

Dynamic Pricing and Matching for Online Marketplaces

Presenter: Sushil Mahavir Varma 5th Year Ph.D. Student Operations Research, Georgia Tech

Pornpawee Bumpensanti Research Scientist Amazon

He Wang Assistant Professor ISyE, Georgia Tech

Francisco Castro Assistant Professor Anderson, UCLA

Siva Theja Maguluri Assistant Professor ISyE, Georgia Tech

Gig Economy Online Matching Platforms

\$204 Billion in revenue in 2018 [Mastercard] 36% of the workers in the US join the gig economy [Gallup]

airbnb

Task Rabbit

DiDi

ROADIE

DOORDASH

b BlaBlaCar

Major Operational Challenges

Misalignment of Supply and Demand

Incompatible demand and supply agents in the market

Disparity of Supply and Demand

Unequal demand and supply agents in the market

4

Stochastic Network Viewpoint

Type – Geographical location, normal/premium ride, etc.

Compatibility – Geographical proximity and matching preferences **Match** – Disappear from the system instantaneously

Set **prices** and perform **matchings** that maximizes **profit** and minimizes the **delay**

Set **prices** and perform **matchings** that maximizes **profit** and minimizes the **delay**

Technical Challenge: Simplest Case

 $\lambda > \mu$ – Transient $\lambda < \mu$ – Transient $\lambda = \mu$ – Null Recurrent

Need **External Control** to make the system stable

Can be Analyzed in **Steady State**

Literature Survey

Many related models in the literature:

- **Bipartite Matching Models** [Adan, Weiss, 2012], [Caldeney et. Al. 2009], [Adan et. al. 2018], [Cadas et. al. 2019]
- **Matching Models** [Mairesse, Moyal, 2016], [Cadas et. al. 2020], [Moyal, Perry, 2017]
- **Matching Queues** [Gurvich, Ward, 2014]
- **Assemble to Order Systems** [Song, Zipkin, 2003], [Song, 1998], [Song et. al. 1999], [Song, 2002], [Song, Yao, 2002], [Plambeck, Ward, 2006], [Dogru et. al. 2010]
- **Other Related Models** [Anderson et. al.], [Akbarpour et. al. 2019]
- **Two-Sided Queues with few differences** [Hu, Zhou, 2018], [Nguyen, Stolyar, 2018], [Aveklouris et. al. 2021], [Ozkan, Ward, 2017], [Ozkan, 2020], [Blanchet, et. al. 2021]

Most models where the system is inherently unstable, only transience analysis have been done except [Nguyen, Stolyar, 2018], [Blanchet, et. al. 2021].

We conduct more fine-tuned analysis

8

Table of contents

Dynamic Pricing and Matching for Two-Sided Queues

SMV, Bumpensanti, Maguluri, Wang Operations Research 2022

Punchline: Near-optimal pricing and matching policy asymptotically (with an $\eta^{1/3}$ ROC to the fluid upper bound)

Part One Part Two

A Heavy Traffic Theory of Matching Queues SMV, Maguluri IFIP Performance 2021 (Best Paper)

Punchline: Phase transition for the limiting distribution of queue length, unlike classical queues (in a heavy-traffic regime inspired by classical queues)

Pricing

Model: Stochastic Matching Network

System operator sets the Price that determines arrival rates

Service System operator decides to match certain pairs

Arrivals Poisson arrival with the prescribed arrival rates

Continuous Time Markov Chain

Objective

 $max \mathbb{E} \left[\sum F_j(\lambda_j(q)) \lambda_j(q) - \sum G_i(\mu_i(q)) \mu_i(q) - < s, q > \right]$ **Revenue Cost Waiting Penalty**

Subject to:

- **Feasible Matching**
- Stable System

Notation

 $F_i(\cdot)$ - Inverse demand curve $G_i(\cdot)$ - Inverse supply curve – State of the System

Notation
 $F_j(\cdot)$ - Inverse demand curve
 $G_i(\cdot)$ - Inverse supply curve
 g - State of the System
 s - Weight vector for queue lengths

11 Quantity (λ_i) $F_j(\lambda_j)$ $\qquad \int G_i(\mu_i)$

Fluid Model

Replace Stochastic Quantities by their Deterministic Counterparts

 \mathbf{p}^{\star} = max $\sum F_j(\lambda_j)\lambda_j$ – $\sum G_i(\mu_i)\mu_i$ **Revenue - Cost**

Can we achieve this bound? In an asymptotic regime?

Subject to

 $\lambda_j = \sum$ $i = 1$ $\it n$ χ_{ij} $\mu_i = \sum_i$ $j=1$ \overline{m} χ_{ij}

Balance Equations to Match Customers and Servers

Compatibility Constraint

Large Scale Regime

Scale the arrival rates by η and analyze the system as $\eta \to \infty$

[Fluid upper bound] – [profit under a given policy] **Profit-Loss** $(L^{\eta} = \eta \gamma^* - R^{\eta})$

Theorem [SV, Bumpensanti, Maguluri, Wang 2022]: Fluid Model Provides an Upper Bound on the Achievable Profit Under any Pricing and Matching Policy

Main Result 1: Large Scale Regime

[SV, Bumpensanti, Maguluri, Wang 2022]

Key Observations

Advantage of Dynamic Pricing

Two-Price Policy achieves lower profit-loss compared to Static Price Policy

Small amount of Dynamic Component

Two-Price Policy achieves optimal rate of convergence

Two-Price Policy is the Primary Driver

Two-Price policy coupled with naive matching policies result in optimal profit

Coming up: Advantage of Max-Weight in Large Market Regime ¹⁴

Intuition for $\eta^{1/3}$		
$L^{\eta} = \eta \gamma^* - \mathbb{E} \left[\sum F_j^{\eta} \left(\lambda_j^{\eta}(q) \right) \lambda_j^{\eta}(q) - \sum G_i^{\eta} \left(\mu_i^{\eta}(q) \right) \mu_i^{\eta}(q) \right] + \mathbb{E} \left[\leq s, q > \right]$		
Revenue Loss	Expected Queue Length	
General Pricing	Taylor Series Expansion:	
Policy	1/ε	
Policy	$\eta^{p(x^* + \epsilon) = \eta^{p(x^*)} + \eta \epsilon^{p(x^*)} + \eta \epsilon^{2p''(x^*)} + \cdots}$	Like a single server queue in HT
Electrication of the fluid policy	$\eta \epsilon^2$	1/ε
Pick $\epsilon \sim \eta^{-1/3} \Rightarrow L^{\eta} \sim \eta^{1/3}$		
Theorem [SV, Castro, Maguluri 2021]: For Pricing and Matching Policy such that		

$$
\mathbb{E}[q] \leq \frac{1}{\delta} \Rightarrow P \leq \gamma^* - \Omega(\delta^2)
$$

Two-Price + Max-Weight achieves this trade-off

fi f

Large Market Regime

 $L^{\eta} = \Omega(\eta^{1/3} n)$ $L^{\eta} = \Omega(\eta^{1/3} n^{1/3})$

n independent matching queues

One resource pooled matching queue with arrival rate $n\eta$

Goal

- Conditions on the graph such that it behaves like complete graph
- Policy that achieves resource pooling

Crp Condition

$$
\sum_{j\in J}\lambda_j^\star < \sum_{i:\exists\,j\in J, (i,j)\in E}\mu_i^\star\,\,\forall J\subset M
$$

Hall's condition weighted

 \sum $i \in I$ μ_i^* < $\qquad \sum$ $j: \exists i \in I, (i, j) \in E$ λ_j^* $\forall I \subset N$ graph

The above implies

- Graph is connected
- Fluid solution is in the interior of the "stability region"

Main Result 2: Large Market Regime

[SV, Bumpensanti, Maguluri, Wang 2022]

Notation

 $(\lambda^*, \mu^*, \chi^*)$ - Fluid Solution $\eta\gamma^*$ - Fluid Optimal Value R^{η} - Profit, Given Policy

Key Observations

Max-Weight is better than Random

Max-Weight exploits the underlying network structure

Max-Weight is optimal w.r.t.

Max-Weight results in state space collapse – system behaves like a single-link twosided queue

Two-Price + Max-Weight is optimal w.r.t. η and n

This illustrates the interplay of pricing and matching policy – right combination is important

Stochastic Network Viewpoint

Type – Geographical location, normal/premium ride, etc.

Compatibility – Geographical proximity and matching preferences

Match – Disappear from the system instantaneously

Set **prices** and perform **matchings** that maximizes **profit** and minimizes the **delay**

Stochastic Network Viewpoint

Type – Geographical location, normal/premium ride, etc.

Compatibility – Geographical proximity and matching preferences

Match – Disappear from the system instantaneously

Matching Queue: Simplest Case

Difficult as even G/G/1 queue (light traffic) is still an open problem

Consider an asymptotic regime: Heavy-Traffic

 $\lambda_n \rightarrow \mu$ The system approaches

 $\lambda_{\eta} \longrightarrow \eta$ $\left| \left(\begin{array}{c} \mu \end{array} \right) \right|$

null-recurrence

Analyze the entire **stationary distribution**, not just the **mean**

 ϵ_n : Magnitude Scaling Parameter τ_n : Time Scaling Parameter

Heavy-Traffic is given by either $\epsilon \to 0$ and/or $\tau \to \infty$

Case I: $\epsilon_n \tau_n \to 0$ Case II: $\epsilon_n \tau_n \to (0, \infty)$ Case III: $\epsilon_n \tau_n \to \infty$

Phase Transition: Illustrative Example

Hybrid -> Laplace $l\rightarrow 0$

Hybrid -> Uniform $\bm{l}\rightarrow\infty$

24

Main Result: Phase Transition [SV, Maguluri 2021]

Z **Arrival Rates**

 τ_{η}

Z

 ϵ_{η}

 ϵ_{η}

 $\lambda(z) = \lambda^* + \phi^c$

 $\mu(z) = \mu^* + \phi^s$

 ϵ_n : Magnitude Scaling Parameter τ_n : Time Scaling Parameter $\phi^c(\cdot)$, $\phi^s(\cdot)$: General control curves **Notation**

DTMC

 a^c , $a^s \sim$ General

Other Lines of Work

TAXI

Incorporating Strategic Servers What if I lie and join

Area Preferences Surge Pricing

When you set a Driver Destination in your app, we'll try and match you with trip requests from riders going towards that destination.

Set a Driver Destination Result [SV, Castro, Maguluri 2021]

Incentive-compatible, near-optimal, pricing and matching policies for a wide variety of utility functions

Motivation and Model

Payment Channel Networks

Two-Sided Network Classical Communication Network

- Each payment link in a payment processing network is a two-sided queue
- Analogous two-sided version of classical communication network
- The problem is to route transactions using the payment channels
- We propose a throughput optimal routing algorithm inspired by max-weight [SV, Maguluri 2021]

Matching queues: related papers

• **Matching Queues**

SV, Maguluri, "A Heavy Traffic Theory of Matching Queues" Conf: IFIP Performance (Student Best Paper)

• **Stochastic Matching Network**

SV, Bumpensanti, Maguluri, Wang, "Dynamic Pricing and Matching for Two-Sided Queues" Conf: SIGMETRICS, Jour: Operations Research

• **Strategic Agents**

SV, Castro, Maguluri, "Near-Optimal Control in Ride-Hailing Platforms with Strategic Servers" Conf: SIGMETRICS

• **Payment Channel Networks**

SV, Maguluri, "Throughput Optimal Routing in Blockchain-Based Payment Systems" Jour: IEEE Transaction on Control of Network Systems

Stochastic Processing Networks

Power-of-d Choices Load Balancing in the Sub-Halfin Whitt Regime

SV, Castro, Maguluri 2022

Transportation Polytope and its Applications in Parallel Server Systems

SV, Maguluri 2021 **(INFORMS talk)**

Logarithmic Heavy Tr **Bounds in Generalize Load Balancing Syste**

Lange, SV, Maguluri 2 of Applied Probability

Reinforcement Learning

Khodadadian, Jhunjhunwala, SV, Maguluri, On the Linear and Super-linear Convergence of Natural Policy Gradient Algorithm, Conf: IEEE CDC, Jour: System and Control Letters

 ℓ CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics and imag