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Abstract—We consider a scenario of broadcasting information
over a network of nodes connected by noiseless communication
links. A source node in the network has £ data packets to broad-
cast, and it suffices that a large fraction of the network nodes
receives the broadcast. The source encodes the k data packets into
n > k coded packets using a maximum distance separable (MDS)
code, and transmits them to its one-hop neighbours. Every other
node in the network follows a probabilistic forwarding protocol,
in which it forwards a previously unreceived packet to all its
neighbours with a certain probability p. A ‘“near-broadcast” is
when the expected fraction of nodes that receive at least k of
the n coded packets is close to 1. The forwarding probability
p is chosen so as to minimize the expected total number of
transmissions needed for a near-broadcast. In this paper, we
analyze the probabilistic forwarding of coded packets on two
specific network topologies: binary trees and square grids. For
trees, our analysis shows that for fixed k, the expected total
number of transmissions increases with n. On the other hand,
on grids, we use ideas from percolation theory to show that a
judicious choice of n will significantly reduce the expected total
number of transmissions needed for a near-broadcast.

I. INTRODUCTION

The Internet of Things (IoT) involves different types of
physical devices — sensors, actuators, routers, mobiles etc.
— communicating with each other over a network. Each node
in the network has minimal computational ability and limited
knowledge of the network topology. Broadcast mechanisms are
often required in such ad-hoc networks to disburse important
network-related information, for example, to carry out over-
the-air programming of the IoT nodes. Further, these mech-
anisms need to be completely distributed and must impose
minimal computational burden on the nodes. Broadcast mecha-
nisms such as flooding, although being distributed and reliable,
are not efficient, since there are excessive transmissions and
consequently a high energy expenditure [1]. To overcome this,
probabilistic forwarding of received packets may be employed
(see [2], [3]), wherein each node either forwards a previously
unreceived packet to all its one-hop neighbors with probability
p or takes no action with probability 1 — p.

In a previous paper [4], we studied the effect of introducing
redundancy in the form of coded packets into this probabilistic
forwarding protocol. We describe the setup here. Consider a
large network with a particular node designated as the source.
The source has k£ message packets to send to a large fraction of
nodes in the network. The k message packets are first encoded
into n > k coded packets using a maximum distance separable
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(MDS) code (see e.g., [5, Ch. 11]). The source transmits each
of the n coded packets to all its one-hop neighbours. All the
other nodes in the network use the probabilistic forwarding
mechanism as described before. Subsequent receptions of the
same packet are ignored.

Our goal is to analyze the performance of the above
algorithm. In particular, we wish to find the minimum re-
transmission probability p for which the expected fraction
of nodes receiving at least k£ out of the n coded packets is
close to 1, which we deem a “near-broadcast”. (The condition
for a near-broadcast stems from our use of an MDS code.)
This probability results in the least expected total number of
transmissions, across all the network nodes, needed for a near-
broadcast. The expected total number of transmissions is a
measure of the energy expenditure in the network.

Simulation results presented in [4] indicate that over a
wide range of network topologies (including the important
case of random geometric graphs, but not including tree-
like topologies), the expected total number of transmissions
initially decreases to a minimum and then increases with
n. Our aim is to understand this behaviour and predict, via
analysis, the value of n that minimizes the expected number
of transmissions. While we would ultimately like to explain
this behaviour on random geometric graphs, which constitute
an important model for wireless ad-hoc networks [6], we have
not yet developed the tools required for the analysis there. In
this paper, we present an analysis for trees and grids.

The rest of the paper is organized as follows. Section II pro-
vides a theoretical formulation of the problem. In Sections III
and IV, we consider the problem on rooted binary trees and
grids, respectively, and provide bounds and estimates for the
expected number of transmissions. Section V concludes the
paper with a discussion on other graphs where our ideas can
be applied. Proofs for most of our results are provided in the
full version of this paper [7].

II. PROBLEM FORMULATION

The problem formulation here is essentially reproduced
from [4]. Consider a graph G = (V, E), where V is a set
of N vertices (nodes), and E is a set of edges (noiseless
communication links). A source node s € V has k£ message
packets which need to be broadcast over the network. The
source s encodes the k£ messages into n coded packets using an
MDS code. The MDS code ensures that any node that receives
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at least k of the n coded packets can retrieve the original
k message packets by treating the unreceived packets as
erasures. It is assumed that all the required encoding/decoding
operations are carried out over a sufficiently large field, so that
an MDS code with the necessary parameters exists. It is also
assumed that each packet has a header which identifies the
packet index j € [n] :={1,2,...,n}.

The source node broadcasts all n coded packets to its
one-hop neighbours, after which the probabilistic forwarding
protocol takes over. When a packet (say, packet #7) is received
by a node for the first time, it either transmits it to all its
one-hop neighbours with probability p or does nothing with
probability 1 — p.. The node ignores all subsequent receptions
of packet #j, irrespective of the decision it took at the time
of first reception. Each packet is forwarded independently of
other packets and other nodes. This probabilistic forwarding
continues until there are no further transmissions in the system.
The protocol indeed must terminate after finitely many trans-
missions since each node in the network chooses to forward
a particular coded packet only the first time it is received.

We are interested in the following scenario. Let Ry , be
the number of nodes, including the source node, that receive
at least k out of the n coded packets. Given a § € (0, 1), let
Dk.n,s be the minimum forwarding probability p for a near-
broadcast, i.e.,

. R'n
Pkn,s = inf {p ‘ E {Jif] >1 —5}. (1)

The performance measure of interest, denoted by 7% 5, is
the expected total number of transmissions across all nodes
when the forwarding probability is set to py, », 5. Here, it should
be clarified that whenever a node forwards (broadcasts) a
packet to all its one-hop neighbours, it is counted as a single
(simulcast) transmission. Our aim is to determine, for a given
k and §, how 7y, ,, 5 varies with n, and the value of n at which it
is minimized. To this end, it is necessary to first understand the
behaviour of py s as a function of n. The following simple
lemma is valid for any connected graph G = (V, E).

Lemma IL.1. For fixed values of k and 6,

(a) DPi.n,s is a non-increasing function of n.
(b) Prn,s — 0 asn — oo.

Proof: (a) For any n > 0, the random variables Ry, ,, and
Ry n—1 can be coupled as follows: If the k data packets are
encoded into 7 coded packets, then Ry ,—1 (resp. Ry ) is
realized as the number of nodes, including the source node,
that receive at least k of the first n—1 (resp. at least k of the n)
coded packets. It is then clear that E[%Rk’n] > E[%Rk’n,l],
and hence, by (1), we have p; 5 < Prn—1,s-

(b) From the n coded packets, create |7 | non-overlapping
(i.e., disjoint) groups of k packets each. For i = 1,2,--- , [ %],
let A; be the event that the ith group of k coded packets
is received by at least (1 — §/2)N nodes. The events A,
are mutually independent and have the same probability of
occurrence. For any p > 0, we have P(A4;) being strictly
positive (but perhaps small). Hence,

Source | =
=1
[—«

ARNANAALA L.
Fig. 1. A rooted binary tree of height H.

PP(at least one A; occurs) =1 — (1 — P(Al)) el s 1

: Ri.n s 5
for all sufficiently large n, so that P (% >1-— 5) >1-3.

Consequently, % >(1- g)(l — %) > 1 — 4. Thus, for

any p > 0, we have py ,, s < p for all sufficiently large n. W

On the other hand, 7 , s typically exhibits more complex
behaviour. As demonstrated via simulations in [4], over a wide
range of graph topologies (both deterministic and random),
except notably for trees (see Section III), 73, s initially
decreases and then grows gradually as n increases. This trend
can be seen most clearly in a grid topology — see Section IV.
Thus, there typically is an optimal value of n that minimizes
Tk,n,s- This happens due to an interplay between two opposing
factors: as m increases, py s decreases (Lemma II.1), which
contributes towards a decrease in 7y, 5. But this is opposed
by the fact that the overall number of transmissions tends to
increase when there are a larger number of packets traversing
the network. To determine the value of n that minimizes 7% s,
we need more precise estimates of py 5, and subsequently,
of 71 5,5. For the specific graph topologies of binary trees
and grids, we are able to obtain such estimates using methods
tailored to those topologies, as we demonstrate in the sequel.

III. ROOTED BINARY TREES

Consider a rooted binary tree of height H > 2 as depicted
in Fig. 1. The root of the tree is the source node and is at level
I = 0. The root node encodes the k data packets into n coded
packets and transmits them to its children. Every other node
on the tree follows the probabilistic forwarding strategy with
some fixed forwarding probability p > 0. We will assume that
the nodes at level H (i.e., the leaf nodes) do not transmit, as
there is nothing to be gained in allowing them to do so.

On a rooted binary tree of height H > 2, when k is fixed
and & > 0 is sufficiently small, simulation results presented
in [4] show that 7y, s increases with n. A large-deviations
analysis aiming to explain these results was also attempted in
[4]. However, this analysis is only valid in the regime where
k and n are both large but the ratio k/n is fixed. Thus, the
analysis in [4] does not in fact explain the simulation results.

In this section, we present results for the regime when £ is
fixed and n is allowed to vary. We also fix a H > 2anda d €
(0, %) In the interest of brevity, we only provide the statements
of the results here. Detailed derivations can be found in [7].

It was shown in [4] that py, ,, s is the least value of p € [0, 1]
for which!

IThis is a re-arrangement of Eq. (4) in [4].
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S 2 P2 < k- 1)
SHL 3 <5, 2)

where Z; ~ Bin(n, p') for | =0,1,..., H — 1, and

Thms = T [ka’"’é)H_l}
" 20k,m,5 — 1

3

An analysis starting from (2) yields the two propositions
below, which provide good lower and upper bounds on pi 1, 5.
These bounds are plotted, for £ = 100, 6 = 0.1 and H = 50,
in Fig. 2(a) along with the exact values of py , s obtained
numerically from (2). The corresponding plots for 7y, s,
obtained via (3), are shown in Fig. 2(b).

Proposition III.1. Let £k > 2, H > 2, and 0 < § < % be

1
fixed. For all n > k, we have py 5 > (kn;l) H=1
In the case of k = 1 and n > 1, the lower bound can be

H-1

improved to py n.s > (%)
Proposition IIL.2. Ler k > 2, H > 2, and 0 < § < 1

H+1_y

be fixed, and let §' := min {(5 (ﬁ) ,1}. Then, for all

1
n > 1, we have pyns < mm{(%) H*I,l}, where

t:\/2(141—1)(—1n5’)+(1n5’)2—ln5’.
In the case of k = 1, the bound pins <

min { (ﬂ) . 1} holds for all n > 1.

The following theorem summarizing the behaviour of py, ,, 5
on binary trees is a direct consequence of these propositions.

Theorem IIL3. Let k > 2, H > 2and 0 < § < § be fixed. We

1
then have py, n 5 = © ((%) H”) , where the constants within

the ©-notation*> may be chosen to depend only on H and 6.

The plots in Fig. 2 corroborate the simulation results re-
ported in [4], thus providing a theoretical explanation for why
Tk,n,s increases with n. Another confirmation of this behaviour

1
can be obtained by substituting py .5 ~ c(£)7T, for any
positive constant ¢ = ¢(H, J) into the expression for 7 ,, 5 in

(3). This yields the approximation
_H_
(20 (£)™F 1
2c (%) AT 1

; “)

Tkn,s ~ N

which can be shown to be increasing in n.

The analysis in this section extends easily to the case of
rooted d-ary trees, for any d > 2. In summary, introducing
redundancy in the form of coding to the probabilistic retrans-
mission protocol on a rooted d-ary tree is not beneficial in
terms of the overall energy expenditure in the network.

IV. GRIDS

For odd m, we consider the m x m grd I'y, =
[l m=11" N 72 centred at the origin. The source node

2 0 2

2The notation a(n) = ©(b(n)) means that there are positive constants ci
and c2 such that c1b(n) < a(n) < c2b(n) for all sufficiently large n.

0.995

§

pk,n

0.99

. . . .
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Number of coded packets (n)

0.985

(a) Minimum retransmission probability
x10"7

4 . . . .
100 120 140 160 180 200
Number of coded packets (n)

(b) Expected total number of transmissions
Fig. 2. The middle curves are plots of the true values of py s and T s

obtained from (2) and (3), for kK = 100, § = 0.1 and H = 50. The other
curves are bounds obtained via Propositions III.1 and III.2, and (3).

Fig. 3. The source node (x) is at the centre of the 31 x 31 grid.

is assumed to be at the centre of the grid. Fig. 3 depicts this
for m = 31. Simulation results for the probabilistic forwarding
algorithm on grids of various sizes were presented in [4]. Some
results from simulations on the I's; and I'5p; grids are shown
in Figs. 5 and 6 in Section IV-C. In this section, we try to
explain these observations by developing an analysis that is at
least valid for large m. Specifically, we turn to the theory of
site percolation on the integer lattice Z? to explain the py .5
and 7y ,, 5 curves obtained via simulations on large grids I'y,.

A. Site percolation on 7>

We start with a brief description of the site percolation
process (see e.g. [8]) on Z2. This is an i.i.d. process (Xu) yezeo
with X,, ~ Ber(p) for each u € Z2, where the probability
p € [0,1] is a parameter of the process. A node or site
u € Z2 is open if X, = 1, and is closed otherwise. For
u = (ug,uy) € Z2, define |u| := |uz|+ |uy|. Two sites u and
v are joined by an edge, denoted by u—wv, iff |u — v| = 1.
The next few definitions are made with respect to a given
realization of the process (X.),cz2. Two sites u and v are
connected by an open path, denoted by u <— v, if there
is a sequence of sites ug = u,u;,U2,...,U, = v such that
ug, is open for all £ € {0,1,...,n} and ug_1—uy for all
k € [n]. The open cluster, C,,, containing the site u is defined
as C, = {v € Z*lu +— v}. Thus, C, consists of all sites
connected to u by open paths. In particular, C,, = () if u is
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itself closed. The boundary, 0C,,, of a non-empty open cluster
C, is the set of all closed sites v € Z2 such that v—w for
some w € C,,. The set C;F := C, UIC,, is called an extended
cluster. The cluster C,, (resp. C;}) is termed an infinite open
cluster (I0OC) (resp. infinite extended cluster (IEC)) if it has
infinite cardinality. Note that C;F is infinite iff C,, is infinite.

It is well-known that there exists a critical probability p. €
(0,1) such that for all p < p,, there is almost surely® no
IOC, while for all p > p., there is almost surely a unique
I0C. We do not know what happens at p = p,., as the exact
value of p, is itself not known (for site percolation on Z2).
It is believed that p. ~ 0.59 [8, Ch. 1]. Another quantity of
interest, which will play a crucial role in our analysis, is the
percolation probability 6(p), defined to be the probability that
the origin O is in an IOC. In our analysis, we also consider the
probability, 7 (p), of the origin 0 being in an IEC. Clearly,
for p < p., we have 0% (p) = 0(p) = 0; for p > p,, it is not
difficult to see that 67 (p) > 6(p) > 0. The following lemma
expresses 07 (p) in terms of O(p).

Lemma IV.1. For any p > p., we have 6 (p) = @.

Proof. Let C and CT be the (unique) IOC and IEC, re-
spectively. We then have 6(p) = P(0 € C) = P(0 €
C™ and O is open). Now, observe that the event {0 € C*}
is determined purely by the states of the nodes other than 0.
Hence, this event is independent of the event that O is open.
Thus, 6(p) =P(0 € C* and O is open) = 61 (p) - p. O

There is, unfortunately, no analytical expression known for
9(p). Fig. 4 plots (p) and 67 (p) as functions of p, the former
being obtained via simulations based on the theorem below.

Theorem IV.2. Let p > p,, and let C and C, respectively, be
the (almost surely) unique 10C and IEC of a site percolation
process on 7.2 with parameter p. Then, almost surely, we have

. |C N1
lim ——— =

. |CT N Ty,
3 0(p) lim ———— =

and o (p).
m— 00 m

m— 00 m

The theorem is obtained as a straightforward application
of an ergodic theorem for a multi-dimensional i.i.d. random
field [9, Proposition 8]. Using the dominated convergence
theorem (DCT), we also have lim E Pc;frﬂ} = 6(p) and

" m—00 g
lim E |10l

m—r0o0

estimate of 6(p), the site percolation process with parameter
p was simulated on a 501 x 501 grid and the average fraction
of nodes (averaged over 100 realizations of the process) in the
largest open cluster was taken to be the value of 6(p). These
are the values of 6(p) plotted in Fig. 4. We would like to
emphasize that the plots in the figure should only be trusted for
P > pe, as Theorem IV.2 is only valid in that range. However,
as the exact value of p. is unknown, simulation results are
reported for the range of p values shown in the plot.

= 0% (p). Based on this, to obtain an

3with respect to the product measure ®y, vy, With vy, ~ Ber(p) Vu € Z2.

_-="F0(p)
—¢" (p)

Fig. 4. 6(p) and 67 (p) vs. p
B. Relating site percolation to probabilistic forwarding

Site percolation on Z?2 is a faithful model for probabilistic
forwarding of a single packet on the infinite lattice Z2. The
origin O is the source of the packet. The open cluster, Cyp,
containing 0 corresponds to the set of nodes that transmit
(forward) the packet, and the extended cluster Cj” corresponds
to the set of nodes that receive the packet. The only caveat is
that, since the source is assumed to always transmit the packet,
we must consider only those realizations of the site percolation
process in which the origin O is open. In other words, we
must consider the site percolation process conditioned on the
event that the origin is open. By extension, the probabilistic
forwarding of n coded packets on the lattice Z? corresponds
to n independent site percolation processes on Z2, conditioned
on the event that the origin is open in all n percolations.

C. Analysis of probabilistic forwarding on a large grid

Our analysis of probabilistic forwarding on the finite grid
I',, is based on the approximation described next. For the
purposes of this discussion, we fix a forwarding probability p.
Let R}7, denote the set of all nodes that receive at least k of
the n coded packets in the probabilistic forwarding protocol
on Z?. We use [R7S, NT'y,| as a proxy for R}?,, which is the
number of nodes receiving at least k£ out of n packets in the
probabilistic forwarding protocol on I';,,. In general, it is only
true that R}an is stochastically dominated* by |Rzon N,
since a node in Ry, NIy, could receive packets from the
origin through paths in Z2 that do not lie entirely within T',,,.
Nonetheless, we proceed under the assumption that E[R}", ] ~
E[|R32, NTp,] for large m. This is vindicated by the fact that
our analysis based on this assumption matches the simulation
results reasonably well — see Figs. 5 and 6.

Recall also that we want values of the forwarding probabil-
ity p for which E[-1; i) is at least 1 — 4, for some (small)
§ > 0. Hence, we need E[ - | R}, NI'y|] > 1—6. If we would
like this to hold for all sufficiently large m, then p must be
such that Rp°, has infinite cardinality. This implies, due to
the correspondence between probabilistic forwarding and site
percolation on 72, that p must be such that there exist infinite
(open/extended) clusters in the site percolation process. Thus,
we must operate in the super-critical region p > p.. It can
also be seen from the simulation results in Figs. 5 and 6 that
Tk,n,s 15 minimized when py, ,, s is in the super-critical region.
We use this to justify considering only p > p. in our analysis.

4A random variable X is stochastically dominated by a random variable Y
if P(X > ) <P(Y > z) for all z € R. For non-negative random variables,
this implies that E[X] < E[Y].
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o Simulations on 31 X 31 grid
--Simulations on 501 X 501 grid
08 *1, from expression in (5)
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100 120 140 160 180 200

Number of coded packets (n)

Fig. 5. Comparison of the minimum forwarding probability obtained via
simulations on a 31 x 31 grid and a 501 x 501 grid, with the results obtained
numerically from (5), for k£ = 100 data packets and § = 0.1.

The following theorem is the main result of this section.
The proof, given in [7], is obtained by carefully relating R7,
to the set, CZ n» Of all sites in 72 that belong to the IEC

containing O in at least k out of n independent percolations,
conditioned on 0 being open in all n percolations.

Theorem IV3. For p > p,, lim E [# Ry, Tl =
ok ek (1) (@) (1 - 0 ().

From the discussion prior to the theorem, the left-hand
side of the equality stated in the theorem is our proxy for
lim E[# Z,Ln]- Thus, for large grids T',,, we take py s to

m—00
be the least value of p for which

i i <7Z> (;) O (1—-60 ()" > 1-6. (5

This can be evaluated numerically using the values of 67 (p)
plotted in Fig. 4. The results thus obtained are shown in Fig. 5.
It is clear that these results match very well with those obtained
from simulations on a 501 x 501 grid.

We next look into estimating the expected total number of
transmissions at a given forwarding probability p. Consider
the transmission of a single packet on the infinite lattice Z2.
The set of nodes transmitting this packet is simply the open
cluster Cg in the percolation framework. Thus, arguing as for
packet receptions above, the expected number of transmissions
for probabilistic forwarding on a large (but finite) grid I',, is
well-approximated by E[|Co N T;,| | O is open]. In [7], we
infer from Theorem IV.2 the fact that for p > p.,

o)

m?2 )

. E[|CoNT,,| |0 is open]
lim

m—ro0

Thus, in probabilistic forwarding of a single packet on a
large grid T',,, the expected number of transmissions, nor-
malized by the grid size m?, is approximately @. Hence,
when we have n coded packets, by linearity of expectation,

the expected total number of transmissions, a%ain normalized

by the grid size m?2, is approximately n %. In particular,
setting p = pg,n,5, We obtain
1 0(Pk.n.s)
—5 Thn,d & nﬂ, (6)
Pk.n,s

provided that pg ., 5 > pe.

95

o Simulations on 31 X 31 grid
S0 ~-Simulations on 501 X 501 grid
85 ¢ from expression in (6) B
Iy
E 80! A
e
<75 ¢ |
=2

70
65 - ; 8

60 I I I I
100 120 140 160 180 200

Number of coded packets (n)

Fig. 6. Comparison of the expected total number of transmissions normalized
by the grid size m?2, obtained via simulations on I's; and I's501, with the
expression from (6), for £ = 100 data packets and 6 = 0.1.

Fig. 6 compares, for £ = 100 data packets and 6 = 0.1,
the values of #Tk%g obtained using (6) with those obtained
via simulations on the I'3; and I'sg; grids. The curve based
on (6) initially tracks the I'5g; curve well, but trails off after
n = 130. Given that the corresponding py s curves are
well-matched (Fig. 5), this is perhaps attributable to the fact
that the 6(p) values from Fig. 4 are not very reliable. As
even a small change in 6(p) would significantly affect n@,
better estimates of 6(p) may correct the discrepancy observed.
Nonetheless, our analysis gives theoretical validation, at least
for large grids, for the observed initial decrease in 7, s as
a function of n, thus indicating a benefit to introducing some
coding into the probabilistic forwarding mechanism on grids.

V. CONCLUSION

The ideas we have used for establishing our results for grids
can be extended to other graph structures as well. The key tool
for obtaining our results for grids was Theorem IV.2, which
was an application of an ergodic theorem for percolation on the
infinite Z? lattice. Similar theorems can be obtained for graphs
such as the triangular and hexagonal grids through ergodic
theorems for percolation on the corresponding infinite lattices.
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