IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

2413

Single-Forking of Coded Subtasks for
Straggler Mitigation

Ajay Badita™, Graduate Student Member, IEEE, Parimal Parag

and Vaneet Aggarwal”,

Abstract— Given the unpredictable nature of the nodes in
distributed computing systems, some of the tasks can be signifi-
cantly delayed. Such delayed tasks are called stragglers. Straggler
mitigation can be achieved by redundant computation. In max-
imum distance separable (MDS) redundancy method, a task is
divided into k£ subtasks which are encoded to n coded subtasks,
such that a task is completed if any k out of n coded subtasks are
completed. Two important metrics of interest are task completion
time, and server utilization which is the aggregate completed
work by all servers in this duration. We consider a proactive
straggler mitigation strategy where no out of n coded subtasks
are started at time O while the remaining n — no coded subtasks
are launched when ¢o < min {no, k} of the initial ones finish.
The coded subtasks are halted when k of them finish. For this
flexible forking strategy with multiple parameters, we analyze
the mean of two performance metrics when the random service
completion time at each server is independent and distributed
identically (i.i.d.) to a shifted exponential. From this study, we
find a tradeoff between the metrics which provides insights into
the parameter choices. Experiments on Intel DevCloud illustrate
that the shifted exponential distribution adequately captures the
random coded subtask completion times, and our derived insights
continue to hold.

Index Terms— Straggler mitigation, distributed computing,
completion time, scheduling, forking points.

I. INTRODUCTION
OTIVATED by scalability, availability, and reliability,
there has been a paradigm shift from centralized com-
putation at a large supercomputer to distributed computing
on a large cluster of regular compute servers to perform
complex tasks. In distributed compute setting, a single task is

Manuscript received August 25, 2020; revised February 15, 2021 and
April 7, 2021; accepted April 14, 2021; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor B. Ji. Date of publication July 2, 2021;
date of current version December 17, 2021. This work was supported in
part by the Science and Engineering Research Board under Grant DSTO-
1677, in part by the Department of Telecommunications, Government of
India, under Grant DOTC-0001, in part by the Robert Bosch Center for
Cyber-Physical Systems, in part by the Centre for Networked Intelligence of
the Indian Institute of Science, Bengaluru, in part by the Visiting Advanced
Joint Research (VAJRA) Fellowship, in part by the National Science Foun-
dation under Grant CNS-1618335, and in part by CISCO. This work was
presented in part at [EEE INFOCOM, July 2020 [1]. (Corresponding author:
Vaneet Aggarwal.)

Ajay Badita and Parimal Parag are with the Department of Electrical
Communication Engineering, Indian Institute of Science, Bengaluru 560012,
India (e-mail: ajaybadita@iisc.ac.in; parimal @iisc.ac.in).

Vaneet Aggarwal is with the School of Industrial Engineering, Purdue
University, West Lafayette, IN 47907 USA, and also with the School of
Electrical and Computer Engineering, Purdue University, West Lafayette,
IN 47907 USA (e-mail: vaneet@purdue.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3075377, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3075377

, Senior Member, IEEE,
Senior Member, IEEE

fragmented into a smaller number of subtasks, and processed
by the compute cluster. Task completion time is limited by the
slowest execution time of the parallel subtasks. The lagging
tasks are referred to as stragglers, and they delay the entire
task execution. Straggling servers is one of the challenges in
distributed computing.

Stragglers can be mitigated by adding redundant subtasks,
where a task divided into k subtasks can be encoded into
n redundant subtasks, and each coded subtask is processed
individually at a unique server. A popular redundancy tech-
nique to mitigate stragglers is replication, where each of the
finite k£ subtasks can be replicated to % servers each [2]-[4].
However, the task will only be done if one sever from each of
the 7 partitions finish processing their corresponding subtasks.
In [5], [6], the authors replicate subtasks only for a fraction
of k subtasks, and the subtask is said to be complete only if
any one of the corresponding replicated subtask is complete.
In general, redundancy can be achieved by erasure coding
schemes more general than replication. The key advantage of
erasure coding is that it reduces storage cost while providing
similar reliability as replicated systems [7], [8], and thus
has now been widely adopted for storage by companies like
Facebook [9], Microsoft [10], and Google [11]. It has been
shown that this more flexible redundancy scheme can also be
employed for certain computing tasks in distributed compute
systems [12]-[18].

We focus on an efficient erasure coding scheme called
maximum distance separable (MDS) coding [12], [15], where
multiple servers process coded version of k subtasks such that
the task is complete if any %k out of n servers finish processing
their coded subtasks. MDS coding is a more general form
of redundancy than simple replication. We observe that even
though MDS codes are efficient, the decoding complexity is
polynomial in the length of the code [19], [20]. When the
decoding time is negligible as compared to the coded subtask
completion time, MDS codes are an attractive choice. In fact,
it has been shown in [21] that Intel Storage Acceleration
Library (ISA-L) provides a highly optimized implementation
of Reed-Solomon (RS) codes which significantly decreases the
time taken for encoding and decoding operations. Further, [21]
showed that ISA-L can achieve a significant large decoding
throughput of 163 Mbps, demonstrating negligible decoding
overheads for erasure-coded systems.

Assuming that each server is working on a unique
coded subtask, an additional benefit of redundancy schemes
is the lower completion time due to parallelization gains [4],

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5886-8801
https://orcid.org/0000-0002-3757-904X
https://orcid.org/0000-0001-9131-4723

2414

no - v
1
1
T

|
|
:
| |
k-2l w

Fig. 1. The start and completion times of different coded subtasks, for a
single-forked task, divided into k = 5 subtasks, MDS coded to n = 10 coded
subtasks, where ng = 7 coded subtasks are initiated at ng servers. After the
completion of £y = 2 coded subtasks, remaining n; = 3 coded subtasks are
initiated at nq servers. The task completion time is the time to finish first
k = 5 coded subtasks.

[12]-[18], [20], [22]. However this latency reduction comes at
the cost of high server utilization [3], [4], [6]. High aggregate
utilization of all servers leads to increased operation cost and
hence it is desirable to reduce the server utilization. In this
setting, we consider the following important question. When
should the n coded subtasks be started to obtain an optimal
trade-off between task completion time and server utilization
cost? One option is to start all coded subtasks at time 0,
corresponding to the task request time. This leads to using all
n servers until the first k£ of them have finished, resulting in
low task completion time and a high server utilization. Another
option is to use only k servers and start with all of them at
time 0. This would help avoid the excess server utilization for
the remaining n — k servers, resulting in low server utilization
and larger task completion time.

A more flexible approach is to start with ny < n coded
subtasks at time 0. When ¢y < k of them are finished,
we launch the remaining nq; = n — ng servers. This launching
time instant is called forking point, and the threshold ¢, on
number of coded subtask completions is referred to as fork
task threshold. An example of this delayed launch of coded
subtasks is illustrated in Fig. 1 for n = 10,n9 = 7,0y = 2,
where we plot the start and completion time for each coded
subtask for a single task.

In the first option of starting all n servers, we have ng = n,
¢y =k, ny = 0. This is the setting of an (n, k)-fork-join [23].
In the option of using only k servers and starting with all
of them, we have nyg = ¢y = k. Thus, the proposed approach
affords a flexible framework for launching the coded subtasks.
It is not apriori clear as to how should these parameters be
chosen so that both the metrics are optimized. In this article,
we aim to find the impact of design parameters ng, 11, and £
on the two metrics; the task completion time, and the server
utilization.

A. Related Work

Given the unpredictable nature of the nodes in distributed
systems, coding theoretic techniques have been used for strag-
gler mitigation in the face of uncertainty. Coding-theoretic
approaches have been shown to provide a tradeoff between
access latency and server utilization in distributed storage
systems [24]. It was shown in [22] that MDS codes are the
latency-minimizing code among a class of symmetric codes for

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

distributed storage systems. Coding theoretic techniques have
been provided for mitigating stragglers in matrix multiplica-
tion [15]-[18]. The authors of [12], [14] consider the problem
of computing gradients in a distributed system, and propose
a novel coded computation scheme tailored for computing a
sum of functions. While most of the works focus on the appli-
cation of coded computation to linear operations, coding has
also been found useful in distributed computing frameworks
involving nonlinear operations [13]. Efficient coding theoretic
techniques to reduce the communication cost in the process
of transferring the results of mappers to reducers have been
studied in [15], [25]-[28].

We note that we are considering task completion time and
server utilization for a single task. Mean task completion
time for a sequence of task arrivals for the (n,k)-fork-join
queue is considered in [3], [22]-[24], [29]-[33]. These articles
have provided analytical results for a static (n, k) redundancy
under various simplified settings. For memoryless service,
tight numerical bounds are presented in [29], analytical bounds
are provided in [23], [24], [30], [31], tight analytical approx-
imations in [22], and exact analysis for small systems in [3].
An exact analysis of tail index for Pareto-distributed file
sizes is studied in [33], and an exact analysis for random
independent scheduling for asymptotically large number of
servers in [32]. These works demonstrate the improvement
of task completion times with the use of coding. However,
this line of work does not take the server utilization into
account. In our work, we have generalized the static coded
redundancy studied in the above-mentioned articles. We show
that server utilization can be reduced by dynamic coded
redundancy, where the number of parallel servers available
to a task changes with time. To keep the analysis tractable,
we do not consider the task arrivals. In this case, dynamic
coded redundancy is tantamount to efficient launching times
of the different coded subtasks.

One of the cost-effective approaches to mitigate the effect
of stragglers is to either re-launch a certain task if it is
delayed, or preemptively assign each task to multiple nodes
and move on with the copy that completes first. Speculative
execution have been studied in [34], which acts after the
tasks have already slowed down. In a proactive mitigation
approach, one can launch redundant copies of a task hoping
that at least one of them will finish in a timely manner.
The authors of [2] perform cloning to mitigate the effect of
stragglers. The authors of [4], [6] analyzed the latency and
cost for replication-based strategies for straggler mitigation.
A machine learning approach for predicting and avoiding
these stragglers has been studied in [35]. Recently, coding-
theory-inspired approaches have been applied to mitigate the
effect of straggling as mentioned earlier. Single-fork analysis
with coding has been studied in [36], where k& coded subtasks
are started at ¢ = 0. Further, after a fixed deterministic time A,
additional n — k& coded subtasks are started. Our work differs
from [36] since

(i) we allow for general number of initial coded subtasks,

(ii) the start time of new coded subtasks is random and
based on the completion time of certain number of coded
subtasks rather than a fixed constant, and

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: SINGLE-FORKING OF CODED SUBTASKS FOR STRAGGLER MITIGATION

(iii) our framework allows for an optimization of different
parameters to provide a tradeoff between server utiliza-
tion and task completion time.

We note that the problem is important even when there
are stochastic arrivals since this procedure of forking can be
used for any arriving task. The exact queueing analysis for
coded-tasks with forking is not straightforward to extend and
remains open, while the analysis in this article provide insights
on how to efficiently fork a task in lightly-loaded scenarios.
This scenario arises in the case of low arrival rates so that the
queues are empty with high probability, and hence the system
can be modeled as an M/G/1 queue where the service time of
a task is the completion time computed in this work. Thus, one
can achieve a tradeoff between the two performance metrics
for lightly loaded queueing systems.

B. Contributions

We characterize the means of the two performance metrics:
task completion time and the server utilization, for a single
(n, k)-MDS coded task with single-forking. The MDS coding
implies that the task is fragmented into k subtasks and encoded
into n coded subtasks, where completion of any %k coded
subtasks finishes the task. The single-forking implies that the
task is started with ny coded subtasks at the task request time,
and another n; coded subtasks are started on completion of
lo < k out of initial ng coded subtasks.

1) We first show that when execution times are either con-
stant or i.i.d. random with bounded support and certain
constraints, then the regime of ny < k is not interesting.

2) We then explicitly compute the means of two perfor-
mance metrics when the random execution time of each
coded subtask is assumed to be iid. with a shifted
exponential distribution. This assumption is shown to be
a decent approximation of service completion times on
compute clusters [18], [36].

3) We compute the two performance metrics for the choice
of system parameters ng, n1, and £y, and demonstrate the
quantitative tradeoff between these two metrics. For com-
parison, we consider the no-forking case, when ng = n.
We find there is no advantage to choose ny < k for either
of the metrics as compared to no-forking case. This is
because the server utilization does not change with the
value of ng when ng < k while the task completion
time increases as ng decreases. Thus, one should not
perform forking with ng < k, and hence the only regime
of interest is ng > k.

4) In this regime ng > k, we make the following obser-
vations. Keeping parameters ¢y and n fixed, we observe
that the mean server utilization is not monotone in the
initial number of coded subtasks ng, whereas the mean
task completion time decreases with ng as expected. For
a fixed ny and n, increasing the fork task threshold
{y increases the task completion time while decreases
the server utilization. Thus, there is a tradeoff in the
two metrics and efficient choice of parameters can be
decided by the system designer based on the weighted
combination of the two metrics.

2415

5) We empirically studied two-forking for a single task with
k subtasks encoded to n coded subtasks using MDS
coding, where execution times are i.i.d. with shifted expo-
nential distribution. We observed that the performance
curve obtained by two-forking does not offer significant
gains when compared to the single-forking for the choice
of parameters we selected.

6) We also performed numerical studies for single and
multiple-forking, when the execution time at individ-
ual servers has a heavy-tailed distribution. In particular,
we chose execution time distributions to be Pareto and
Weibull. We observed that insights derived from the
analytical study of single-forking with shifted exponential
distribution continues to hold in this case.

7) In addition to the analytical studies for the shifted
exponential distribution, we also studied the impact of
single and multiple-forking on a real compute cluster.
We observe that the execution time of coded subtask at
each server in the compute cluster can be well modeled by
the shifted exponential distribution, and hence the insights
obtained from the analytical studies continue to hold for
this real compute cluster.

C. Organization

The rest of the paper is organized as follows. Section II
describes the system model. In Section III, we present gen-
eral methodology for analytical computation of performance
metrics, and provide results for general execution time distri-
bution. Section IV provides the analytical results for single
forking point with shifted exponential distribution for execu-
tion time. In particular, we compute the performance metrics
for the two cases of ng < k and ng > k. Section V provides
a performance tradeoff between the two metrics for single
forking point, and the comparisons to two-forking are made
in Section VI. Section VII provides the experimental results
on a real compute cluster, Intel DevCloud. Empirical studies
for heavy-tailed execution time distributions are provided in
Appendix G. Section VIII concludes the paper, with directions
for future work.

II. SYSTEM MODEL

In this section, we describe the different components of the
system model in detail. We consider a distributed compute
system with n identical servers. We will use the following
notations throughout this article. We denote the set of integers
by Z, the set of non-negative integers by Z., the set of positive
integers by N, the set of first n consecutive positive integers
by [n], the set of reals by R, and the set of non-negative
reals by Ry. For two real numbers a,b, the minimum is
denoted by a A b, and the maximum is denoted by a V b.

A. Coding Model

We assume that each compute task can be divided into &
subtasks, which are encoded into n coded subtasks and sent
to n distinct servers. We assume the tasks to be MDS coded,
which implies that the coded subtask completion at any %k out
of these n distinct servers results in the completion of the
original task.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

2416

B. Single-Fork Scheduling

We assume a single-fork scheduling, where a task starts at
no parallel servers at time tg = 0, and adds n; = n — ng
servers at a random time instant ¢; corresponding to service
completion time of the ¢yth coded subtask out of ng initial
servers. The total task completion time is given by t, when
the remaining coded subtasks at /1 = k — {y servers are
completed. Since we can’t have more completions than the
number of servers in service and the number of subtasks,
we have {9 < ng ANk and ¢y + ¢1 = k < n. We denote
the service completion time of rth coded subtask in stage
i € {0,1} by t;,. Since each stage consists of ¢; service
completions, we have r € {0,...,¢;} such that ¢; o = ¢; and
ti¢; = tit1,0 = tit1. We denote the number of ON servers in
the duration [¢;,,t;,4+1) of rth coded subtask completion in
stage ¢ by the number Nj ,..

C. Service Model

Each server i € [n] is assumed to have an i.i.d. random exe-
cution time 7T; with distribution function F' for each scheduled
coded subtask on this server. Recent works [15], [24], [31],
[37] suggest that a shifted exponential distribution is a good
fit for modeling the service time distribution in distributed
computation networks. It is suggested that the service time
for each computation of coded subtask can be modeled by
two aggregate components; a constant server start-time and
a random memoryless component. These studies along with
the goal of analytical tractability influenced us to assume
the service time distribution for each coded subtask to be
a shifted exponential with rate p and shift ¢, such that the
complementary distribution function F' =1 — F is

F(z) 2 P{Th > 2} = Lpzepo.qy + ¢ M7 sy (D

D. Performance Metrics

The task completion time for k& coded subtasks is denoted
by S and the server utilization by W. Since, we are assuming
a single-forking scenario, we have two contiguous stages. The
time interval [to, t1) corresponds to the stage 0, and the interval
[t1,t2] corresponds to the stage 1. The task completion time
is sum of the duration of two stages, and can be written as
S =ty = (ta — t1) + (t1 — to). The duration of stage ¢
can be written as the following telescopic sum of duration of
rth coded subtask completion in stage ¢,

l;i—1

tiy1 —t; = Z(ti,r+1 —tiy)- 2)

r=0

The server utilization is measured in terms of the amount of
work done by all servers that were on until the task completion.
This utilization is the sum of the utilization in each of the two
stages, written as W = Wy + Wj. Assuming that a server is
discarded after its coded subtask completion, we can write the
server utilization in stage ¢ as the time-integral of number of
servers that are on in the ith stage duration [t;,¢;11). Since
the number of on servers in the duration [t;,,t; »+1) is the

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

constant number N;,, we can write the server utilization in
stage 4 as
£;—1
W; = Z Nir(tips1 —tir). 3)
r=0
We are interested in the optimal tradeoff between the mean
task completion time E [S] and the mean server utilization
E [W] for k coded subtasks scheduled in two stages over
these n servers. To this end, we will analytically compute the
mean task completion time and the mean server utilization,
for a fixed number of servers n, as a function of choice of
initial servers ng and threshold ¢y on number of coded subtask
completions for forking.

III. COMPUTATION OF PERFORMANCE METRICS

In this section, we will write the task completion time and
the server utilization when coded subtask completion times at
n servers are random and i.i.d. denoted by 7' 2 (T7,. .., Tn),
with a common general distribution F' : Ry — [0, 1]. Recall
that in stage 0, we switch on n initial servers at instant ¢y = 0.
This stage is completed at the single-forking point denoted by
the instant ¢1, when ¢ coded subtasks out of ngy are completed.
At the beginning of stage 1, additional n; = n — ng servers
are switched on, each working on a unique coded subtask.
The task is completed at the end of this second stage denoted
by instant ¢, when remaining k — ¢y coded subtasks are
completed. At the instant ¢; that indicates the beginning of
stage 4, the number of servers that are on is given by Vg,
where Ny g = no and N1 = no — /. Therefore, we can write
Nio = Z;:o (nj—¢;)+¢;. Further, in the duration [t;,; 1),
first r servers in stage 7 available from the time instant ¢;
have completed coded subtasks, and hence N;, = N; o — 7.
Therefore, the server utilization in stage ¢ is

61 i
Wi= 3" (irsr = tin) (Do = 4) + li=r). @)
r=0 §=0

Rearranging terms and interchanging summation order in
Eq. (4), we observe that the server utilization in stage ¢ can
be written

i £;
Wi = (tisr = t) D (nj = £) + (i — 1),
j=0 r=1

Definition 1: We define a family of functions f,, : R™ x
[n] — R for each n € N such that f,(x, k) is the kth order
statistics of n real values © = (z1,...,zy).

Without loss of generality, we can assume that the initial ng
coded subtasks are forked at first ng servers with execution
times (74, ...,Ty,). Then, the completion time of rth coded
subtask in stage 0 is given by

tO,r:fno(Tlv"'anoar)~ (5)
We can write the duration of stage 0 as t1 —tg = t1 = t0,¢,,

and the server utilization in this stage as

Lo
Wo = t1(no — o) + Z to,r-

r=1

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: SINGLE-FORKING OF CODED SUBTASKS FOR STRAGGLER MITIGATION

Remark 1: As the number of initial servers ng increases,
the collection (71, ..., T),,) increases. For a fixed threshold ¢
and any r € [{o], the rth order statistics cannot increase as ng
increases. Therefore, it follows that the completion time %o,
of rth coded subtask in stage 0 is a non-increasing function of
the number of initial servers ng for a fixed threshold ¢y and

any r € [{g).
Remark 2: For a fixed number of initial servers ng, the
forking instant ¢; = tpy, is a non-decreasing function of

threshold /.
Remark 3: We observe that the order statistics have the
linear shift property, i.e. for any x € R" and c € R

fn(c+ka) = C"‘fn(xak)

Remark 4: We further observe that for a vector x € R™ and
y € R™ such that sup;c(,,,) ¥i < infje(n) 2, then we have

fn(ka) = fner(xayvm + k)

From Remark 3 and Remark 4, it follows that the comple-
tion time of rth coded subtask in stage 1 is given by

tir = fu(T1, ... St +Ta,lo+1). (6)

We can write the duration of stage 1 as to —t1 = t1,0, — 11,
and the server utilization in this stage as

7Tnoat1 +Tno+1a"

£y
Wi =(ta—t))(n—k)+ > (trr —t).

Remark 5: For a fixed threshold ¢y, the forking instant
t1 = %o, 15 a non-increasing function of initial number of
servers ng. Therefore, it follows from Eq. (6) that ¢y, is
non-increasing function of ng for each r € [¢1]. In particular,
the task completion time ¢ = t1 ¢, is non-increasing function
of initial number of servers ng.

Remark 6: Since t; is non-decreasing function of threshold
fo for a fixed number of initial servers ng, it follows that
ty = t1,¢, is also a non-decreasing function of threshold /.

Above remarks imply that to minimize the service comple-
tion time S, the number of initial servers ng should be as large
as possible, and the fork task threshold ¢y should be as small
as possible. Next, we focus on the impact of parameters ng, £
on the server utilization, which can be written as

lo l1
W=ta(n—k)+ti(no—n)+ > tor+ Y tre. (7
r=1 r=1

The total server utilization consists of four terms. Except for
the term ¢1(no —n), the rest three terms are all non-increasing
function of number of initial servers ng. Therefore, in general,
the monotonicity of the server utilization is not clear as a
function of number of initial servers ny and coded subtask
threshold /.

We will show that when the service distribution satisfies
certain properties, it is always beneficial to start with coded
subtasks at ng > k servers. We first consider the case when
the subtask completion times are identically constant.

Lemma 1: When the subtask completion times are identi-
cally constant, the optimal number of initial servers is number
of uncoded subtasks k.

2417

Proof: The proof is provided in Appendix A. [|

We next consider the case of random execution times, where
1 < T; < o for each server i € [n].

Theorem 1: Consider a distributed compute system with
n servers and general coded subtask completion times
(Th,...,Ty), such that T; € [c1,co] for all i € [n] and the
constants satisfy the following condition

Then, for single-forking with ng < k subtasks has higher
server utilization and task completion time when compared
to a distributed compute system with ng = {y = k servers
initialized at time to = 0.

Proof: The proof is provided in Appendix B. [|

In this section, we observed that the behavior of server
utilization depends on the distribution of execution times in
general. However, when the execution time is constant, or the
execution time is random with finite support satisfying certain
conditions, we observed that the case ny < k is not interesting.
We will see that this observation continues to hold true for
random variables with infinite support, for specific parameter
values.

IV. SHIFTED EXPONENTIAL DISTRIBUTION

In this section, we derive the mean task completion time
and the mean server utilization when the execution time dis-
tribution is shifted exponential with parameters (c,). Recall
that the shifted exponential distribution for coded subtask com-
pletion times suggest that the execution time for each coded
subtask computation consists of two components; a constant
server start-time ¢ and a random memoryless component of
rate .

From Eq. (2) on the duration of stage ¢, and Eq. (4) on server
utilization of stage ¢, we observe that they both depend on the
intervals [t; ,—1,%;,) for r € [(;]. The random variable ¢, , is
the rth coded subtask completion time in stage ¢ and is related
to order statistics of random variables. As such, we need the
following two standard results on order statistics.

Remark 7 ([38]): Let T € R™ be an i.id. random vector
with common distribution function F', then the distribution of
jth order statistic f,, (T, j) of this collection is given by

PUAT) <2} =3 (’?)F(xyp(x)ni.

— \!
i=j

Remark 8: For the iid. vector " € R" of (c, pu)-shifted
exponential random execution times, we can define the shifted
vector 7" £ T — ¢ such that the ith component is 7/ = T; — ¢
for all ¢ € [n]. Then, the i.i.d. random vector T" is distributed
exponentially with rate .

Remark 9 ([38]): We define X7’ £ £.(T,4) forall j € [n]
and X' = 0. From the memoryless property of 77/, we observe
the following equality in the joint distribution of two

vectors
T!
n n . _ J .5
(7= X3 el = (g i e il).

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

2418

Recall that the task completion time can be written as the
sum of durations of stage 0 and stage 1, and the server uti-
lization can be decomposed into sum of the server utilization
in each of the two stages. Accordingly, we will separately
analyze these two stages in the following subsections.

A. Stage 0 Analysis

In this subsection, we would compute the mean of the
interval [tg,—_1,t0,,) for each r € [{y], and subsequently
obtain the mean duration of the stage 0, and the mean server
utilization in this stage.

Lemma 2: For the single-forking scheme with i.i.d. shifted
exponential coded subtask completion times, the mean time
between two coded subtask completions in stage 0 is

1
c+—, r=1,

K (8)
re {2,...,60}.

E [tO,r - tO,rfl] =
p(ng —r+1)
Proof: Since tg, is the completion time of first r coded

subtasks out of ng parallel coded subtasks, we have ¢y, =
¢+ X from Remark 8. Hence, for each r € [{y], we have

to,r —tor—1 = (c+ X;"°) — (c+ X;2y).

The coded subtasks are initiated at time 9o = o = 0 and
hence the first coded subtask is completed at tg1 — to,0 =
X71°. From Remark 9, we can write the following equality in
distribution

T/
c+ L, r=1,
tO,T - tO,r—l = n:%/
——, re{2,.... 0},
(no—r+1) { o}
where (77, ...,T)) are i.i.d. exponentially distributed random

variables with rate ;. Taking expectations on both sides, we get

the result. u

Corollary 1: For the single-forking scheme with 1i.i.d.

shifted exponential coded subtask completion times, the mean
forking time is

£ 1
Elti|=c+ A —— 9
] ZM(”O—T‘FU ®

r=1

and the mean server utilization in stage 0 is given by

E[Wy] = %80 + cng. (10)

Proof: Taking expectation on both sides of Eq. (2)
and Eq. (4), we can find the mean of forking time and
mean of server utilization respectively, as weighted sum of
E [to.r — tor—1] for r € [£g]. The result follows by substituting
the mean time between consecutive coded subtask completions
in stage 0, computed in Lemma 2. []

B. Stage 1 Analysis

In this subsection, we will compute the mean of the interval
[t1,0—1,t1,) for each r € [(1], and subsequently obtain the
mean duration of the stage 1, and the mean server utilization
in this stage. In stage 0, all the ng servers are initialized at

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

time tg = 0, and hence the start-up time for all ny servers
in stage O is synchronized. This simplified the computation of
mean time between consecutive coded subtask completions in
stage 0.

However, this is not the case in stage 1 which begins at
forking time ¢;. At this instant, the remaining coded subtasks
are initiated at additional n; servers. These additional servers
have synchronized start at the forking time ¢, and all of them
have the identical constant start-up time c. Therefore, none of
them can finish executing before time ¢; +c. However, there are
ng — {op remaining servers from stage 0, which were initialized
at time to = 0. These servers are not synchronized with the
servers forked at time ¢;. Specifically, any of these servers can
finish executing in the interval ({1, {1 +¢|. This complicates the
computation of mean time between consecutive coded subtask
completions in stage 1.

We denote the number of coded subtask completions in the
interval (¢1,t1 + ¢| by a random variable N;(c) that takes
values in {0,...,n9 — £o}. The event of this random variable
taking a value j — ¢ for any j € {{y,...,np} is denoted by

Ej—fo é{Nl(c):j—éo}. (11)

Since in the time interval [0,¢; + ¢] only servers that
complete executing their coded subtasks are from initial ng
servers, and {y of them finish at time ¢;, the event E;_; is
the event of j completions before any of the additional n
servers enter their memoryless phase. Therefore, we can write

Bj_gy = {X* <c+XJ0 < X'} (12)

In the following we would describe the duration between
two consecutive coded subtask completions in stage 1 for three
cases. First, when the completions occur before any of the
stage 1 forked servers enter their memoryless phase. In this
case, we can write the interval between rth and (r—1)th coded
subtask completions for r € [Ny (c)] as

(trr — tr1r—1) = (Xpofo — XJ07%). (13)

Second, the duration between completions just before and
after the stage 1 forked servers enter their memoryless phase.
There is a phase change at time ¢; 4 ¢, and we can write the
difference between rth and (r— 1)th coded subtask completion
time instants for r = Nj(c) 4 1, as the following telescopic
sum of two durations

(tl,r - tl,rfl) = [(tl,r - (tl + C)) + (tl +c— tl,rfl)]~ (14)

Third, the completion durations post the first completion
after stage 1 forked servers enter their memoryless phase. Due
to memoryless property, there are n — o — N1(c) i.i.d. parallel
memoryless servers executing from time t; + c. Therefore,
we can write the interval between rth and (r — 1)th coded
subtask completions for r € {Ny(c) +2,...,k —{p} as

(tl L —t r—l) _ (Xn—Zo—Nl(c) o Xn—KU—Nl(c)).

r—Ni(c) r—Ni(c)—1 (15)

We conclude that the duration between (r — 1)th and rth
coded subtask completions depends on, whether r € [N1(c)],
r = Ni(c)+ 1, or Ni(¢)+1 < r < k—£y. Therefore, we can

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: SINGLE-FORKING OF CODED SUBTASKS FOR STRAGGLER MITIGATION

write the mean of this duration, in terms of the event indicators
(]1Ej7£0 : eo S] <ngA k), as

El(t1, —t10-1)]

noAk

-y E[(m —t1r-1)(Lir<jo)
Jj=4o
FLrmjtot1y + Lisjoror1y) | Eb‘%“}}j(ﬁb_e”)

(16)

Thus, to evaluate the above mean, we first need to compute
the probability mass function of the discrete valued random
variable N (c). We denote the probability of an exponential
random variable being smaller than or equal to ¢ by

as1—ete

a7)

That is, « is the probability that any remaining ng — ¢
servers initialized at time 0, finish executing their coded
subtask in the interval (¢1,t1 + ¢].

Lemma 3: The probability distribution of the number of
coded subtask completions N1(c) in the interval (t1,t1 + |
for by < j < ng is given by pj_¢, = P(Ej_g,) where

—/ . .
Pj—to = (no / 0) O‘j_éo(]- - a)(no—j)’
J—*%o0

and « is defined in Eq. (17).
Proof: The detailed proof is provided in Appendix C. ®
In the following, we will find the conditional mean for
the duration between coded subtask completions in Stage 1.
For m € {0,...,(no A k) — {o}, we compute the conditional
mean

(18)

E[(tir —tir—1) | Em], 7€[k—{).

We next provide a definition that is needed to compute this
conditional mean.
Definition 2: 'We denote the Pochhammer function (a),,

19)

L

F(F“(Z)") to define the z-transform of hypergeometric series as
A1y...,q — [T, (ai)nz"

ey 2 ot - 3 Tl g,

pFale) B T E =) el

n=0

Because generalizations of the above series also exist [39],
this series is referred to here as the hypergeometric series
rather than the generalized hypergeometric series.

As shown in Eq. (16), we need to compute three different
conditional means to compute the mean E[t;, —t1 ,_1].
Following three propositions provide the conditional means for
the cases whenr < j—/lg, r = j— 4o+ 1,and r > j— Lo+ 1.
The proofs are provided in Appendix E.

Proposition 1 (Phase-1): Let m € {0,...,(no AN k) —lo},
a=1—e""° and the z-transform ,F,(z) of hypergeometric
series defined in Eq. (20). Then, for any r € [m], we have

1,r ra

El(t1 ~ tre)l =2 (i) oot

Proposition 2 (Phase-2): Forr =j—{yand a =1—e ¥,
we have

21

.
c ot " 1

E{(t1,r4+1 —t1,0)|Ej—e,] = — — .

[(+1 1)| J 0] /J/(n_j)

a’ m
(22)

i=1

2419

Proposition 3 (Phase-3): Forr > j—/{yand o = 1 —e™H€,
we have

1
E[(t1r1 — 1) Eje] =

pn =€ —r)

We can now compute the unconditional mean of the interval
between (r — 1)th and rth coded subtask completion times
in Stage 1. This unconditional mean can be computed by
substituting the conditional means computed for three different
phases in Proposition 1, Proposition 2, Proposition 3, and
probability mass function of Nj(c¢) computed in Lemma 3,
in Eq. (16).

Corollary 2: The mean duration between (r — 1)th and rth
completion of coded subtasks in Stage 1 is given by

E [tl,r - tl,rfl]
(no/\k})féo

1
= Z pm{ﬂ(n_go_r+1)l{r>m}
1

(23)

1—r—+1 1

|
QA
Tlo
|
(]
Q
|

. - lr:m
p u(n—J)) tr=md

ro

m+ 2;a) pu(m +1) l{TSm}]

C. Performance Metrics Computation

Since we have defined the unconditional mean for the
duration between two coded subtask completions in both
Stage 0 and Stage 1, we can now compute the means of task
completion time and server utilization. We saw in Section III
that when the service distribution satisfies certain properties,
it is always beneficial to start with coded subtasks at ng > k
servers. We will show that this continues to hold true for
shifted exponential distribution, even though it doesn’t satisfy
any of those certain properties. Accordingly, we consider both
the possibilities ng < k and ng > k.

1) Case ng < k: Recall that fork task threshold /o < ng <
k for this case. That is, ng initial servers can never complete
the k coded subtasks, and hence 5 > ¢; + ¢ almost surely.
We now compute the mean task completion time and mean
task utilization for ny < k case.

Theorem 2: For the single-forking of a single task on n
servers, with the initial number of servers ng < k, the mean
server utilization is

k
E[W]=nc+ ; (24)
The mean task completion time for this case is
1 no k—1 1
Elto) =c+E[t]+= Y pjty —= (25
=t i)

where B [t1] is given in Eq. (9) and pj_q, is given in Eq. (18).
Proof: The detailed proof is provided in Appendix F. B
Remark 10: We make the following three observations.

1) From Theorem 2, it follows that the mean server utiliza-
tion E [IW] remains unchanged for all values of initial
number of servers ng < k and fork task threshold /.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

2420

2) From Remark 5, it follows that the mean task completion
time E [¢5] is a non-increasing function of the number of
initial servers ng.

3) From Remark 6, it follows that the mean task completion
time [[¢5] is a non-decreasing function of the fork task
threshold /.

From the above observations, we conclude that the joint best
choices for (ng, () are (k —1,1), when ng < k.

Remark 11: Consider the no-forking case when ng = n,
i.e. when we initialize all n coded subtasks at unique servers
at time 0. From Remark 5, the mean task completion time is
lowest for this case, among all choices of ng. Further, for all
coded subtasks r € [k], we have 1, — 1,1 = X" — X ;.
From Remark 9, it follows that

1

Elti, —ti,— = v
lh, 1r-1] uwn—r+1)

r € [k].

Therefore, the mean server utilization is nc + %, identical
to that for the case when ng < k.

Thus, as compared to no-forking, a single-forking with
ng < k has the same mean server utilization while it has
higher mean task completion time. Therefore, we focus only
on the case when ng > k.

2) Case ng > k: In this case, the initial number of servers
no is always greater than the required number of coded
subtasks k. Hence, the number of completed coded subtasks
¢y € {0,...,k} at the forking point ¢;. The mean task
completion time and the mean server utilization for nyg > k,
are given in the following theorem.

Theorem 3: For the single-forking of a single task on n
servers, with the initial number of servers ng > k, the mean
task completion time E [to] is

k—to
Elt]+ [Y Eltie = o] | Lggen- (26)
r=1
The mean server utilization E[W] for this case, is
k—{g
EWol+ Y (n—Lo =7+ DE[t1r — trr1] Tggeny-
r=1
(27

The mean duration B [t1 , — t1 ,_1] is given in Corollary 2.
The mean forking time E [t1] and the mean server utilization
E [Wy] in Stage 0 are given in Corollary 1.

Proof: Recall that since completion of any k coded
subtasks suffice for the task completion, the fork task threshold
ly < k. When fork task threshold ¢y = k, all the required &
coded subtasks are finished on initial ng servers without the
need of any forking. In this case,

to =t o=y, W =MWily=py. (28)

When fork task threshold ¢y < k, the task completion occurs
necessarily in Stage 1. Therefore, we have

ty = (t1 + (t2 — t1)) Leyacry, W = (Wi +Wa)ligcpy-

The result follows from Eq. (2) for the duration t5 — ¢; of
Stage 1 and Eq. (4) for server utilization W5 in Stage 1. W

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

_
3

= 8

5]

Q

Q

2

2

o

g

-g

= 6

S

B=

Q

2

g" —e— np=3
8 —— np=5
] 4 —e— no=7
2 —A— 10=9
8

o —— no=11
%" —&— no=24, No-forking
2

< 2 T T T T T

2 4 6 8 10 12
Fork task threshold £

Fig. 2. The empirical mean of task completion time as a function of fork
task threshold ¢ € [ng] for single-forking, when the number of initial servers
ng < k= 12.

Remark 12: We observe that when ng > k, the mean server
utilization depends on the initial number of servers ng as well
as the total number of servers n, unlike the case ng < k where
this utilization depends only on the total number of servers n.

In the following section, we numerically investigate the
tradeoff between the two performance metrics, which allows us
the proper choice of system parameters to work in a specified
regime.

V. NUMERICAL STUDIES: SINGLE-FORKING

In this section, we evaluate the empirical performance
of single-forking systems, by Monte Carlo methods [40].
We simulated multiple instances for a single task, with sub-
task fragmentation £ = 12 and a maximum redundancy
factor of n/k = 2. That is, we choose the total number
of servers n = 24. Coded subtask completion time at each
server was chosen to be an i.i.d. random variable having
a shifted exponential distribution, with the shift parameter
¢ = 1 and the exponential rate ; = 0.5. For these values
of system parameters, we computed empirical average of task
completion times and server utilizations. We compare the two
cases ng < k and ng > k with no-forking case ng = n, where
all the available servers are used as initial servers.

We first study the case when ny < k. For this case, we plot
the empirical mean of task completion time as a function of
fork task threshold ¢y € [no] in Fig. 2, for different values of
initial servers ng € {3,5,7,9,11}. The analytical results in
Theorem 2 are substantiated, by observing that the empirical
mean of task completion time is increasing with fork task
threshold ¢y and decreasing with initial number of servers ng.
In this case, the empirical mean of server utilization is constant
for any choice of ny and ¢y, and hence it is not depicted.
From Fig. 2, we infer that as compared to the no-forking
case of ng = n, the case of single-forking with ny < k
has higher average task completion time for the same average
server utilization. Thus, the regime ny < k is not interesting
for practical applications.

We next study the case when ny > k. For this case, we plot
the empirical means of task completion time in Fig. 3 and
server utilization in Fig. 4, both as a function of fork task
threshold ¢, € [k], for different values of initial servers ng €
{12,13,14,16,18,20}. The analytical results in Theorem 3
are substantiated by observing that the empirical mean of

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: SINGLE-FORKING OF CODED SUBTASKS FOR STRAGGLER MITIGATION

7 —e— ng=12
—— =13
—— no=14
6 —e— no=16
—a— no=18
—— n=20
—m— n(=24, No-forking

Average task completion time (seconds)

2 T T T T T T
2 4 6 8 10 12
Fork task threshold /g

Fig. 3. The empirical mean of task completion time as a function of fork
task threshold ¢y € [k] for single-forking, when the number of initial servers
ng > k =12.

—e— no=12

e =13

Average server utilization

40 —— no=14

—e— no=16

e =18

—— no=20

—=— no=24, No-forking
35

T T T T T T
2 4 6 8 10 12
Fork task threshold /g

Fig. 4. The empirical mean of server utilization as a function of fork task
threshold ¢y € [k] for single-forking, when the number of initial servers
ng > k =12.

task completion time increases with fork task threshold ¢,
and decreases with initial number of servers ng. Further,
the empirical mean of server utilization decreases with fork
task threshold ¢j. As expected, we observe that the mean
server utilization is highest for no forking when the number
of initial servers ng = n, i.e., this curve is above all the
other curves corresponding to ng < n. Further, when the
fork task threshold ¢y = k, then the mean server utilization
is monotonically smaller in the number of initial servers.
However, we observe that the different server utilization curves
cross when initial servers ng < n. This implies that the lower
number of initial servers doesn’t necessarily imply that the
mean server utilization is uniformly smaller for all fork task
thresholds. For this case, the mean server utilization curves
cross for different fork task thresholds. Therefore, for each
fork task threshold ¢y, the mean server utilization is not a
monotone function of ng, there exists an optimal number of
initial servers ng that minimizes the mean server utilization.
From Fig. 3 for average task completion time and Fig. 4 for
average server utilization, we conclude that there is a tradeoff
between the two performance measures as a function of fork
task threshold ¢y. The single forking tradeoff between the
two performance metrics of interest is plotted in Fig. 5, for
different number of initial servers k < ng < n. As discussed
in Section I, we observe that the task completion time is
minimized when all the n servers are initialized at time 0,
i.e. ng = n. This corresponds to no-forking case and has
the highest server utilization. Further, for any single forking

2421

Average server utilization

40 +
—e— no=12
—o— no=13
—— no=14 12
—e— no=16
35

—h— n=18
—— n0=20
—&— no=24, No-forking

T T T T T
2 3 4 5 6 7
Average task completion time (seconds)

Fig. 5. The empirical mean of server utilization as a function of the
empirical mean of task completion time for single-forking by increasing fork
task threshold ¢o € [k] from left to right. The different curves correspond
to different values of initial servers ng € {12,13,14,16,18,20}, where
k=12.

with ng < m and for task threshold ¢y < k, the mean server
utilization remains same to no-forking case, and the mean
task completion time increases. Therefore, we only focus on
the case when the initial number of servers ng € {k,...,n}.
the fork task threshold ¢y € {0,1,...,(no A k)}. The Fig. 5
suggests that for the number of initial servers ng < n, there
is a tradeoff between the task completion time and the server
utilization for different fork task thresholds ¢y € [k].

We next compare the single-forking case of £k < ng < n
and the no-forking case of ng = n. From Fig. 5, we observe
that the average task completion time increases only 17.635%
while the average server utilization can be decreased 8.3617%
taking ¢y = k, for np = 20 when compared to ng = n.
However, we see that average server utilization can’t be
reduced below 8.3617% for ng = 20, for any choice of fork
task threshold ¢y < k. In order to have further reduction
in average server utilization, one can choose the number of
initial servers ng = 18. This choice of ny = 18 reduces
the average server utilization by 12.43% at an expense of
31.888% increase in average task completion time, when
compared to the no-forking case. The intermediate points on
the performance curve for ny = 18 provide additional tradeoff
points that can be chosen based on the desired combination
of the two metrics as required by the system designer. One
can further reduce the average server utilization by choosing
lower values of ng, until we reach the lowest possible choice
of ng = k. This choice reduces average server utilization
by 24.976% by having 207.49% increase in the average task
completion time, as compared to the no-forking case.

Thus, we see that appropriate choice of ng and ¢y provide
tradeoff points that help reduce the average server utilization
at the expense of increased average task completion time.
We note that the insights obtained from this single-forking
study for service time requirements having shifted exponential
distribution, continue to hold when distributions are heavy-
tailed. The corresponding empirical results for single-forking
with heavy-tailed service time requirements are presented for
Pareto distribution in Appendix G-A, and for Weibull distri-
bution in Appendix G-B. Interestingly for these distributions,
no < k is also an interesting regime for certain choice of
distribution parameters.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

2422

VI. NUMERICAL STUDIES: TRADEOFF
BETWEEN THE METRICS

Consider a multi-forking scenario, under the limitation of
finite number of servers n per compute task. That is, for an
m-forking case, the free variables are fork task threshold
sequence (£, ..., {,,) and number of forked servers sequence
(nos ... ny), such that Y ;" ¢; = k and >\ n; < n.
The single-forking results in Theorem 3 suggest that, the
tradeoff between the two performance metrics (the mean
task completion time E[S] and the mean server utilization
E [W]), should continue to exist for the general case of
multiple-forking points. However, the selection of fork task
threshold sequence and the corresponding number of forked
servers sequence, for a better tradeoff between these two
performance metrics, is a multi-dimensional optimization
problem and not easy to evaluate.

To understand multi-forking, we can empirically compute
the means of two performance metrics for a given choice
of fork task threshold sequence and forked server sequence.
We then find performance points for all such choices, and
take the lower envelope of all performance points to obtain
the optimal performance curve. Formally, finding the lower
envelope of this performance curve is equivalent to solving
the following integer programming problem for all tradeoff
parameters (3,

min E[S] + GE [W
(’no,...,’nm),(Zo,...,@m) [] /8 []

s.t. (noy...,nm) € ZT’H, (Lo, ..., lm) € ZT’H,
i
and /; < an for all i € [m — 1],
§=0
m m

and Z’I’Lz < n, Z& = k.
=0 =0

For the system simulation, we take the shifted exponential
distribution for the coded sub-task execution time, with shift
c = 1 and rate ;. = 0.5. For a single task, we chose the number
of subtasks k£ = 12, that is encoded to n = 24 coded subtasks.
In order to perform the optimization over discrete number of
choices, we compute the objective for each feasible choice of
constraints for a given 3, and then choose the best parameters.

We plot the optimal tradeoff between empirical means of
task completion time and server utilization for two-forking
in Fig. 6. In the same figure, we also plot the performance
curve of single-forking for comparison. We observe that the
performance curve for two-forking is only marginally below
the corresponding curve for single-forking. Further, the fig-
ure illustrates the tradeoff between the metrics, even for single
forking.

An investigation of optimal forking points and the corre-
sponding sequence for number of forked servers is an impor-
tant future research direction. The insights obtained from the
multi-forking study when service time requirements for each
coded subtask has a shifted exponential distribution, continues
to hold when the distribution is heavy-tailed. The supporting
numerical results for multi-forking with Pareto distribution is

(29)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

50
—&— no=24, No-forking
—e— Single-forking
§ - <~ Two-forking
.‘é 45
E
e
o
z
3 40
Q
o
&
2
<
35

T T T T
2 3 4 5 6 7 8 9
Average task completion time (seconds)

Fig. 6. The optimal tradeoff between empirical means of task completion
time and server utilization, for both single-forking and two-forking.

presented in Appendix G-A, and with Weibull distribution in
Appendix G-B.

VII. EXPERIMENTS ON INTEL DEVCLOUD SERVERS

To validate our findings, we performed experiments on
a real compute cluster called Intel DevCloud. In particular,
the objective of our experiment was to answer the following
questions.

1) Is it possible to get a tradeoff between the average server
utilization and average task completion time on real cloud
setup with our forking mechanism?

2) Are the tradeoff curves for this practical setup qualita-
tively similar to the one predicted by the analytical study,
i.e. can the distribution of random execution times be
modeled as a shifted exponential?

Intel DevCloud is a cloud computing platform made avail-
able by Intel [41] for several profiles of researchers, students
and professional engineers.! Intel DevCloud cluster consists
of compute nodes, storage servers, and the login node. Each
node has Intel Xeon processor of the Skylake architecture
(Intel Xeon Scalable Processors family), an Intel Xeon Gold
6128 CPU, on-platform memory of 192 GB and a Gigabit
Ethernet interconnect.

A. Setup

We performed single-forking and two-forking experiments
on this compute cluster. A single task was divided into k£ = 12
subtasks, and encoded to n = 24 coded subtasks, such that
execution of any k out of n coded subtasks suffice for the task
completion. Specifically, we considered the coded subtask to
be the addition of 6 x 107 positive integers.

In our experiment, we reserved one node per coded subtask.
The empirical average of completion times for these coded
subtasks was roughly 600 seconds on each executing node.
We implemented both single-forking and two-forking. As soon
as a coded subtask is completed, we logged that time stamp
into a log file. At each forking point, multiple coded subtasks
are synchronously initialized at unique nodes. This is achieved
by explicitly requesting one distinct compute node per coded
subtask. This ensures that all forked coded subtasks start at

The authors would like to thank Intel for giving us access to the cluster
for this project.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

BADITA et al.: SINGLE-FORKING OF CODED SUBTASKS FOR STRAGGLER MITIGATION

0.8

0.6

0.4

Empirical distribution

0.2

0 -

T T T T
500 600 700 800 900 1,000

Time (seconds)

Fig. 7. The empirical distribution of coded subtask completion time, obtained
from the Intel DevCloud experiments.

the same forking instant on all compute nodes, to which the
coded subtasks are forked.

B. Evaluations

Using the observed coded subtask completion times for each
run, we can compute the duration between two consecutive
completions of coded subtasks (t; , —t;,—1 : 7 € [(;],i €
[m]). Together with the sequence of number of forked servers
(ng,...,nm,) at each forking time, we can compute the task
completion time from Eq. (2), and the server utilization from
Eq. (4). We repeat this experiment JJ = 1 x 10* times, and for
each run j € [J], we record
(a) the task completion time denoted by S,
(b) the server utilization denoted by W), and
(c) the empirical distribution of coded subtask completion

time at first k£ finishing nodes.

Subsequently, we compute the empirical average of these
records over all J runs. The empirical mean of task completion
time is denoted by S = % Z}]:1 S(), and the empirical mean
of server utilization is denoted by W = % Z;.le W,

C. Results

We first plot the empirical distribution of task completion
time in Fig. 7. We observe that the empirical distribution of
the coded subtask execution times at each node has charac-
teristics of a shifted exponential distribution. The empirical
distribution has a distinct constant shift corresponding to
the start delay, and the random part of the task execution
time has a light tail. Using QQplots [42], [43], we verify
in Appendix H that the shifted exponential is a good fit
for the empirical distribution of execution times. Since the
qualitative behavior of execution time distribution at compute
nodes resembles a shifted exponential, we expect our derived
insights to continue to hold for this compute cluster. From
the empirically computed means of two performance metrics,
server utilization and task completion time, we can find the
lower envelope of all performance points using Eq. (29),
to obtain the optimal performance tradeoff curve between
these two metrics. The optimal performance tradeoff curve
is plotted in Fig. 8. We observe that the performance curve
for two-forking is not significantly different than that for
single-forking. Further, we corroborate the analytical results
of single-forking obtained in Theorem 3, by observing that

2423

-10*

—— no=24, No-forking
<§ —e— Single-forking
= 1.4 - = - Two-forking

=]
=
<
N
=
=
5 1.2 A
=
o
>
|9
L
@
(5]
an 1
<
&
2
<
0.8

T T T T T
650 660 670 680 690 700
Average task completion time S (seconds)
Fig. 8. The optimal tradeoff between the empirical means of server utilization

and task completion time for single-forking and two-forking, when the coded
subtasks are executed on compute nodes at Intel DevCloud.

the empirical mean of task completion time S increases with
increase in fork task threshold ¢y. In addition, the tradeoff
suggests that the initial number of servers ng is an important
consideration for an efficient system design.

VIII. CONCLUSION

We study the single-forking for a single task that can be
divided into k subtasks to be computed over n servers, in two
stages. We assume that k£ subtasks can be coded into n
computation coded subtasks using (n, k)-MDS coding, such
that completion of any %k coded subtasks lead to completion
of the entire task. We assume that only ng out of n servers
are started at time 0. After completion of ¢y out of ng
servers, remaining n — ng servers are initiated. Using the
shifted exponential service times of the servers, we derive
expressions for two performance metrics: (i) the mean task
completion time which indicates the mean time when k servers
have finished execution of coded subtasks, and (ii) the mean
server utilization which indicates the aggregate mean of times
each server is busy processing the coded subtasks. Further
discussions of the results and future work directions can be
seen in Appendix I.

REFERENCES

[1] A. Badita, P. Parag, and V. Aggarwal, “Sequential addition of coded sub-
tasks for straggler mitigation,” in Proc. IEEE Conf. Comput. Commun.,
Jul. 2020, pp. 746-755.

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. USENIX Symp. Netw.
Syst. Design Implement. (NSDI), vol. 13, 2013, pp. 185-198.

[3] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytid, and
A. Scheller-Wolf, “Queueing with redundant requests: Exact analysis,”
Queueing Syst., vol. 83, nos. 3—4, pp. 227-259, Aug. 2016.

[4] A. Badita, P. Parag, and V. Aggarwal, “Optimal server selection for strag-
gler mitigation,” IEEE/ACM Trans. Netw., vol. 28, no. 2, pp. 709-721,
Apr. 2020.

[5] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 43, no. 3, pp. 7-11, Nov. 2015.

[6] D. Wang, G. Joshi, and G. W. Wornell, “Efficient straggler replication
in large-scale parallel computing,” ACM Trans. Model. Perform. Eval.
Comput. Syst., vol. 4, no. 2, pp. 1-23, Jun. 2019.

[71 A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 45394551, Sep. 2010.

[8] H. Weatherspoon and J. Kubiatowicz, “Erasure coding vs. replication:
A quantitative comparison,” in Proc. Int. Workshop Peer Peer Syst.
(IPTPS). Berlin, Germany: Springer-Verlag, 2002, pp. 328-338.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

2424

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

M. Sathiamoorthy et al., “XORing elephants: Novel erasure codes for
big data,” Proc. VLDB Endow., vol. 6, no. 5, pp. 325-336, Mar. 2013.
C. Huang et al., “Erasure coding in windows azure storage,” in Proc.
Annu. Tech. Conf. (ATC), Jun. 2012, pp. 15-26.

A. Fikes. (2010). Storage Architecture and Challenges. Google Fac-
ulty Summit. Accessed: Apr. 20, 2021. [Online]. Available: https://bit.
ly/3eh5ym3

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proc. Int. Conf.
Mach. Learn. (ICML), vol. 70, 2017, pp. 3368-3376.

K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded
computation for multicore setups,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2017, pp. 2413-2417.

M. Ye and E. A. Abbe, “Communication-computation efficient gradient
coding,” in Proc. Int. Conf. Mach. Learn. (ICML), 2018, pp. 5606-5615.
K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514-1529, Mar. 2018.

S. Dutta, V. Cadambe, and P. Grover, “‘Short-Dot’: Computing large
linear transforms distributedly using coded short dot products,” IEEE
Trans. Inf. Theory, vol. 65, no. 10, pp. 6171-6193, Oct. 2019.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” [EEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1920-1933,
Mar. 2020.

R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
coded computing using secret sharing via staircase codes,” IEEE Trans.
Commun., vol. 68, no. 8, pp. 46094619, Aug. 2020.

S. Lin and D. J. Costello, Error Control Coding, 2nd ed. London, U.K.:
Pearson, 2004.

R. Jinan, A. Badita, P. Sarvepalli, and P. Parag, “Latency opti-
mal storage and scheduling of replicated fragments for memory-
constrained servers,” 2020, arXiv:2010.01589. [Online]. Available:
https://arxiv.org/abs/2010.01589

D. Burihabwa, P. Felber, H. Mercier, and V. Schiavoni, “A performance
evaluation of erasure coding libraries for cloud-based data stores,” in
Proc. FIP Int. Conf. Distrib. Appl. Interoperable Syst. Springer, 2016,
pp. 160-173.

A. Badita, P. Parag, and J.-F. Chamberland, “Latency analysis for
distributed coded storage systems,” IEEE Trans. Inf. Theory, vol. 65,
no. 8, pp. 4683-4698, Aug. 2019.

G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 989-997, May 2014.

Y. Xiang, T. Lan, V. Aggarwal, and Y.-F.-R. Chen, “Joint latency and cost
optimization for erasure-coded data center storage,” IEEE/ACM Trans.
Netw., vol. 24, no. 4, pp. 2443-2457, Aug. 2016.

S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed comput-
ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109-128, Jan. 2018.

K. Wan, D. Tuninetti, M. Ji, and P. Piantanida, “Fundamental limits of
distributed data shuffling,” in Proc. 56th Annu. Allerton Conf. Commun.,
Control, Comput. (Allerton), Oct. 2018, pp. 662—669.

M. A. Attia and R. Tandon, “Near optimal coded data shuffling
for distributed learning,” IEEE Trans. Inf. Theory, vol. 65, no. 11,
pp. 7325-7349, Nov. 2019.

L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach to
data shuffling,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1333-1353,
Mar. 2020.

N. B. Shah, K. Lee, and K. Ramchandran, “When do redundant requests
reduce latency?” IEEE Trans. Commun., vol. 64, no. 2, pp. 715-722,
Feb. 2016.

Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint latency and cost
optimization for erasurecoded data center storage,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 42, no. 2, pp. 3—14, Sep. 2014.

A. O. Al-Abbasi and V. Aggarwal, “Video streaming in distributed
erasure-coded storage systems: Stall duration analysis,” IEEE/ACM
Trans. Netw., vol. 26, no. 4, pp. 1921-1932, Aug. 2018.

W. Wang, M. Harchol-Balter, H. Jiang, A. Scheller-Wolf, and R. Srikant,
“Delay asymptotics and bounds for multitask parallel jobs,” Queueing
Syst., vol. 91, nos. 3-4, pp. 207-239, Apr. 2019.

A. O. Al-Abbasi, V. Aggarwal, and T. Lan, “TTLoC: Taming tail latency
for erasure-coded cloud storage systems,” IEEE Trans. Netw. Service
Manage., vol. 16, no. 4, pp. 1609-1623, Dec. 2019.

J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113,
2008.

[35]

[36]

[37]

(38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

[46]

[471

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

N. J. Yadwadkar, B. Hariharan, J. E. Gonzalez, and R. Katz, “Multi-
task learning for straggler avoiding predictive job scheduling,” J. Mach.
Learn. Res., vol. 17, no. 1, pp. 3692-3728, 2016.

M. F. Aktas and E. Soljanin, “Straggler mitigation at scale,” IEEE/ACM
Trans. Netw., vol. 27, no. 6, pp. 22662279, Dec. 2019.

R. Bitar, P. Parag, and S. El Rouayheb, “Minimizing latency for secure
distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Aachen, Germany, Jun. 2017, pp. 2900-2904.

S. S. Wilks, “Order statistics,” Bull. Amer. Math. Soc., vol. 54, no. 1,
pp. 6-50,1948.

G. Gasper, M. Rahman, and G. George, Basic Hypergeometric Series,
vol. 96. Cambridge, U.K.: Cambridge Univ. Press, 2004.

R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
Method, vol. 10. Hoboken, NJ, USA: Wiley, 2016.

Intel Devcloud. Accessed: Oct. 6, 2020. [Online].
https://software.intel.com/en-us/devcloud

M. B. Wilk and R. Gnanadesikan, “Probability plotting methods for the
analysis for the analysis of data,” Biometrika, vol. 55, no. 1, pp. 1-17,
1968.

J. I. Marden, “Positions and QQ plots,” Stat. Sci., vol.
pp. 606614, Nov. 2004.

P. J. Davis, “Leonhard Euler’s integral: A historical profile of the gamma
function: In memoriam: Milton Abramowitz,” Amer. Math. Monthly,
vol. 66, no. 10, pp. 849-869, Dec. 1959.

S. M. Ross, Introduction to Probability Models, 12th ed. New York, NY,
USA: Academic, 2019.

Scipy Documentation. Accessed: Aug. 2, 2021. [Online]. Available:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_con
tinuous.fit.html#scipy.stats.rv_continuous.fit

H. Albrecher, J. Beirlant, and J. L. Teugels, Reinsurance: Actuarial and
Statistical Aspects. Hoboken, NJ, USA: Wiley, 2017.

Available:

19, no. 4,

Ajay Badita (Graduate Student Member, IEEE)
received the B.Tech. degree in electronics and
communication engineering from JNTU Kakinada
in 2011 and the M.Tech. degree in electronics
and communication engineering from NIT Rourkela
in 2015. He is currently pursuing the Ph.D. degree
with the ECE Department, Indian Institute of Sci-
ence, Bengaluru. His research interests include
delay-sensitive communication, compute, and stor-
age in distributed systems.

Parimal Parag (Senior Member, IEEE) received
the B.Tech. and M.Tech. degrees in electrical engi-
neering from IIT Madras in 2004, and the Ph.D.
degree in electrical engineering from Texas A&M
University in 2011. From 2011 to 2014, he was
a Senior System Engineer (research and develop-
ment) at Assia Inc., Redwood City. He is currently
an Associate Professor with the ECE Department,
Indian Institute of Science. He was a coauthor of
the 2018 IEEE ISIT Student Best Paper. He was a
recipient of the 2017 Early Career Award from the
Science and Engineering Research Board.

Vaneet Aggarwal (Senior Member, IEEE) received
the B.Tech. degree in electrical engineering from
the Indian Institute of Technology, Kanpur, India,
in 2005, and the M.A. and Ph.D. degrees in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 2007 and 2010, respectively. He is
currently an Associate Professor with Purdue Uni-
versity, West Lafayette, IN, where he has been since
January 2015. From 2010 to 2014, he was a Senior
Member of Technical Staff Research at AT&T Labs-
Research, NJ. From 2013 to 2014, he was an Adjunct

Assistant Professor with Columbia University, NY, USA. From 2018 to
2019, he was a VAJRA Adjunct Professor with IISc Bengaluru. His current
research interests are in communications and networking, cloud computing,
and machine learning.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on April 13,2025 at 07:17:00 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

