
µTAS: Design and implementation of Time Aware
Shaper on SmartNICs to achieve bounded latency
Joydeep Pal, Deepak Choudhary, Nithish Krishnabharathi Gnani, Chandramani Singh, and T. V. Prabhakar

Department of Electronic Systems Engineering
Indian Institute of Science Bengaluru, India

joydeeppal@iisc.ac.in, deepakcl@iisc.ac.in, nithishgnani@iisc.ac.in, chandra@iisc.ac.in, tvprabs@iisc.ac.in

Abstract—Time-Aware Shaper (TAS) is a time-triggered
scheduling mechanism that ensures bounded latency for time-
critical Scheduled Traffic (ST) flows. The Linux kernel im-
plementation (a.k.a TAPRIO) has limited capabilities due to
varying CPU workloads and thus does not offer tight latency
bound for the ST flows. Also, currently only higher cycle times
are possible. Other software implementations are limited to
simulation studies without physical implementation. In this paper,
we present µTAS, a MicroC-based hardware implementation of
TAS onto a programmable SmartNIC. µTAS takes advantage of
the parallel-processing architecture of the SmartNIC to configure
the scheduling behaviour of its queues at runtime. To demonstrate
the effectiveness of µTAS, we built a Time-Sensitive Networking
(TSN) testbed from scratch. This consists of multiple end-
hosts capable of generating ST and Best Effort (BE) flows and
TSN switches equipped with SmartNICs running µTAS. Time
synchronization is maintained between the switches and hosts.
Our experiments demonstrate that the ST flows experience a
bounded latency of the order of tens of microseconds.

Index Terms—TSN, Scheduling, P4, SmartNIC

I. INTRODUCTION

Tactile Internet applications such as telesurgery require
haptic feedback with a round-trip time of a few milliseconds.
In telesurgery, the doctors perform robotic surgery remotely,
communicating over the Internet, and the associated tac-
tile flows warrant stringent latency bounds of the order of
milliseconds[1]. Existing best-effort 802.1p Ethernet based
networks, with priority scheduling for Virtual Local-Area Net-
work (VLAN) traffic fail to provide hard latency guarantees
for tactile flows. This is mainly because of the queuing delay
of the flows competing for the same outgoing port on a switch.
We leverage the concept of Time-Sensitive Networking (TSN)
which promises bounded low-latency using time-slotted data
transmission [2]. TSN is a set of standards being developed
by the TSN Task Group, a part of the IEEE 802.1 Working
Group. Furthermore, IEEE 802.1Qbv proposes Time-Aware
Shaper (TAS) for Ethernet switches to minimize queueing
latency and to guarantee latency bounds.

To develop novel networking paradigms and to evaluate
real-world performance, a range of programmable network
hardware have been developed for rapid packet processing and
prototyping the desired behaviour. Smart Network Interface
Cards (SmartNICs) are one category of such networking
hardware. To program SmartNICs, network-domain languages
are being developed with P4 [3] being the most notable one.

In this work, we build a TSN switch from scratch using
SmartNICs and demonstrate the implementation challenges for
µTAS, our time aware traffic shaper using P4 and MicroC.

This paper is structured as follows: Section II reviews the
standards relevant to this work; Section III compares µTAS
with related work; Section IV presents detailed implemen-
tation of µTAS; Section V evaluates and demonstrates the
effectiveness of µTAS and discusses the results; and Section
VI summarises the work and points to a few future directions.

Following are our contributions:

• We build a TSN testbed and demonstrate µTAS in a
network comprising of two switches

• We present the first open source programmable TSN
hardware solution using SmartNICs

• We implement support for PTP based hardware syn-
chronisation on SmartNICs using additional hardware.
Our PTP synchronisation messages are carried in in-band
channels.

II. BACKGROUND AND MOTIVATION

A. Time-Sensitive Networking

TSN is a set of Layer-2 Ethernet enhancements defined
by the IEEE 802.1 TSN Task Group to enable deterministic
communication over switched Ethernet networks. TSN offers
bounded latency to the time-critical flows, also called Sched-
uled Traffic (ST) flows, even in the presence of Best Effort
(BE) traffic which is non-critical. To ensure bounded latency
for the ST flows, it defines 802.1Qbv TAS which works in
conjunction with 802.1AS Timing and Synchronisation. Thus,
TSN switch implementation requires the following compo-
nents at the least.

1) TAS implementation: TSN needs a time-slotted schedul-
ing mechanism for Ethernet networks. Time is divided
into slots and each data communication is restricted to
one slot. It is however possible for a flow to request
multiple time slots. The notion of Cycle Time (CT)
is assigned to a fixed number of time slots, which is
repeated over time. Slot-based communication has the
advantage of handling multiple concurrent ST and BE
flows. The Ethernet switch controller implements a Gate
Control List (GCL) for each egress port on the switch
to ensure that packets pertaining to a flow are dequeued
at its dedicated time slot.

ar
X

iv
:2

31
0.

07
48

0v
1

 [
cs

.N
I]

 1
1

O
ct

 2
02

3

2) Time Synchronization: One of the core objectives of
TSN is to ensure that all the devices in a TSN Net-
work are time synchronized. TSN uses generic Precision
Time Protocol (gPTP) as defined in the IEEE 802.1AS
standard [4] for time synchronization, which is based on
IEEE 1588 (PTP) [5] standard. Time in TSN networks
is usually distributed from the system with the most
accurate time source, chosen by the Best Master Clock
Algorithm (BMCA), directly through the network. PTP
utilizes Ethernet frames to distribute time synchroniza-
tion information.

B. Programmable data planes and TSN

Programmable data planes allow the creation of custom for-
warding plane behaviors to meet the specific requirements of
TSN. This allows flexible implementation of custom schedul-
ing mechanisms such as TAS. With programmable hardware,
there is more control over hardware operations such as packet
parsing, adding a custom header for relaying queueing and
timing information at line rate, optimizing flow control, and
configuring the traffic manager for meeting the requirements
of a real-time TSN Network. Programmable data planes can be
easily integrated with SDN controllers, which makes it easier
to configure and manage TSN Networks. It is also possible to
have more fine-grained control over traffic management, which
allows to define different levels of Quality of Service (QoS)
for different traffic classes. It is useful for TSN as it enables
us to give priority to ST flows over the BE flows.

III. RELATED WORK

Scheduling algorithms for TSN have been studied and
prototyped in hardware in [6],[7]. Sivaraman et al.[6] present
a design for programmable packet schedulers for a network
switch without hardware redesign. Alcoz et al.[7] also design
a programmable packet scheduler using priority queues that
can work at line rate, on Intel Tofino switches. The authors
compare their scheduling to FIFO scheduling using multiple
priority queues in terms of throughput and flow completion
times for traffic flows. They achieve flow completion times of
1 ms. However, they do not consider time critical flows. These
studies do not provide any studies on its effect on latency
performance for ST and BE flows with multiple TSN switches
built on hardware.

Below we present existing approaches and their limitations
with regard to achieving deterministic latency.

Software-based approach is a way to evaluate the per-
formance of TAS by utilising the services of Time Aware
Priority Shaper (TAPRIO[8]), a Linux based queueing dis-
cipline module, which implements TAS and demonstrates
isolation of traffic flows. Kumar et al. [9] applied TAPRIO on
Mininet based emulated switches along with source routing.
The authors demonstrate an end-to-end latency in a network
topology comprising of a source host, two TAPRIO-enabled
switches and a destination host. A best case end-to-end latency
of 100µs was observed. This delay is mostly due to kernel
and user space processing time. Also, several underlying
assumptions such as propagation delay and packet processing

delays are ignored. If a software-based approach is deployed
in practice, the delays might vary significantly and make this
unsuitable for TSN applications. Ulbricht et al. [10] also used
Mininet-emulated switches with TAPRIO. They demonstrate
that the processing delay in such a switch is 2µs. The
implementation of the same on TrustNode hardware switches
demonstrates processing latency of 1.4µs. Falk et al. [11]
present a simulation on TAS by extending a network simulator
called OMNET++. They demonstrate a worst-case delay of
32µs. Such software-based approaches suffer from variable
execution times due to its dependence on the OS kernel.

Hardware-based approach is another way to demonstrate
TSN capabilities is by using an off-the-shelf TSN switch or by
designing a TSN switch on network hardware. [12] proposes to
do away with TSN by using a reservation protocol executed in
the control plane with packet forwarding carried out by a NEC
PF5420 switch. They demonstrate bounded round-trip latency
of 1 ms. However, they demonstrate with a single switch.
Also there is no notion of CT. Jiang et al. [13] implement a
TSN Switch using Cisco Industrial Ethernet (IE 4K) switches.
However, it is not possible to set custom CT and GCL. Also,
the bound on latency is hard-coded to 1 ms.

Programmable SmartNICs are emerging as a popular choice
to design and implement an increasing number of network
functions completely on hardware for data-centre networks
with vendors like Netronome, Intel, NVIDIA, and others.
It provides flexible packet processing at line-rate and high-
precision clocks that can support such time-triggered schedul-
ing mechanisms. SmartNICs have been used to implement
scheduling functions in [14], [15]. Xi et al.[14] propose an
offload design for the classifying and scheduling functions of
the Linux traffic control such as Priority Qdisc (PRIO) and
Hierarchy Token Bucket (HTB). However, FlowValve focuses
on achieving higher throughput and enforcing network policies
at line rate, whereas µTAS demonstrates end-to-end latency
performance and ensures bounded delay. Atutxa et al. [15]
aim to achieve lower latency by processing MQTT packets in
data plane using P4. Their work however does not consider
hard latency guarantees.

Implementations of TSN standards are either in a simulated
environment or on non-programmable hardware. Our work
aims to bridge the gap between programmable data planes
and TSN implementations. We leverage the features of pro-
grammable SmartNICs, such as flexible packet processing,
precise clocks and a configurable traffic manager to program
custom scheduling mechanisms using P4 and MicroC pro-
gramming languages, to design and implement P4 - Time
Aware Shaper (µTAS) which resides in the data plane.

IV. SYSTEM DESIGN

The µTAS is a module that runs on the SmartNIC. In
our work, we develop a network testbed with the SmartNIC
being programmed as a TSN switch, a key building block to
achieve our goal. We introduce our SmartNIC and describe
the hardware features of this networking platform. We then
describe our µTAS implementation including Cycle Time (CT)
and Gate Control List (GCL) design.

A. Programmable SmartNIC
We chose Netronome Agilio CX 2x10GbE for its ability to

support P4 programming. Fig. 1 represents the architecture and
range of features including our blocks of interest. The 60 pro-
grammable parallel flow processing cores called MicroEngines
(ME) support wire-speed packet processing. It has a single
built-in clock source for precise time-keeping with a resolution
of one nanosecond. This clock is a single counter which starts
from zero each time the system is restarted. Each ME can be
programmed independently and has access to the global time
from the SmartNIC’s time-keeping registers. Additionally,
the Traffic Manager can be configured to handle multiple
queues, schedulers and shapers. Specifically, we obtain current
timestamps, set scheduling parameters, assign specific queues
to a particular flow and obtain queue occupancy levels at
runtime. The SmartNIC has a rich set of Control and Status
Registers (CSR) that provide configuration control and status
updates. These registers can be accessed using the Netronome
command line interface (CLI) from the host system (via the
nfp-reg commands) or from the data plane using MicroC
language.

B. µTAS
Our novel µTAS implementation supplements other stan-

dard Ethernet switch functional modules that are readily
available in the Netronome repository. Some examples include
bridge, VLAN support, full duplex operation, auto-negotiation
etc. µTAS utilizes the services of several MEs to implement
various functions, including forwarding logic and capturing
statistics for each flow. We dedicate one ME to implement the
packet scheduling function.

Fig. 1: Netronome SmartNIC Architecture [16]. Blocks of interest: (a)
Flow Processing Cores, (b) Traffic Manager, (c) Queue, (d) Statistics

While the packet processing pipeline is developed in P4, the
scheduling function is implemented in MicroC and integrated
with P4 as an extern function. Each packet received at the
ingress of the switch port is parsed using P4 to extract the
Ethernet, VLAN and IP headers. The VLAN header’s ID is
used to determine the flow, and a MicroC extern function
directs the packet to the flow’s corresponding egress queue.

1) GCL implementation: GCL facilitates the flow of pack-
ets in TAS that have bounded latency. As shown in Fig. 2,
our µTAS implementation ensures temporal isolation of flows
at the egress of a port. The incoming data is assigned to a
queue based on its flow using VLAN ID. While the Scheduler
maintains the service time of a queue, the Shaper at the
beginning of the queue service time maximises its bandwidth.
The GCL, which consists of the tabular entries for opening
and closing time of queue gates, is enforced by configuring

Fig. 2: Time-Aware Shaper on SmartNIC

the Traffic Manager. We assume that GCL is made available by
programming SMT solvers such as Z3, which consider traffic
flows and their requirements as input.

2) CT implementation: Fig. 3 describes the CT where flows
are segregated in time by allotting time slots. Time is divided
into n slots where ts is the length of each slot. The CT repeats
itself after n slots. In each CT, flows are allowed to dequeue
from the egress queue only in their specific time slot. The
standard recommends that in a CT, ST flows are assigned a
maximum of 70% of the time slots. In our implementation, we
chose a CT of 5 ms. For simplicity, we considered a single
ST flow occupying 70% of the slots and a single BE flow
occupying the remaining 30%.

Fig. 3: CT used in TAS

The µTAS’s CT implementation is accomplished with a
separate MicroC extern function by using the time function
available in the SmartNIC. To make this available to the
scheduling function, the control plane programs the set of
data plane memory registers. The scheduler is assigned the
responsibility to map time slots to queues. For E.g., from Fig.
2, ST flow from queue 0 is assigned slot 1 shown in Fig. 3.
Since µTAS requires the beginning of the time slot to schedule
a traffic flow, it probes the time CSR for the current time
(tcurr).

tdebug = (tcurr)mod(CT) (1)

tdebug , which is the modulus of tcurr with CT, is calculated
as shown in the following equation 1. If tdebug is equal to the
start of a time slot, µTAS makes a call to the Traffic Manager
to configure its shapers appropriately. For example, in a CT
of 10ms, if ST flow requires queue (q0) to be serviced from
0 to 7 ms, and BE flow requires queue (q1) from 7 to 10
ms, then at tdebug = 0 ms, the Traffic Manager maximises
the q0 bandwidth and restricts the q1 bandwidth to zero, and
vice-versa for tdebug = 7 ms.

C. Time Synchronization
Ethernet switches in TSN require tight synchronisation to

enforce GCL on each switch and thus maintain end-to-end

latency bound for ST flows. To realize this, it is imperative
to synchronise the hardware clocks on SmartNICs. Since the
timeslot in a CT is in the millisecond range, it is expected that
the synchronisation accuracy after budgeting for overheads
should either be in micro or nanoseconds. Protocols such as
Network Time Protocol and Precision Time Protocol (PTP)
with software timestamping fall short of providing synchroni-
sation with nanosecond accuracy.

Synchronizing the hosts in a network: To facilitate
hardware synchronisation, an Intel X520 10-Gigabit dual-port
NIC which supports hardware clock, is installed in each host
(refer Fig. 7). We now describe the procedure to synchronise
hosts’ NIC hardware clocks, known in the PTP domain ter-
minology as PTP Hardware Clock (PHC). Fig. 4 shows the
message sequence where PHC peers are synchronised using
linuxptp’s sub-module ptp4l. The best PHC is chosen using
the BMCA. Another sub-module of linuxptp, phc2sys ensures
that in a given host, the PHC synchronises the system clock
i.e CLOCK REALTIME. We obtain a synchronisation error
below 10 ns.

Synchronizing the SmartNICs: While PTP works satisfac-
torily if the NIC card supports hardware clocks, unfortunately,
our SmartNIC does not support this protocol and therefore, our
next step is to synchronise the SmartNIC clock to the host’s
system time which is synchronised in the previous step. We
implemented a custom in-band synchronisation scheme. To
estimate the clock drift between the two spatially separated
SmartNICs, we design an experiment that comprises of two
phases. In the data collection phase, the source host connected
to the first SmartNIC sends out a packet containing the
ME timestamp. The downstream second SmartNIC in turn
appends its own timestamp and returns the packet to the
first SmartNIC which again appends its ME timestamp and
then forwards the same back to the host. Several hundreds of
such packets over multiple days are collected and analyzed
for drift to ensure repeatability of measurements. Fig. 5(c)
shows the Round Trip Time (RTT) between the first and
second SmartNIC. An RTT of 6-9µs reflects the propagation
delay and processing delay in the SmartNICs. Meanwhile, Fig.
5(a) shows the synchronisation error due to clock drift. It
is observed that the drift varies linearly with time and our
calculations indicate that it varies 20 ms over a period of 1
hour, and perhaps one may be able to compensate for the
same. The consecutive differences of the previous plot are
showed in Fig. 5(b), i.e we measure the slope for the linear
drift. In the configuration phase, our in-band synchronisation
starts from the first SmartNIC where it transmits a packet that
contains the ME timestamp. The downstream receiving switch
accepts this packet and configures its ME timestamp with this
timestamp. Since the measured clock drift between the two
switches is linear, a special packet containing the slope and
intercept obtained from the data collection phase is supplied
to the second switch to perform automatic compensation. Fig.
6 shows that the synchronisation error has been brought down
to tens of nanoseconds after configuration phase.

Fig. 4: Adjusting SmartNIC clock using linuxptp

Fig. 5: Synchronisation error between SmartNIC clocks

V. EVALUATION

We describe our network testbed to evaluate and compare
the performance of µTAS with Round-Robin scheduling, Pri-
ority Scheduling and TAPRIO. We show the latency compar-
ison for ST and BE flows. Each queue’s runtime occupancy
level is obtained from the SmartNIC using µTAS.

Evaluation environment: Fig. 7 shows the testbed used in
our experiments. It consists of two TSN switches and two end-
hosts connected in series using one metre of full-duplex optical
fibre Ethernet links as the connection medium. The end-hosts
are each equipped with a dual-port NIC mentioned previously,
supported by an Intel i5 CPU and 8GB of RAM. The TSN
switches are built using SmartNICs installed on hosts, where
each host is equipped with a Asus Z690 motherboard with
four PCIe Gen 3x8 slots, a 12-core Intel i5 CPU and 32GB of

Fig. 6: Synchronisation error after configuration phase

Fig. 7: TSN testbed

RAM. All the hosts run Ubuntu OS. The SmartNIC is inserted
into one of the PCIe Gen 3x8 slots. Host-1 and Host-2 are the
traffic generator and receiver, respectively. Host-1 transmits
ST, and BE flows with a packet transmission rate of 10 Mbps
and a packet length of 1000 bytes.

Performance baseline: Since the goal of our work is to
ensure a bounded latency for ST flows in the presence of BE
flows, we compare the latency offered by the following four
scheduling algorithms. We first measure the performance of
vanilla SmartNIC with the default nic-firmware installed. It
is an official firmware designed by Netronome to be used as
a performance benchmark for custom implementations. We
compare this default scheduling behaviour with Strict Priority
(SP), TAPRIO and µTAS, all running on Netronome, with SP
and µTAS being a complete data plane implementation on
hardware.

• Case (a) - Switch is loaded with nic firmware and uses
default scheduling, i.e. Round-Robin scheduling

• Case (b) - Switch is configured for SP scheduling. ST
flows are assigned higher priority over BE flows at the
source.

• Case (c) - Switch is configured as a TSN switch by
loading it with nic firmware and then applying the Linux
TAPRIO module at the egress ports.

• Case (d) - Switch is configured as a TSN switch with
µTAS scheduling by loading our P4-based program on
the SmartNIC

A. Latency experienced by ST and BE flows

We run a utility called tshark in the end-hosts to capture
packets and store them in a Packet Capture (pcap) file. These
files are analyzed to obtain the latency experienced by each
packet, where packets are uniquely identified using a combi-
nation of VLAN and IP headers. Since the hosts are time-
synchronized as described in IV-C, latency measurements can
be obtained by a direct comparison of the resulting pcap data
files timestamped at the transmitter and receiver. We analyze
the data by extracting the packet timestamps, VLAN IDs,
and IP sequence number. Note that the egress port bandwidth
is restricted to a value less than the combined transmitting
bandwidth, which creates congestion at the outgoing links of
the switch and leads to queueing of packets and this reflects in
the end-to-end latency. Fig. 8 demonstrates the latency for each
packet in the above-mentioned cases (a)-(d). Initially, the first
few packets experience the lowest latency and as more packets
arrive at the switch, queueing takes place at the egress ports,
and this is reflected in the increase in latency. We present
the cumulative density function (CDF) of end-to-end latency
for both flows between the end hosts. A CDF helps in easily
observing any breaches over the latency bound. In the case of
(a), the default round-robin scheduling, we observe that both
flows experience similar latencies in the range of 0.1-0.6 ms. In
the case of (b) where SP is enabled in the SmartNIC, packets
of ST flow experience lower latency compared to BE, although
we also observe that a significant number of packets suffer
from latencies in the range of 0.1-0.7 ms, and a clear bound
cannot be established. We set a CT of 5 ms. Once we apply

TAPRIO, we observe that although ST flows experience lower
latency than BE in this case, the latency bound is breached
for ST flow. This can be attributed to variability in kernel
service times. For the same flows in case (d), we observe that
a bounded latency of 0.02 ms, as desired, is achieved for ST
flow with µTAS i.e. a 10 times reduction in end-to-end latency
than what can be achieved using SP and TAPRIO.

B. Queue occupancy levels of the two queues in the switch

The SmartNIC processes packets at very high speeds re-
sulting in packet processing times in nanoseconds. To obtain
the queue occupancy, we call a function to read the queue
statistics and store it in a special block of memory called real-
time symbol memory. We read these special memories from
the control plane using the nfp-rtsym tool in Netronome CLI
and log this data periodically to a csv file. Since the control
plane is placed in the Linux kernel, the lowest time period
with which we can probe this memory is 100 milliseconds.
However, there are certain situations where such a high period
is insufficient. Consider the case where it may so happen that
a queue builds up and is drained in less than 100ms, which
may fall between two reads of the queue. This leads to missing
several data points for queue occupancy in this time interval.
To overcome this challenge, we develop a MicroC program to
run in a separate ME. This program obtains queue occupancy
at the smartNIC’s clock speed, sums it up using a temporary
variable queue-level-temp at an interval of 100 ms. At the end
of this interval, it averages out the summed variable, writes this
value to the special memory and resets the queue-level-temp
to zero. We probe this value at 100 ms but without missing
any data points. We set the queue size to 64 packets.

Fig. 9 illustrates the plot of queue occupancy levels for BE
and ST egress queues to demonstrate that queue build-up, and
hence queueing latency for ST flows, is lower than that for
BE flows. We observe that there is an initial queue build-up
for both flows as we start their transmission from the source.
Subsequently, the ST queue level remains under 3 while BE
queues continuously get exhausted at around 64. As packets
egress from the queues, the occupancy levels fall before rising
up again due to queueing of new packets arriving at the switch.

VI. CONCLUSION AND FUTURE WORK

This paper presents µTAS, a P4-based system design for
TAS on a programmable SmartNIC. µTAS leverages the multi-
core parallel architecture, configurable traffic manager and
the accurate clocks of the SmartNICs to synchronize and
implement TAS among two switches. We evaluate µTAS on
our TSN hardware testbed and observe that the ST flows have
a bounded latency in the presence of BE flows. To the best
of our knowledge, ours is the first implementation of TAS
on SmartNICs. Our future work explores understanding the
SmartNIC architecture in more depth and to use P4 to harness
its full capability to enhance our TSN switch and incorporate
other IEEE 802.1 standards such as 802.1CB for reliability.
We also look at automated configuration of GCL using data-
driven approaches by processing and analyzing traffic flows at
runtime.

(a) Default Round-Robin scheduling (b) Strict Priority

(c) TAPRIO (d) µTAS

Fig. 8: Latency experienced by each packet for (a) Default Round-Robin scheduling, (b) Strict Priority, (c) TAPRIO and (d) µTAS

Fig. 9: Variation of Queue occupancy levels with time for ST and
BE egress queues

ACKNOWLEDGEMENTS

This work was supported in part by the Ministry of Elec-
tronics and Information Technology (MeitY), Government of
India and in part by Centre for Networked Intelligence (a Cisco
CSR initiative) at Indian Institute of Science, Bangalore.

REFERENCES

[1] 3GPP. 2020. URL: https : / / www. 3gpp . org / specifications -
technologies/releases/release-16.

[2] Ahmed Nasrallah et al. “Ultra-low latency (ULL) networks:
The IEEE TSN and IETF DetNet standards and related 5G
ULL research”. In: IEEE Communications Surveys & Tutorials
21.1 (2018), pp. 88–145.

[3] P4 Language Specification (Version 16). P4 Language Consor-
tium. 2019. URL: https://p4.org/p4-spec/docs/P4-16-v1.0.0-
spec.html.

[4] “IEEE Standard for Local and Metropolitan Area Networks–
Timing and Synchronization for Time-Sensitive Applications”.
In: IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-
2011) (2020), pp. 1–421. DOI: 10 . 1109 / IEEESTD . 2020 .
9121845.

[5] “IEEE Standard for a Precision Clock Synchronization Pro-
tocol for Networked Measurement and Control Systems”. In:
IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002) (2008),
pp. 1–269. DOI: 10.1109/IEEESTD.2008.4579760.

[6] Anirudh Sivaraman et al. “Programmable packet scheduling
at line rate”. In: Proceedings of the 2016 ACM SIGCOMM
Conference. 2016, pp. 44–57.

[7] Albert Gran Alcoz, Alexander Dietmüller, and Laurent Van-
bever. “SP-PIFO: Approximating Push-In First-Out Behaviors
using Strict-Priority Queues.” In: NSDI. 2020, pp. 59–76.

[8] Linux. Time Aware Priority Shaper. URL: https://www.man7.
org/linux/man-pages/man8/tc-taprio.8.html.

[9] Gagan Nandha Kumar, Kostas Katsalis, and Panagiotis Pa-
padimitriou. “Coupling source routing with time-sensitive net-
working”. In: 2020 IFIP Networking Conference (Networking).
IEEE. 2020, pp. 797–802.

[10] Marian Ulbricht et al. “Emulation vs. Reality: Hard-
ware/Software Co-Design in Emulated and Real Time-
sensitive Networks”. In: European Wireless 2021; 26th Eu-
ropean Wireless Conference. VDE. 2021, pp. 1–7.

[11] Jonathan Falk et al. “NeSTiNg: Simulating IEEE time-
sensitive networking (TSN) in OMNeT++”. In: 2019 Inter-
national Conference on Networked Systems (NetSys). IEEE.
2019, pp. 1–8.

[12] Alexej Grigorjew et al. “Distributed Implementation of Deter-
ministic Networking in Existing Non-TSN Ethernet Switches”.
In: 2021 IEEE International Conference on Communications
Workshops (ICC Workshops). IEEE. 2021, pp. 1–6.

[13] Junhui Jiang et al. “A simulation model for time-sensitive net-
working (TSN) with experimental validation”. In: 2019 24th
IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE. 2019, pp. 153–160.

[14] Shaoke Xi, Fuliang Li, and Xingwei Wang. “FlowValve:
Packet Scheduling Offloaded on NP-based SmartNICs”. In:
2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS). 2022, pp. 347–358. DOI: 10 .
1109/ICDCS54860.2022.00041.

[15] Asier Atutxa et al. “Achieving low latency communications
in smart industrial networks with programmable data planes”.
In: Sensors 21.15 (2021), p. 5199.

[16] Netronome. NFP-4000 Flow Processor Block Diagram. 2020.
URL: https://www.netronome.com/media/documents/PB NFP-
4000-7-20.pdf.

https://www.3gpp.org/specifications-technologies/releases/release-16
https://www.3gpp.org/specifications-technologies/releases/release-16
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2008.4579760
https://www.man7.org/linux/man-pages/man8/tc-taprio.8.html
https://www.man7.org/linux/man-pages/man8/tc-taprio.8.html
https://doi.org/10.1109/ICDCS54860.2022.00041
https://doi.org/10.1109/ICDCS54860.2022.00041
https://www.netronome.com/media/documents/PB_NFP-4000-7-20.pdf
https://www.netronome.com/media/documents/PB_NFP-4000-7-20.pdf

	Introduction
	Background and Motivation
	Time-Sensitive Networking
	Programmable data planes and TSN

	Related Work
	System Design
	Programmable SmartNIC
	TAS
	GCL implementation
	CT implementation

	Time Synchronization

	Evaluation
	Latency experienced by ST and BE flows
	Queue occupancy levels of the two queues in the switch

	Conclusion and Future Work

