X(n) −X(n−1)

2
)

= P
(
Z ′k ≤ Y ′(n) −

∆n−1

2

)
where, for i = 1, . . . , N , Y ′(n) ∼ G

2nB , Z ′k ∼ G
nI and

∆n, n = 0, . . . , N are spacings between order statistics
X(0), . . . , X(N+1);

∆n := X(n+1) −X(n), n = 0, . . . , N.

Continuing, given a constant dth > 0,

P
(
Zk ≤

Y(n−1) + Y(n)

2

)
= P

(
Z ′k ≤ Y ′(n) −

∆n−1

2

∣∣∣∣∆n−1 > dth

)
P (∆n−1 > dth)

+ P
(
Z ′k ≤ Y ′(n) −

∆n−1

2

∣∣∣∣∆n−1 ≤ dth
)
P (∆n−1 ≤ dth)

≤ P
(
Z ′k ≤ Y ′(n) −

dth
2

)
(1− P(∆n−1 ≤ dth))

+ P
(
Z ′k ≤ Y ′(n)

)
P (∆n−1 ≤ dth)

= P
(
Z ′k − Y ′(n) ≤ −

dth
2

)
+

(
1

2
− P

(
Z ′k − Y ′(n) ≤ −

dth
2

))
P (∆n−1 ≤ dth)

= Q(dth) +

(
1

2
−Q(dth)

)
P(∆n−1 ≤ dth),

where Q(dth) := P
(
Z ′k − Y ′(n) ≤ −

dth
2

)
. The second last

equality holds since P
(
Z ′k − Y ′(n)

)
= 1

2 , which in turn
follows from the fact that Z ′k and Y ′(n) are independent,
symmetric, zero-mean random variables. Similarly, using sym-
metry of intra-device variations,

P
(
Zk >

Y(n) + Y(n+1)

2

)
≤ Q(dth) +

(
1

2
−Q(dth)

)
P(∆n ≤ dth)

and so,

Pcoll ≤ 2Q(dth) +

(
1

2
−Q(dth)

)
(P(∆n−1 ≤ dth)

+ P(∆n ≤ dth))

≤ 2Q(dth) + (1− 2Q(dth))P coll(dth),

where P coll(dth) := P(min(∆n−1,∆n) ≤ dth). Hence,
given parameters µ, σ2, G, nB , nI and dth, an upper bound
on Pcoll can be obtained via computing P coll(dth). Clearly,
the tightness of this bound is affected by the choice of dth. We
do not attempt to determine the optimal dth, which depends
on other system parameters. Rather, we analyse P coll(dth)
for arbitrary dth > 0. In particular, we say that a device
collides with another device if their mean parameter values
are closer than dth and analyse the probability of a device
being in collision.

III. COLLISION PROBABILITIES

We begin with estimating the asymptotic probability of
none of the devices being in collision. We then derive upper
bounds on asymptotic probability of at most K devices being
in collision. Finally, we provide asymptote of expected number
of devices in collision. Throughout this section, we use f and
F to denote the density and the distribution of inter-device
variation, respectively;

f(x) =
1√
2πσ

exp

(
− (x− µ)

2

2σ2

)
.

3
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Let Ncoll denote the number of devices in collision. We also
define ∆(0), . . . ,∆(N) to be the order statistics of the spacings
∆0, . . . ,∆N . Note that the order statistics X(i),∆(i), i =
0, . . . , N depend on N though we do not show this depen-
dence explicitly. Note that none of the devices is in collision if
and only if ∆(1) > dth. Also observe that

∫
f2(x)dx = 1

2
√
πσ

,
and so f ∈ L2(R).Hence, defining λ = 1

2
√
πσ

and following
[14, Theorem 1], for any dth > 0,

lim
N→∞

P(N2∆(1) > dth) = exp
(
−λdth

)
.

Hence, for large N , we have the following approximation:

P(Ncoll = 0) = P(∆(1) > dth) ≈ exp
(
−λdthN2

)
. (1)

Note that if N is increased while keeping dth fixed, both
the sides in the above approximation approach zero. The
relative error in the approximation may grow substantially as
N is increased. However, we are interested in a regime where
probability of no device being in collision is bounded away
from zero, i.e., N = O

(
1√
dth

)
. We compare the results from

approximate formula (1) with simulation and experimental
data in Figure 4.

Many applications permit a non-zero number of collisions
without compromising their performance. Note that for at least
K devices to be in collision, ∆(dK2 e)

≤ dth, the two events
being identical if none of the devices is associated with more
than one of the lower spacings ∆(1), . . . ,∆(dK2 e)

. On the other
hand, ∆(K−1) ≤ dth implies that at least K device will be
in collision, the two events being identical if all of the lower
spacings ∆(1), . . . ,∆(K−1) are contiguous. Figure 3 shows
two scenarios that illustrate these assertions. We thus see that

P(∆(dK+1
2 e)

> dth) ≤ P(Ncoll ≤ K) ≤ P(∆(K) > dth). (2)

In a typical realisation with a large number of devices it
is unlikely that any device will be associated with more
than one of the smallest dK+1

2 e spacings. We thus expect
the first inequality to be tighter. We confirm the same in
Figure 8 through simulations. In the following we provide
approximations for P(∆(K) > dth) for K ≥ 2.

Following the analysis in [14], N2(∆(2) −
∆(1)), . . . , N

2(∆(K) − ∆(K−1)) are asymptotically
independent exponential random variables with parameters
λ, λ(1 − 1

N ), . . . , λ(1 − K−1
N ), respectively. Hence from

[15], N2∆(K) is asymptotically a hypoexponential random
variable. In particular, for large N , we have the following
approximation:

P(∆(K) > dth) ≈
K−1∏
i=0

λi

K−1∑
j=0

exp(−λjdthN2)

λj
K−1∏
l=0
l 6=j

(λl − λj)
(3)

where λi = λ
(
1− i

N

)
, i = 0, . . . ,K − 1.

We can obtain a simpler, albeit crude, approximation by
assuming that N2∆(1), N

2(∆(2) − ∆(1)), . . . , N
2(∆(K) −

∆(K−1)) are asymptotically i.i.d. exponential random vari-
ables with parameter λ. In this case,

P(∆(K) > dth) ≈
K−1∑
i=0

(λdthN
2)i

i!
exp(−λdthN2). (4)

(a) (b)

Fig. 3: Relation between number of short spacings (≤ dth)
and number of devices in collision. Three short spacings,
depending on how they are arranged, may cause at least four
devices (Subfigure (a)) and at most six devices (Subfigure (b))
to be in collision.

We use both (3) and (4) to approximate the probabilities
of at most K devices being in collision. We illustrate our
observations in Figure 6.

Finally, we estimate the expected number of distinguishable
(collision-free) devices based on joint distribution of spacings
around various devices. Let us define Ncoll−free to be the
number of such devices. Then

E[Ncoll−free] =
N∑
k=1

1{the device with parameter value X(k)

is collision free}

=

N∑
k=1

P(∆k−1 > dth,∆k > dth).

Following [16], the joint asymptotic distributions of adjacent
spacings around X(k) depend on scaling of k vis-a-vis N .
If (a) k

N → p ∈ (0, 1) or (b) k
N → 0 and k → ∞ or

(c) kN → 1 and N − k → ∞, the left and the right spacings
are asymptotically i.i.d. exponential random variables. The
asymptotic joint distributions of spacings are more complex
for the extreme values of k (fixed k or fixed N − k).
Asymptotically all the devices are covered in cases (a), (b)
and (c). For our estimate of E[Ncoll−free], we assume that
k=2,. . . ,N − 1, the two adjacent spacings around Xk are i.i.d.
exponential random variables. In particular, from [16]

P
(
Nf

(
F−1

(
k

N

))
∆k−1 > dth,

Nf

(
F−1

(
k

N

))
∆k > dth

)
≈ exp(−2dth).

Also,

P
(
Nf

(
F−1

(
1

N

))
∆1 > dth

)
= P

(
Nf

(
F−1

(
1− 1

N

))
∆N−1 > dth

)
≈ exp(−dth).

Accordingly, substituting dth = Nf
(
F−1

(
k
N

))
, k =

1, . . . , N − 1, in the above equations,

E[Ncoll−free] ≈
N∑
k=2

exp

(
−2Nf

(
F−1

(
k

N

))
dth

)
+2 exp

(
−2Nf

(
F−1

(
1

N

))
dth

)
. (5)

We compare the mean number of collision-free devices from
analysis and from simulation in Figure 9.

4
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Fig. 4: Comparison of analytical values with experimental and simulation results for P(Ncoll = 0) across 3 parameters with
N = 38.

IV. EVALUATION AND RESULTS

We installed 38 devices for collecting the signatures. These
devices were deployed for over a month during which 5000
values for three different parameters viz. OSC, ADC1 and
ADC2 were collected. While OSC exploits the variation in
clock oscillators, ADC1 and ADC2 exploit the variations in
ADC offset across the devices. Please see [7] for more details
about the setup and the parameters.

A. Probability of all devices being collision-free
Variation of P(Ncoll = 0) with dth: In order to compute

P(Ncoll = 0), we measure 5000 sets of mean parameter values
(each set containing 38 values across devices) for each of
the three parameters viz. OSC, ADC1 and ADC2. For each
parameter, the fraction of sets in which ∆(1) > dth gives
an estimate of P(Ncoll = 0). We also use this experimental
data to compute inter-device standard deviation, σ, for each
of the three parameters. We find these standard deviations
to be σ=7642, 912 and 569, respectively. We then use these
standard deviations to simulate parameter means of 38 devices.
We generate 10000 sets of mean parameter values for each
of the parameters and compute P(Ncoll = 0) as explained
above for experimental data. Finally, we use the same standard
deviations in (1) to obtain analytical values of P(Ncoll = 0).
We see in Figure 4 that both simulation and analytical values
of P(Ncoll = 0) closely match the experimental values. The
step nature of experimental plots in Figures 4b and 4c can be
attributed to quantized measurements of ADC1 and ADC2

- number of quantization levels is less in case of ADC2.
However, as expected, P(Ncoll = 0) decreases with dth in
all the three cases.

Variation of P(Ncoll = 0) with number of devices: We
show variation of P(Ncoll = 0) with N in Figure 5. We use
σ = 100 and dth = 10−5, 2×10−5, 5×10−5 in this simulation.
As expected, for each value of dth, P(Ncoll = 0) decreases
with the number of devices.

B. Probability of at-most K devices being in collision
Comparison of Hypoexponential and Erlang approxima-

tions: We compute P(∆(K) > dth) using simulation in the
same way as we computed P(Ncoll = 0) in Section IV-A. We
use N = 200, σ = 10, dth = 0.01 and vary K from 1 to 20.
To estimate P(∆(K) > dth), we use 10000 samples of mean
parameter values for each of the above sets of parameters. We
then compute P(∆(K) > dth) using the Hypoexponential and
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dth = 10 5

dth = 2 × 10 5

dth = 5 × 10 5

Fig. 5: P(Ncoll = 0) obtained from analysis for different
values of dth. We use σ = 100.
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Fig. 6: Comparison of Erlang and Hypoexponential approxi-
mations for P(∆(K) > dth) with simulation values. We use
N=200, σ=10 and dth = 0.01.
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and σ=100.
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Fig. 8: Comparison of P(Ncoll ≤ K) with P(∆(dK+1
2 e)

≤ dth)
for two different cases. We use σ=100.
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Fig. 9: Comparison of analytical and simulation values of
E[Ncoll−free]/N . We use σ = 100.

Erlang approximations as in (3) and (4), respectively, for the
same set of parameters. We show variation of P(∆(K) > dth)
with K in Figure 6. As we see, P(∆(K) > dth) increases with
K. Also Hypoexponential approximation is much more accu-
rate than Erlang approximation. So, we use Hypoexponential
approximation in the following.

Variation of P(∆(K) > dth) with number of devices: We
show variation of P(∆(K) > dth) with N in Figure 7. Here
we use σ = 100, dth = 0.004 and five different values of
K viz. K = 1,2,5,10, and 20. We vary N from 100 to 1000.
Expectedly, P(∆(K) > dth) decreases with N .

Comparison of P(Ncoll ≤ K) with P(∆(dK+1
2 e)

≤ dth):
We compare these two probabilities in Figure 8 for two dif-
ferent sets of parameters viz. σ = 100, K = 12, dth = 0.007
and σ = 100, K = 4, dth = 0.003. We again vary N from
100 to 1000. We also use 10000 samples of mean parameter
values for each of the above sets of parameters to estimate
P(Ncoll ≤ K). We use (3) for a bound on P(∆(dK+1

2 e)
≤ dth).

As discussed in Section III, P(Ncoll ≤ K) is well approxi-
mated by P(∆(dK+1

2 e)
≤ dth) for all the considered sets of

parameters.

C. Expected fraction of collision-free devices

We compute the expected fraction of collision-free devices,
E[Ncoll−free]/N , via both simulation and analysis. We use
σ = 100 and two different values of dth, 0.1 and 0.15. We
vary N from 100 to 10000. For simulation, we again generate
10000 samples of parameter means for each combination of
σ, dth and N , and compute mean for fraction of collision-
free for each case. We use (5) for analytical estimates. As

can be seen in Figure 9, simulation and analytical results
closely match. As expected, fraction of collision-free devices
decreases with N . Also, for a given N , this fraction is lower
for the higher value of dth.

V. CONCLUSION AND FUTURE WORK

Through this work, we have presented an analytical frame-
work to estimate the collision probabilities of a generic PUF
as a function of number of devices, inter-device and intra-
device variations. Our framework could be used for analysing
the collision probabilities and tuning the PUF attributes. The
comparison of our analytical results with the experimental and
simulation results validates our framework.

We plan to enhance our current work by modeling intra-
device variations as normal distribution, thus relating dth
with intra-device variations. We also plan to study multi-
parameter PUF by analysing how the co-relation amongst
different parameters impacts the collision probability.
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