N)
)
Check for
updates

Time-Slicing High Throughput WiFi Networks
Using Centralized Queueing and Scheduling

Vishal Sevani, Purushothaman Saravanan, S. V. R. Anand, Joy Kuri, Anurag Kumar
ECE and ESE Departments, Indian Institute of Science (IISc), Bengaluru, India

ABSTRACT

We study fine grained (10s of ms) overlay time-slicing, and central-
ized queuing and scheduling, for the performance management of
“high throughput” (HT) IEEE 802.11 standards, where cochannel
interference reduces PHY rates and aggregation, causing poor per-
formance. In overlay time-slicing, interference between AP-STA
(Access Point and associated Station) links is eliminated by queuing
downlink packets in a scheduler, between the wireline network and
the APs, and releasing packets to a set of AP-STA links only in their
time-slice. This can manage downlink and uplink FTP and HTTP
transfers, and downlink packet voice traffic.

We utilize a stochastic approximation based closed-loop mech-
anism that releases only as much data in a time-slice as can be
“served,” so that the AP-STA links mapped to that time-slice are
inactive at the end of their time-slice, thus, eliminating cochannel
interference.

Fine-grained overlay time-slicing is demonstrated on an experi-
mental network with two cochannel AP-STA pairs, a setting that
we see in our campus WiFi network. In our approach, even for
small time-slices (20ms to 50ms), for downlink and uplink TCP bulk
transfers, in spite of the scheduler working with partial information,
the time-slice boundaries are respected, and performance is close
to network utility optimal. Fine-grained time-slicing reduces HT TP
access delay, prevents TCP connections over the wide area network
from reacting to the path interruptions, and also permits slicing of
applications such as interactive packet voice.

ACM Reference Format:

Vishal Sevani, Purushothaman Saravanan, S. V. R. Anand, Joy Kuri, Anurag
Kumar, ECE and ESE Departments, Indian Institute of Science (IISc), Ben-
galuru, India. 2022. Time-Slicing High Throughput WiFi Networks Using
Centralized Queueing and Scheduling. In 16th ACM Workshop on Wireless
Network Testbeds, Experimental evaluation & CHaracterizatiion (WiNTECH
’22), October 17, 2022, Sydney, NSW, Australia. ACM, New York, NY, USA,
8 pages. https://doi.org/10.1145/3556564.3558237

1 INTRODUCTION

IEEE 802.11 WiFi networks are the access networks of choice in en-
terprises and academic campuses. However, they are performance-
limited by uncontrolled internal interference between cochannel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

WINTECH °22, October 17, 2022, Sydney, NSW, Australia

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9527-4/22/10...$15.00
https://doi.org/10.1145/3556564.3558237

53

devices, so that the true benefits of High Throughput (HT) mecha-
nisms are diminished, in practice.

Local network, the Internet,
servers, traffic sources/sinks

i
G NG
O

Figure 1: A 2AP-2STA cochannel subnetwork.

Consider the cochannel WiFi subnetwork in Fig. 1, arising in a
WiFi installation even after automatic channel selection and power
control have optimized spatial reuse, to the extent they can. In
Sec. 3, we provide examples of scenarios that arise in an operational
network on our academic campus. The cochannel APs in Fig. 1 are
not in carrier-sense (CS) range. The transmit powers and internode
distances are such that, for the best possible bit rate between the
APs and their STAs, there is excessive interference from each AP to
the STA associated with the other AP. Fig. 2 shows the measured
TCP file transfer throughputs from a server on the local network
to the STAs, when the two AP-STA links are isolated, or together
(i.e., the default operation). An extensive experimental study of this
network scenario is given in Sec. 4.

From the rough sketch on the (01, 62) axes, in Fig. 2, we see that
(11, 72) reflect an inefficient sharing of the wireless medium. Given
that only packet scheduling is in our control, for the network in
Fig. 1, it would be desirable that the together throughputs remain
on the line joining the points (f1, 0) and (0, f2), preferably (% %)
the proportional fair operating point. Note that, general networks
of AP-STA links (such as the ones discussed in Sec. 3) will have
more complex throughput regions, and the desired operating point
will have to be determined in each case.

We investigate a centralised, overlay approach that schedules (in
this example) AP1-STA1 and AP2-STAZ2 in alternate time-slices, aim-
ing to achieve “isolated” performance over each time-slice, thereby
reducing the deleterious effects of contention and collisions. No
changes are made to the APs and STAs; nodes that are scheduled
within a time-slice, continue to use CSMA/CA for channel access.
Hegde et al. [1] introduced this idea for resolving several perfor-
mance anomalies in single AP IEEE 802.11g WiFi networks. The

https://doi.org/10.1145/3556564.3558237
https://doi.org/10.1145/3556564.3558237
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3556564.3558237&domain=pdf&date_stamp=2022-10-26

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

Setting Mbps+95% CI
AP1-STA1 6; AP2-STA2 0,
Isolated P1:79.6 £0.99 P2 :103.5+1.03
Together 71 :21.7 £ 0.62 79 : 25.7 £ 0.56
6,
A
B2
X
(T1,72) 0
» 04
B1

Figure 2: TCP downlink throughputs for “isolated” and “to-
gether” operation of AP1-STA1 and AP2-STA2.

idea was further developed by Sunny et al. [2], for managing TCP
controlled file transfers in multiAP IEEE 802.11g networks.

In this paper, we consider centrally controlled time-slicing for
“high throughput” (HT) IEEE 802.11 networks. We focus on fine-
grained allocation of airtime (20ms-50ms) (to sets of AP-STA links),
whereas Hegde et al. [1], and Sunny et al. [2] dealt with IEEE 802.11g
networks, and 1000 ms time-slices. HT IEEE 802.11 networks use
higher order modulation schemes and packet aggregation, both of
which adapt downwards under high packet loss (see Sec. 4; also
see [3]). Fine-grained time-slicing enables short scheduling frames,
thereby reducing access delays for interactive traffic, and preventing
time-outs in wide-area TCP connections.

The challenge to designing and implementing fine grained (say,
20 ms) time-slices is to prevent (1) data overflow between time-
slices, as the ensuing interference diminishes the performance gains,
and (2) underflow of data served within a slice, as that diminishes
efficiency.

1.1 Related Literature

To the best of our knowledge, the literature on slicing does not con-
sider issues in multi-AP networks. Instead, the focus is on a single
AP/device, and queuing and scheduling strategies to accommo-
date multiple flows (or virtual WLANS) sending traffic through the
AP/device, such that each flow’s (or virtual WLAN’s) performance
demands are met [4-7]. This is not enough to assure good perfor-
mance, because in practice, a STA experiences interference from
cochannel APs in the neighbourhood; this aspect is not considered
at all.

[4] considers a single AP through which several traffic flow-
aggregates pass. Each aggregate demands a percentage of the total
airtime at the AP. The authors discuss a queueing and scheduling
mechanism based on Deficit Round Robin (DRR) to allocate airtime
to each aggregate. [5] proposes a hypervisor running on the AP. The
hypervisor is used to create multiple slices, each with its buffer and
EDCA parameters. [6] proposes a new architecture for “WiFi shar-
ing Customer Premises Equipment (CPE)” — a device that allows a
physical AP to support multiple virtual WLANs (V-WLAN), with

54

Vishal Sevani, Purushothaman Saravanan, S. V. R. Anand, Joy Kuri, Anurag Kumar
ECE and ESE Departments, Indian Institute of Science (IISc), Bengaluru, India

each V-WLAN being allotted configurable resources. [7] considers
a Click modular router placed inside an AP and proposes a queue-
ing structure to share the bytes transmitted from each V-WLAN
according to predefined proportions.

[8] considers a multi-AP WLAN in which resources must be
sliced among several tenants (Virtual Network Operators [VNO-s])
and the problem is to share the AP resources such that each VNO’s
SLA can be met. A central controller interacts with an agent in
each AP to collect information on prevailing traffic and network
conditions, and dynamically adjusts the weights of a Weighted
Airtime Deficit Round Robin (WADRR) scheduler. [9] addresses
the same problem, but focuses on a single AP only. Given traffic
arrival statistics and target delays for slices, the authors provide an
algorithm to calculate the airtime that each slice needs. The implicit
assumption in both [8, 9] is that if an AP is allocated some resources,
then STAs associated with it will automatically experience adequate
QoS. But the problem is that a STA can experience interference
from nearby co-channel APs that are transmitting packets to their
own STAs.

[1] and [2] were the first to introduce the idea of centralized
time-slicing to manage various performance anomalies in single-AP
and multiAP WLANS. The authors evaluated their proposals in an
802.11g network and showed that performance could be managed
very well. Our work in this paper follows that in [1] and [2], but
solves the problem of fine-grained (10s of ms) time-slicing for HT
IEEE 802.11 networks, which also, automatically, solves the problem
of time-slicing TCP connections over the WAN, and the latency
performance of HTTP and packet voice. Fine-grained time-slices
also ensure that the STAs do not idle for long, thus triggering the
Power Save Mode (PSM), and thereby making time-sliced operation
unpredictable.

2 CONTRIBUTIONS OF THIS WORK
22 = #\ /@

AP2

AP2

AP1-STA links AP3-STA links

ADWISER
Queues packets and schedules their
release, for each AP-STA link

Local network, the Internet,
servers, traffic sources/sinks

Figure 3: Queueing and time-slicing with ADWISER.

Figure 3 shows several APs and their associated STAs with a
device called “ADWISER” (Advanced WiFi Service Enhancer, see
also [1], [2]) inserted in the path of all packet flows between the
traffic sources/sinks and the STAs. In ADWISER, there are succes-
sive, periodic frames (see Fig. 9) which contain time-slices, to each

Time-Slicing High Throughput WiFi Networks
Using Centralized Queueing and Scheduling

of which some of the AP-STA pairs are mapped, such that each
AP-STA pair is mapped to at least one time-slice. When managing
downlink (AP to STA) (resp., uplink (STA to AP)) TCP controlled
transfers, ADWISER queues the TCP data packets (resp., TCP ACK
packets) destined for the STAs, and releases these to the correspond-
ing AP only in a time-slice allotted to the AP-STA pair. This isolates
in time the activity in various parts of the WiFi network that in-
terfere under the default operation (recall Fig. 2). Such time-sliced
operation, however, introduces access delay if a user makes a file
transfer or HTTP request when their STA is not scheduled, thus,
motivating the need for fine-grained time-slicing.

In the present work, we make the following contributions in the
context of the ADWISER time-slicing architecture:
(1) In Sec. 3 we use observations from the controller of a profes-
sionally installed WiFi network, on our campus, to show that there
exist sets of AP-STA links that experience internal cochannel inter-
ference, which limits their performance. The 2AP-2STA network in
Fig. 1is a simple such configuration, that serves as our experimental
test-bed.
(2) In Sec. 4 we present a detailed experimental study of the 2AP-
2STA network in Fig. 1, to explain the poor performance, specially
in the context of the HT mechanisms of IEEE 802.11n.
(3) In Sec. 5 for bulk TCP transfers, we propose the TS-ABR-QD
(Time Slicing - Adaptive Batch Release - Queue Drain) algorithm,
which we implement by using the Robbins-Monro ([10] [11]) sto-
chastic approximation technique to develop a mechanism to adap-
tively release TCP data packets or TCP ACKs to the AP of the
AP-STA pair to which a time-slice is allotted.
(4) In Sec. 6, we provide an experimental study that demonstrates the
benefits of time-slicing, with TS-ABR-QD, for bulk TCP transfers
(downlink and uplink, from the LAN or from the WAN), HTTP
traffic, or UDP packet voice together with bulk TCP. The idea of
dynamic time-slicing is introduced in the context of intermittent
interactive traffic such as HTTP.

3 DOES INTERNAL COCHANNEL
INTERFERENCE OCCUR IN PRACTICE?

Association

Data Packet
Interference

Figure 4: Cochannel fragment of a WiFi network; student
housing building; 5 GHz band, 20 MHz ch. 149.

55

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

We studied a professionally installed and managed WiFi network
in one of our student housing buildings: a four floor building, 400
single-occupancy rooms, with 120 APs (11ac, 2.4 GHz and 5 GHz,
downlink MU-MIMO disabled), well-known manufacturer, roughly
30 APs per floor. A WiFi controller uses special purpose hardware in
the APs to measure the received signal strength (RSS) from other de-
vices in the network, and the PHY rates actually achieved between
associated AP-STA pairs. In Fig. 4, STA12 is associated with AP4
at —59 dBm RSS, which, without interference, would yield a PHY
rate of 156 Mbps, requiring a 29 dB SINR [12]. However, taking into
account the interference from STA 10 and 11 and consulting [12],
we predict an uplink PHY rate of 78 Mbps; this agrees roughly with
the observed value of 76.2 Mbps (Tbl. 1). On the downlink, STA12
receives interference from APs 2, 5, and 3; further, the transmit pow-
ers vary because of power control based on the signal strengths
of one AP as measured at other APs. We surmise that, at the time
of measurement, the interfering APs were transmitting at higher
power, leading to the next lower PHY rate in [12], viz., 52 Mbps, in
rough agreement with the observed value.

Table 1: Expected and observed PHY rates in Figure 4; 7: from
11ac MCS Table [12]; *: from WLAN controller.

Affected | Associated | Expected | Downlink | Uplink
STAs RSS (dBm) | PHY Rate | PHY rate | PHY rate
(Mbps)t | (Mbps)” | (Mbps)”
STA5 -49 156 70.6 74.1
STA11 -62 130 72.0 78.5
STA12 -59 156 50.5 76.2

The network managers had “optimised” the network with in-
terventions such as power adjustments at the APs, encouraged
reassociations, and band steering. Already, automatic channel se-
lection would have aimed to reduce interference and encourage
spatial reuse. The situation shown in Fig. 4 was observed despite
these optimisations. We observe that the AP4—STA12 link could
be expected to get much better average performance, if APs 2, 3,
and 5 were prevented from being able to transmit at the same time
as when AP4 was transmitting to STA12. On the other hand, links
AP1—STA3, AP2—STA4, and AP3—STA6 could be scheduled to-
gether, thus increasing spatial reuse. Such scheduling in time needs
to be done with the aim of achieving better overall network perfor-
mance. This is the objective of the overlay time-slicing and packet
scheduling we study in this paper.

4 EXPERIMENTS ON A LAB TESTBED

Following the observations in Sec. 3, the network in Fig. 1 is a typi-
cal setting in which uncontrolled, internal cochannel interference
occurs. Our 2AP-2STA lab test-bed is shown in Figure 5. The two
cochannel APs and the two (stationary) STAs are positioned such
that STA1 and STA2 would then be at their respective “cell” edges.
The two APs are connected via an Ethernet switch to a server,
which is the other endpoint of all applications initiated in the STAs,
and which also emulates the WAN propagation delay and effective
bit rate. The server, the switches, and ADWISER are in the same
room as AP1.

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

~
~
~
% AP1

Figure 5: Laboratory layout of the setup in Fig. 1.

Equipment: APs: IEEE 802.11ax, dual-band, Tx-Rx 2x2, antenna
gains: 3.8 dBi (2.4 GHz), 4.5 dBi (5 GHz); STAs: Intel i5/8GB RAM
laptops with Ubuntu 20.04. Our “sniffers” were just laptops config-
ured in monitor mode.

Network setup: All our experiments were done with IEEE 802.11n,
Channel 100 in the 5 GHz band, or Channel 13 in the 2.4 GHz
band. The physical layer used the 20 MHz bandwidth with two
spatial streams. The AP-STA distances were 6-7 meters. The AP-AP
distance was about 30 m. There were no active APs on Channel 13
in the 2.4 GHz band, nor on Channel 100 in the 5 GHz band. Bulk
TCP transfers were emulated using iperf. The server was running
Linux (Ubuntu 20.04) in which the latest version of TCP CUBIC
was implemented.

IEEE 802.11ax can be viewed as a high performance extension to
IEEE 802.11n, with uplink and downlink MU-MIMO and OFDMA
being major new features, that could help in managing interfer-
ence. Without interAP coordination, however, the 11ax MU-MIMO-
OFDMA cannot consistently mitigate interAP interference. Hence,
we have considered only 11n in our work.

The throughputs shown in Fig. 2 were obtained from this setup.
The confidence interval (CIs) capture the variability over several
repetitions.

With ideal time-slicing, during a time-slice, an AP-STA link will
obtain its isolated throughput (i.e., fi,i = 1,2). If the fraction of
air-time allotted to APi-STAiis a;,i = 1,2, a1 + ap = 1, we evaluate
the network performance with the log utility

Inaif1 +Inazfa

It follows that, utility optimal scheduling will give the throughputs
% Mbps and 102£ Mbps. Note that without the log function we
would evaluate network utility as the sum throughput which would
be optimized by giving all airtime to the AP-STA pair with the
higher isolated throughput, an unfair operating regime.

4.1 Packet Loss and Consequences

To understand the performance in Fig. 2, we carried out pairwise
RSS measurements in the 2AP-2STA lab setup; the results are shown
in Tbl. 2. The RSSs from APs to STAs were measured using beacon

56

Vishal Sevani, Purushothaman Saravanan, S. V. R. Anand, Joy Kuri, Anurag Kumar
ECE and ESE Departments, Indian Institute of Science (IISc), Bengaluru, India

packets received at the STAs, while the RSSs from STAs to APs and
from STAs to STAs were measured using a sniffer.

Table 2: RSS measurements (in dBm + 95% CI) for the setup
in Fig. 5; cell (i,j) is RSS at i from j.

AP1 AP2 STA1 STA2
AP1 | - -87.1+0.81 -64.1+0.93 -75.1+0.7
AP2 | -88.2+1.00 - -76.8+1.31 -62.9+0.8
STA1 | -64.6+0.88 -77.1+£0.86 - -61.4+0.97
STA2 | -74.2+1.22 -62.6+0.78 -62.3+0.71 -
D
S A —
a;
- - -

Figure 6: Carrier sense and interference relationships be-
tween the devices in the 2AP-2STA network. Here, q; is APi,
and s; is STAI. See text for explanation.

From the measurements in Tbl. 2, the two diagrams in Figure 6
show the pairs of nodes in (i) carrier-sense (CS) range (dashed lines;
two devices are in CS range if the RSS between them is greater
than —82 dBm), and (ii) data packet interference range (solid lines
with arrows) for the network shown in Figure 5. The solid lines
without arrows are the AP-STA associations. The association and
interference can be understood using the tables in [12]. For example,
the AP1—STA1 RSS (for 20 MHz and 2 spatial streams) would
support an MCS with PHY rate 117 Mbps, without any interference
at STA1. This, however, nominally requires an SINR of 20 dBm,
which cannot be sustained if either STA2 or AP2 interfere with
the AP1—STA1 transmission, giving rise to the solid double-arrow
lines between STA2 to STA1 and AP2 to STAL.

Fig. 6 helps understand Fig. 2. With Basic Access (BA), assuming
that simultaneous attempts are rare, when an STA is transmitting,
the other AP and STA are CS blocked, and the transmission com-
pletes successfully. On the other hand, when an AP is transmitting,
the other AP is not CS blocked, and can start its own transmission,
thereby both the APs’ transmissions are corrupted (indicated by
the solid arrows between the APs and the STAs in the lower panel
of Fig. 6). This results in packet loss.

Could this packet loss lead to a drop in the TCP window, which
could, in turn, starve the node AP buffers, not permitting sufficient
aggregation? We note that there is no dearth of packets at the AP
transmit buffers. We can assert this by watching the TCP cwnd at
the sender; see Fig. 7. There is hardly any difference between cwnd
evolution for isolated and together operation, indicating that the
TCP sender does not see significantly more packet losses during
together operation. Thus, MAC level retransmissions prevent the
TCP sender from noticing TCP packet losses.

Time-Slicing High Throughput WiFi Networks
Using Centralized Queueing and Scheduling

N
=)

fun
w

—— AP1-STA1 Isolated

AP2-STA2 Isolated
—— AP1-STA1 Together
—— AP2-STA2 Together

o
n

TCP Congestion Window (MegaBytes)
=
o

o
=)

0 50 100 150

Time (seconds)

200 250

Figure 7: Time series of TCP congestion window (cwnd) at
1sec intervals via iperf, for isolated and together operation
of the AP-STA links, in the 2AP-2STA network.

CDF of PHY rate

CDF of number of MPDUs aggregated

-
o

=

o

o '
®
o
@

| —— AP1-STA1 Isolated Avg:123.22Mbps I
AP2-STA2 Isolated Avg:129.74Mbps |

—— AP1-STAL Together Avg:59.94Mbps
—— AP2-STA2 Together Avg:59.54Mbps. |

-

o
o
o
o

o
IS

P(PHYrate = x)
14
'S

—— AP1-STA1 Isolated Avg:18.79
AP2-STA2 Isolated Avg:19.04
—— AP1-STA1 Together Avg:8.9

P(#aggregated < x)

o
N
o
N

00| — — 0.0 . — APZjSTAZ Togetheli Avg:8.93
20 40 60 80 100 120 0 10 20 30 40 50 60
X (Mbps) X (# MPDUs)

Figure 8: CDFs of PHY rates and number of MPDUs aggre-
gated for isolated and together operation.

However, as a consequence of packet loss, at the node level, the
adaptive PHY rate mechanism reduces the supportable PHY rate.
The CDFs of PHY rates for together and isolated operation, for both
AP-STA pairs, are shown in the left panel of Figure 8. Whereas,
for isolated operation the mean PHY rates exceed 120 Mbps, for
together operation the mean PHY rates drop to below 60 Mbps.
Indeed, an entire AMPDU transmitted by an AP will be lost, due
to the loss of the PLCP header that precedes the AMPDU, if this
transmission starts when the other AP is already transmitting an
AMPDU. Thus, large AMPDUs become detrimental, and, in addition
to the PHY rate reduction, the aggregation also reduces (see also
[3]). The CDFs of the number of MPDUs aggregated into an AMPDU
are shown in the right panel of Figure 8. The mean AMPDU size
is close to 19 MPDUs for isolated operation, but drops to below
9 MPDUs in together operation. The combined effects of the steep
drops in the PHY rate from the APs to the STAs, and the number of
MPDUs in an AMPDU, are the reasons for the poor together TCP
throughputs shown in Fig. 2.

In the setup of Fig. 5, RTS-CTS would help to eliminate simul-
taneous transmissions by the two APs. However, we found that
the RTS-CTS mechanism is not used liberally enough. The RTS
transmission logic is opaque to us, so we conducted experiments
with the RTS threshold set to low values, in APs from two manufac-
turers, expecting that nearly every AMPDU transmitted by an AP
would be preceded by an RTS. Manufacturer 1 APs transmit RTS
packets sparingly, with only about 3.7% to 18.5% of the AMPDUs

57

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

being protected by RTS-CTS, with greater RTS-CTS use for higher
MPDU error rates. For APs from Manufacturer 2, the percentages
were 17.5% to 36.8%. Thus, neither AP executes the RTS-CTS ex-
change aggressively enough to “reserve” the wireless medium for
the AMPDU to follow.

5 THE TIME-SLICING ALGORITHM

We have shown that, the default operation of our 2AP-2STA test-
bed network does not eliminate internal cochannel interference
in the network, and such interference leads to poor AP-STA TCP
throughputs due to reduction in the PHY rates and in aggregation
levels, the two mechanisms that enable high throughputs.

We eliminate internal interference by using the overlay time-
slicing approach, with centralized queueing and scheduling, as
described in Sec. 2. To handle TCP bulk transfers in the network of
Fig. 5, each time-slicing frame has two time-slices, in one of which
we schedule AP1-STA1, and AP2-STA2 in the other. ADWISER has
a queue of packets to be sent to each of the APs: TCP data packets
if the TCP transfer is downlink, and TCP ACKs if the transfer is
uplink. Packets are released to AP1, say, in the slice for AP1-STA1,
and the aim is that, at the end of the time-slice, all activity in the
WiFi channel, due to AP1-STA1, comes to an end. The next time-
slice starts and packets are released to the AP2-STA2 pair. During
this time-slice, any packets arriving at ADWISER, destined to AP1-
STA1, are queued in ADWISER, waiting for the next time-slice for
AP1-STA1.

In implementing such a system, we had to resolve two main
design problems: (1) How do we release data to an AP-STA pair,
in its time-slice, so that its throughput is as close as possible to
its isolated throughput? (2) How do we determine, in ADWISER,
without probing any of the network devices, that the WiFi channel
activity due to the release of data/acks has come to an end?

After considerable experimentation (in which we studied con-

stant rate packet release during the slice, with time being left, before
the end of the slice, for draining the queues), we designed a data
release algorithm, for bulk TCP transfers, that has two design prin-
ciples:
(1) In each slice, the data is released in a batch, so as to promote a
high level of aggregation right from the beginning of the time-slice.
(2) The amount of data released must be such that the AP-STA link
to which it is released (in possible contention with other AP-STA
links assigned to the same slice) can drain out that data within the
time-slice, while staying busy right up to the end of the slice.

Updated number of packets
released to AP1-STA1
In Frame k, we release

ra(k
1, (k) packets to AP2-STA2 2(K)

The date released to AP2-STA2
isdrained outinV(2(K) | .. (fe + 1
ry(k+1)

V(12 (k) Vi(ri(k+1))

>
>

Time slice for AP1-STA1
inFramek +1,5;
Framek + 11—

Time slice for AP2-STA2
in Frame k, S,
Frame k

Figure 9: TS-ABR-QD: Frame structure and various pro-
cesses; the vertical lines labeled r;(k) indicate variable size
batch release at the beginning of time-slices.

WINTECH °22, October 17, 2022, Sydney, NSW, Australia

For the 2AP-2STA network, Fig. 9 is a depiction of the data release
algorithm. We will describe the details for downlink TCP transfers
at both AP-STA pairs. Frame k, k > 1, comprises two time-slices,
one for each AP-STA pair. In Frame k, the amount of data released
is ri(k) for APi-STAI. Define V;(r) as the random time taken by
APi-STAI to drain the amount of data r.

With time-slice S; (milliseconds) assigned to APi-STAI, in a total
frame time of S = S1 + S2, we adapt the amount of data released as
follows

ri(k+1) = (ri(k) +a(S; - Vi(ri(k)))* (1)

where, as usual, (x)* = max{x, 0}. This is the Robbins-Monro
stochastic approximation algorithm, which, without knowing the
structure of the random variable V;(r), adjusts the release batches
to attempt to ensure that the average queue drain time matches the
available slice time, S;. We call this algorithm TS-ABR-QD (Time
Slicing with Adaptive Batch Release followed by Queue Drain).

Effect of a: Assume that E(V;(r)|r) = ﬁ and Var(Vi(r)|r) = al.zr,
where fi; and ¢; are unknown system parameters; f; can be inter-
preted as the service rate at which APi-STAi serves the released
data. We can show that, for |1 — %l < 1, limg_, o E(ri(k)) = BiSi
a?B’s;
and limy_, o, Var(ri(k)) = +—.
a PBi
Thus, the downlink TCP throughput of the APi-STAI pair be-
BiSi

comes ~; the network utility converges to In % +In @ which

is maximised when S1 = Sy = %

Time-slicing general networks: For bulk TCP transfers in the 2AP-
2STA network, there are just two slices in a frame. The formulation
for general networks is in [2, Sec. 4]. With automatic channel se-
lection and power control in place, we have found that the number
of slices required in a frame is not large. The focus of the present
paper is fine-grained time-slicing, so that the total frame time can
remain small.

Choice of a: For a TCP throughput of, say, 79.6 Mbps (see Fig. 2),
the MPDU service rate (f) is about 6.87 packet per millisecond
(for 1448 byte TCP payload). By the condition above, we need
0 < a < 2f = 13.74. In the experimental results we report, we have
used a = 1.

Determining when V;(r;(k)) ends: ADWISER avoids any commu-
nication with the APs and the STAs, and determines the end of
Vi(ri(k)), i.e., the drain time in the k" time-slice for APi-STAI,
with the information it has. For downlink TCP transfers, TCP data
packets are released to the AP-STA pair, and ADWISER waits until
the corresponding TCP ACKs have passed through it, on the way
back to the server. For uplink TCP transfers, TCP ACKs are released
to the AP-STA pair, and the end of the drain time is estimated as
the time taken for the corresponding number of bytes worth of
TCP data packets to pass through ADWISER on the way back to
the server.

58

Vishal Sevani, Purushothaman Saravanan, S. V. R. Anand, Joy Kuri, Anurag Kumar
ECE and ESE Departments, Indian Institute of Science (IISc), Bengaluru, India

6 PERFORMANCE OF TS-ABR-QD

In this section we report the performance of TS-ABR-QD for bulk
TCP transfers and HTTP transfers. We consider S; = So = 100 ms
or 20 ms. Smaller time-slices are better for reducing HTTP response
times, and also voice packet latency, if voice is also time-sliced.

6.1 Downlink TCP Transfers

Table 3: TS-ABR-QD: Downlink TCP throughputs.

Setting 0 Avg. 02 Avg. | Utility
(Mbps Vi (Mbps)
+95% CI) | (ms) +95% CI) (ms)

Isolated | 79.6 £0.99 | - 103.5+ 1.03 | - Bound:
7.63

Together | 21.7 £0.62 | - 25.7+0.56 | - 6.32

S;i=100ms | 38.3 £ 0.38 | 99.64 | 50.9 +£0.33 | 99.28 | 7.59

Si=20ms 36.6 £035 | 19.65| 475+0.15 | 19.51 | 7.46

WAN 34.9 +0.63 | 19.6 46.7 £ 0.11 | 19.53 | 7.4

S;i=20ms

Tbl. 3 shows the isolated and together throughputs for downlink
bulk TCP transfers (see also Fig. 2). The utility bound is obtained
as In % +In Lg.s = 7.63 (up to two decimal places); this bound
would be achieved if; in its time slice, each AP-STA pair obtained
its isolated throughput, over the entire time-slice. With TS-ABR-
QD, and S; = 100 ms, the TCP throughputs (averaged over the
time-slices) are 1 to 1.5 Mbps less than the isolated throughputs,
leading to a network utility of 7.59(< 7.63). This reduction is due
to inaccuracies in determining the end of V;(r;(k)) in ADWISER
(see Eqn. (1)), and the resulting inefficiency in utilising the 100 ms
time-slice. Shown also are the means of V;(r;j(k)), as determined
at ADWISER. For S; = 20 ms, the TCP throughputs are lower,
due to the larger effect of inaccuracy. Yet, the utility is 7.46, still
substantially larger (note that we have log utility) than 6.32, the
utility with the default network performance.

CDF of PHY rate CDF of number of MPDUs aggregated

1.0 AP1-STA1 TS:100ms Avg:124.56Mbps 1.0
AP2-STA2 TS:100ms Avg:128.96Mbps
0.8 AP1-STAL TS:20ms Avg:126.73Mbps 0.8

—— AP2-STA2 TS:20ms Avg:129.26Mbps

4
o
e
o

o
=

P(PHYrate < x)
°
£

—— AP1-STA1 TS:100ms Avg:18.59
AP2-STA2 TS:100ms Avg:18.78

~—— AP1-STA1 TS:20ms Avg:17.7

—— AP2-STA2 TS:20ms Avg:18.27

P(#aggregated < x)

o
N

o
o
o
o

10 20 50 60

-
o
S
o

20 40 60 80
x (Mbps)

30 40
X (# MPDUs)
Figure 10: CDF of PHY rates and number of MPDUs aggre-
gated, for 100ms and 20ms time-slice.

Fig. 10 shows the CDFs of PHY rates and aggregation sizes with
TS-ABR-QD, and must be compared with Fig. 8. With time-slicing,
the PHY rates remain above 120 Mbps and there are, on the average,
close to 19 MPDUs in the AMPDUs. Thus, 100 ms or 20 ms time-
slices can both achieve high utility, if they fully utilise each time-
slice.

Time-Slicing High Throughput WiFi Networks
Using Centralized Queueing and Scheduling

We emulated the WAN environment by using the netem facility in
the Linux based server to create a propagation delay of 75 ms, each
way, and a WAN bottleneck bitrate of 200 Mbps, each way. With
small time-slices, such as 20 ms, the performance with the WAN
is close to that without the WAN. This observation is significantly
different from those in [2], where the 1000 ms time-slices, though
simplifying the time-slicing, required the use of a TCP proxy and the
F-RTO mechanism (https://datatracker.ietf.org/doc/ html/rfc5682),
to prevent the TCP sender from timing out during the long inter-
ruptions due to time-slicing.

No. of Packets sent

200
@ ‘ ‘ y
(V]
2 o A o A e oy
3100
o rn
r;
00 50 100 150 200 250
Time (sec)
STA Throughput ‘
240
s WWWWMWWWW
5
£20
27—
= 6
Fo
0 50 100 150 200 250
Time (sec)
8.0 Utility vs Time
7.5
iy
7.0
D e
6.5 —— Utility
—— Bound on utility (7.63)
6'00 50 100 150 200 250
Time (sec)

Figure 11: 2AP-2STA network, downlink TCP transfers,
controlled with ADWISER TS-ABR-QD: Time-series of the
number of packets released in each time-slice, the average
throughputs, and the average utility, for 20 ms time-slice.

Fig. 11 shows the time-series of some processes in TS-ABR-QD.
The top panel shows the number of TCP data packets ADWISER
releases in each slice, for each AP-STA pair. The middle panel shows
the TCP throughputs for each AP-STA pair (exponentially weighted
moving average (EWMA)), and the bottom panel shows an EWMA
plot for the network utility. The stochastic approximation algorithm
converges rapidly, and there is steady-state noise due to constant
gain a in Eqn. (1).

59

WINTECH ’22, October 17, 2022, Sydney, NSW, Australia

Table 4: TS-ABR-QD: Uplink TCP throughputs.

Setting 0 Avg. 02 Avg. | Utility
(Mbps 1%} (Mbps Va
+95% CI) | (ms) +95% CI) | (ms)

Isolated 75.6 £0.39 | - 103.0 £ 0.73 | - Bound:
7.56

Together | 29.7 £0.59 | - 412+ 051 | - 7.10

S;i=100ms | 36.5 = 0.52 | 99.80 | 49.1 +£0.36 | 99.70 | 7.49

Si=20ms | 31.9+0.46 | 19.9 444 +0.72 | 19.56 | 7.25

WAN 31.8+ 046 | 19.72 | 43.9+0.52 | 19.83 | 7.24

S;=20ms

6.2 Uplink TCP Transfers

With uplink TCP transfers at both the AP-STA pairs, the AP—STA
interference affects TCP ACKs being sent by the APs to the STAs.
In TCP, ACKs are cumulative, so the information lost in a corrupted
ACK could be available in the next received ACK. With this in mind,
we can understand the together throughputs in Tbl. 4!. Whereas
the isolated throughputs are almost the same as those obtained
in the downlink (Tbl. 3), the together throughputs in the uplink
are higher, leading to a smaller drop in network utility (from 7.56
to 7.10). Using the TS-ABR-QD algorithm, ADWISER is able to
increase the utility to 7.49 with 100 ms time-slices, and to 7.25 with
20 ms time-slices. Over the emulated WAN, the network utility,
for 20 ms time-slices is 7.24. Time series like those in Fig. 11 were
obtained for uplink TCP transfers as well, and looked very similar;
we are unable to include them due to lack of space.

6.3 HTTP with Bulk TCP Transfers

Table 5: TS-ABR-QD: HTTP (STA2), bulk TCP (STA1)

Setting TCP thpt. 6; | Avg. HTTP response
(Mbps+95% CI) time at STA2
Without 37209 1000
ADWISER
ADWISER 438 £0.71 549
S; =20 ms

Tbl. 5 shows the performance of downlink HT TP transfers being
done by STA2, along with a downlink bulk TCP transfer at STA1.
HTTP transfers at STA2 were emulated by repeatedly download-
ing an HTML webpage, alternating with user “think” times. Each
download involved 10 HT TP requests: 1 of size 1MB, 3 of size 10KB,
3 of size 100KB, and 3 of size 500KB, a total of 22.640 Mb; all these
objects were downloaded by several parallel TCP connections. The
think time was uniformly distributed between 100 and 500ms.

We see from Tbl. 5 that, without ADWISER, the mean TCP
throughput at STA1 is 37.2 Mbps, as opposed to the isolated through-
put of 79.6 Mbps (Tbl. 3), and the average HTTP page response

!In obtaining these results, we disabled TCP segmentation offload (a facility for re-
ducing CPU load) in Linux, by setting the parameter tcp_tso_win_divisor to 0. With
this setting, the uplink performance in Linux was similar to that we obtained with
Windows and MAC OS STAs.

https://datatracker.ietf.org/doc/html/rfc5682

WINTECH °22, October 17, 2022, Sydney, NSW, Australia

time was 1000 ms. The higher TCP throughput (than the together
throughput in Tbl. 3) is due to the TCP transfer at STA1 being able
to utilise the think times of the HTTP transfer, during which times
it gets the isolated throughput. Since there is a bulk TCP transfer,
when the HTTP page is being transferred, it gets a throughput
of 25.7 Mbps (see Tbl. 3), yielding a high response time. On the
other hand, with ADWISER (using a 20 ms time-slice), the TCP
throughput at STA2 increases to 47.5 Mbps, and the HTTP response
time reduces to 549 ms, including the delay due to time-slicing.

Since the user has a think time after getting each page, ADWISER
implements dynamic time-slicing so that, during the think times,
every time-slice, in every frame, is used by the TCP transfer at
STAL1. This is implemented as follows. During TCP transfers the
corresponding ADWISER queue is nonempty with high probability.
Thus, ADWISER identifies that an HTTP user is in a “think” time,
when the corresponding packet queue in ADWISER becomes empty.
If a time slice is alloted to the HTTP flow, but the corresponding
packet queue (in ADWISER) is empty, that slice is allotted to the
TCP flow of the other AP-STA pair. This dynamic time slicing is the
reason why the AP1—STA1 TCP transfer, when competing with
an HTTP flow at AP2—STA2, obtains a higher throughout with
ADWISER (i.e., 43.8 Mbps) than when competing with another TCP
flow at AP2—STA2 (i.e., 36.6 Mbps, see Tbl. 3).

6.4 Real-time Packet Voice and TCP

Table 6: Bidirectional packet “voice” at AP2-STA2, with a
bulk downlink TCP transfer at AP1-STA1.

Setting 0, “Voice” pkt.
(Mbps mean delay
+95% CI) (ms+95% CI);
P(delay>20ms)
Only Voice D/L: 1.6 + 0.05; 0.001
- U/L: 1.72 + 0.04; 0.001
. D/L: 7.89 + 0.16; 0.02
Without ADWISER 378 pkis dropped
61.3 + 1.81 U/L: 5.05+ 0.1; 0.007
ADWISER D/L: 11.63 £ 0.27; 0.08
S; = 20 ms 70.7 £ 0.62 | U/L:5.02+ 0.06; 0.00

We emulated bidirectional pkt. voice by sending 48 byte UDP
packets (20 bytes payload), every 20 ms, alternately, from the server
to STA2 (for 25 sec) and vice versa (cf., 8000 bps G729 voice). In AP2,
the voice was mapped into the IEEE 802.11e AC-VO access category.
Tbl. 6 shows that, by itself, the voice-like stream gets < 2 ms mean
packet delay, and Prob(delay > 20 ms) = 0.001. With a downlink
bulk TCP transfer at STA1 (see Tbl. 6), in together operation, TCP
throughput drops from 79.6 Mbps (Tbl. 3) to 61.3 Mbps, with sub-
stantial downlink UDP packet loss (378 packets lost out of 10,000),
due to mutual interference in the downlink. Uplink UDP has its
mean delay increased with no packet loss. With ADWISER, in this
traffic setting, every 20 ms time-slice was allotted to the AP1-STA1
TCP transfer. In each time-slice, ADWISER releases downlink voice
packets to AP2, and then releases the batch of TCP packets to AP1,
as per the TS-ABR-QD algorithm. Uplink UDP is not time-sliced.

60

Vishal Sevani, Purushothaman Saravanan, S. V. R. Anand, Joy Kuri, Anurag Kumar
ECE and ESE Departments, Indian Institute of Science (IISc), Bengaluru, India

With ADWISER, the voice packet loss reduces to nil, but there
is an increase in downlink voice packet delay due to time-slicing
(10 ms of which is due to half the time-slice). The uplink UDP flow
is hardly affected. “Voice” performance is well within that required
from such networks (Table in Sec 2.3.4, [13]). With time-slicing, the
TCP throughput also increases from 61.3 Mbps to 70.7 Mbps, the
drop (from 79.6 Mbps) occurs due the airtime being used by the
UDP stream, and occasional packet loss.

7 SUMMARY AND FUTURE WORK

We aimed to make time-slicing of WiFi networks practical for HT
WiFi. By carefully controlling the release of data from ADWISER to
the APs, so that little data overflows from one slice to the other, we
reduced the time-slices to 10s of ms. We have reported performance
results with 20 ms time-slices, for uplink and downlink bulk TCP
transfers, over the local network and the WAN, HTTP transfers,
and a voice-like application over UDP. In each case, the overlay
time-slicing approach substantially improves the performance of
the applications. The work reported in this paper has been from
experiments on a laboratory setup. Our future work will demon-
strate the overlay time-slicing approach in a general, operational
WiFi network.

ACKNOWLEDGEMENTS: We thank Prof. Vivek Borkar, for dis-
cussions on various control techniques, Ayush Gupta, Amrit Priy-
darshi, Sindhu Srinivas, and Gopika Gopikrishnan. Arista Networks
and the Centre for Networked Intelligence, IISc, provided funding
for this research project.

REFERENCES

[1] M. Hegde, P. Kumar, K. R. Vasudev, N. N. Sowmya, S. V. R. Anand, A. Kumar, and
J. Kuri. Experiences with a centralized scheduling approach for performance man-
agement of IEEE 802.11 wireless LANs. IEEE/ACM Transactions on Networking,
21(2):648-662, 2013.

A. Sunny, S. Panchal, N. Vidhani, S. Krishnasamy, S.V.R. Anand, M. Hegde, J. Kuri,
and A. Kumar. A generic controller for managing TCP transfers in IEEE 802.11
infrastructure WLANSs. Journal of Network and Computer Applications (Elsevier),
93:13-26, 2017.

S. Seytnazarov, J-G Choi, and Y-T Kim. Enhanced mathematical modeling of
aggregation-enabled WLANs with compressed BlockACK. IEEE Transactions on
Mobile Computing, 18(6):1260-1273, 2019.

M. Richart, J. Baliosian, J. Serrat, J-L. Gorricho, and R. Agiiero. Slicing with
guaranteed quality of service in WiFi networks. IEEE Transactions on Network
and Services Management, 17(3):1822-1837, 2020.

E. Coronado, R. Riggio, J. Villalon, and A. Garrido. Lasagna: Programming
abstractions for end-to-end slicing in software-defined WLANS. In Proceedings
WoWMoM, 2018.

M. Carmo, S. Jardim, A. Neto, R. Aguiar, D. Corujo, and J. Rodrigues. Slicing WiFi
WLAN-sharing access infrastructures to enhance ultra-dense 5G networking. In
IEEE ICC. IEEE, 2018.

K. Katsalis, K. Choumas, T. Korakis, and L. Tassiulas. Virtual 802.11 wireless
networks with guaranteed throughout sharing. In IEEE ISCC. IEEE, 2015.

K. Koutlia, A. Umbert, R. Riggio, I. Vila, and F. Casadevall. A New RAN Slicing
Strategy for Multi-Tenancy Support in a WLAN Scenario. In IEEE NetSoft, pages
64-70. IEEE, 2018.

P. H. Isolani, N. Cardona, C. Donato, G. A. Pérez, J. M. Marquez-Barja, L. Z.
Granville, and S. Latré. Airtime-based Resource Allocation Modelling for Network
Slicing in IEEE 802.11 RANSs. IEEE Communications Letters, 24(5):1077-1080, 2020.
H. Robbins and S. Monro. A stochastic approximation method. Annals of Math.
Stats., 1951.

V.S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Hindustan
Book Agency, 2008.

MCS table and how to use it. https://wlanprofessionals.com/mcs-table-and-how-
to-use-it.

Diffserv to QCI mapping-01. https://tools.ietf.org/id/draft-henry-tsvwg-diffserv-
to-qci-01.html#rfc.section.2.2.

(10]

[11

(12]

[13

https://wlanprofessionals.com/mcs-table-and-how-to-use-it
https://wlanprofessionals.com/mcs-table-and-how-to-use-it
https://tools.ietf.org/id/draft-henry-tsvwg-diffserv-to-qci-01.html#rfc.section.2.2
https://tools.ietf.org/id/draft-henry-tsvwg-diffserv-to-qci-01.html#rfc.section.2.2

	Abstract
	1 Introduction
	1.1 Related Literature

	2 Contributions of this Work
	3 Does Internal Cochannel Interference Occur in Practice?
	4 Experiments on a Lab Testbed
	4.1 Packet Loss and Consequences

	5 The Time-Slicing Algorithm
	6 Performance of TS-ABR-QD
	6.1 Downlink TCP Transfers
	6.2 Uplink TCP Transfers
	6.3 HTTP with Bulk TCP Transfers
	6.4 Real-time Packet Voice and TCP

	7 Summary and Future Work
	References

