CT Scan for Your Network: Topology Inference from End-to-End Measurements

Ting He Associate Professor, CSE@Penn State

Students:

Yilei Lin, Yudi Huang, Akash Kumar (Penn State)

Network Sciences Research Group (NSRG)

- Interests:
 - communication networking (network tomography, SDN, overlay, 5G, security)
 - distributed machine learning (coreset, data reduction, federated learning)
 - mobile edge computing (resource allocation)
 - cyber-physical systems (smart grid, state estimation, false data injection)
- Members:
 - Ting He, Associate Professor
 - 6 PhD students
 - Alumni: 4 PhD, 6 MS (Bucknell, Google, Meta, ByteDance, HP, Amazon, Oracle)

Network Inference

- Example projects:
- Network tomography

- Software Defined Networks and the software defined Network target
- Communication-efficient ML

Network Control

Data reduction for ML

PennState College of Engineering

> ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Overview: What is network tomography

• Using *external observations* to infer *internal network state*

Motivation: Why topology inference

Topology information is useful

- Routing
- Service placement
- Client-server association
- Overlay management
- Load balancing
- Trouble shooting

- But it is not always observable
 - Use protocols to collect topology information (e.g., SNMP, OpenFlow) → admin privilege
 - Use ICMP to measure topology (e.g., traceroute) → supportive internal nodes

• ...

Q: Is it possible to infer network topology from end-to-end measurements? If so, how?

Toy example: Why it is feasible

Multicast measurements reveal internal topology

$$-\log \alpha_1 - \log \alpha_2 = -\log \Pr\{X_{p_1} = 1\},\$$

$$-\log \alpha_1 - \log \alpha_3 = -\log \Pr\{X_{p_2} = 1\},\$$

$$-\log \alpha_1 = -\log \left(\frac{\Pr\{X_{p_1} = 1\} \Pr\{X_{p_2} = 1\}}{\Pr\{X_{p_1} = X_{p_2} = 1\}}\right).$$

 X_{p_i} : success indicator for path i

History: Where we are

Our approach: Revisiting topology inference problems in new application contexts

Restriction on measurement

Scenario: Probe all paths, arbitrary routing

- Motivation: Inferring the structure and state of <u>SDN-NFV network</u>
 - general topology
 - waypoint traversal
 - known service chain

• Observation:

- Measured: end-to-end performance measurements (e.g., losses)
- Inferred: lengths of paths, shared paths, union of paths
 - "length" measured by additive metric
 - E.g., $\theta_e = -\log \alpha_e$ (α_e : success prob. of edge e)
- Static: source, destination, service chain

Tree-based topology inference is insufficient

- Classic topology inference algorithms all assume tree-based routing
- But trees cannot always reconstruct the observations from a non-tree topology

 $leng(p_1)=4$ $leng(p_2)=6$ $leng(p_3)=3$

 $leng(p_1 \cap p_2)=4$ leng(p_1 \cap p_3)=1 leng(p_2 \cap p_3)=3

No tree topology reconstructs all these lengths \rightarrow not even guarantee a feasible solution

Category weights are identifiable

• Weight Inference Problem:

- Partition edges into 2ⁿ-1 *categories*
 - Category Γ_F: set of edges *traversed by and only by* paths with indices in F
 - Category weight w_F : sum metric of edges in category Γ_F
- Observe *cast weights*, infer category weights
 - **Cast weight** ρ_F for a multicast on paths in F:

$$\rho_F \coloneqq -\log(\Pr\{X_F = 1\}) = -\log\left(\prod_{e \in \bigcup_{i \in F} p_i} \alpha_e\right) = \sum_{e \in \bigcup_{i \in F} p_i} \theta_e$$

• Relationship between cast weights and category weights

Topologyagnostic $\rho_F = \sum_{F' \subseteq E: F' \cap F \neq \emptyset} w_{F'}, \quad \forall F \subseteq E$

Theorem: Category weights are uniquely determined by cast weights.

Category weights help, but are not enough

- Under mild assumption, category $\Gamma_F \neq \emptyset \leftrightarrow w_F \neq 0$
- For trees, knowing non-empty categories → knowing (logical) topology

- But not so for arbitrary topology
 - E.g., can always embed the non-empty categories in a clique-like topology

Idea: Combining categories with service chain

• String Augmentation Problem (SAP):

- view each service chain as a string s_i , $f_{i,1}$, $f_{i,2}$,..., t_i
- insert dummy letters f₀¹, f₀²,... s.t. for every positive-weight category A, ∃a pair of letters appearing *only* in string i (i∈A)

• Minimize #nodes/#links (can be formulated as an ILP)

Evaluation: VNF topology inference

• Based on VNF overlays randomly generated on Rocketfuel AS topologies

13

Topology inference from the perspective of upper-layer application

Restriction on measurement

Overlay Network

- A logical network running on top of an underlying communication infrastructure (underlay network)
 - Enhance best-effort IP-based underlay network
 - Caching, traffic engineering (service-chaining, multicast), fast failover, network slicing, ...
 - Focus: overlay-based routing
- Example: SD-WAN
 - Software-Defined Wide-Area Networks

Managed SD-WAN Solutions

AT&T SD-WAN solutions can improve your network's agility and provide centralized control and improve total cost of ownership.

Cisco SD-WAN overlay fabric

Routing in Overlay Network is Challenging

- Challenges
 - Seemingly independent tunnels share underlay, links
 - Congestion
 - Uncooperative underlay
 - No direct underlay topology information

Q: Do we need the full topology for overlay routing? A: No!

- Flow: a->e and b->d
- Direct tunnel: both traverse $h_1 \rightarrow h_2$
- Congestion-free overlay routing:
 - a->e
 - b->c->d

Overlay Routing Problem

Q: What is the **minimum information** for **imposing capacity constraints** for an **uncooperative underlay**?

Recall: Underlay Link Categorization

- (Underlay) link category
 - $\Gamma_F(E)$: A category of links traversed by *F* out of *E* ($F \subseteq E$) is the set of underlay links traversed by and only by the tunnels in *F* out of all the tunnels in *E*
 - i.e., $\Gamma_F(E) \coloneqq \left(\bigcap_{(i,j)\in F} \underline{p}_{i,j}\right) / \left(\bigcup_{(i,j)\in E\setminus F} \underline{p}_{i,j}\right)$ Links shared All links by F traversed by $E\setminus F$

• Category weight:
$$w_F(E) \coloneqq \sum_{\underline{e} \in \Gamma_F(E)} \theta_{\underline{e}}$$

Observation: Knowledge of **link categories suffices for congestion-free overlay routing**

Example: $E = \{(a, d), (b, e)\}$

•
$$F_1 = \{(a, d), (b, e)\}$$

•
$$\Gamma_{F_1}(E) = \{(h_1, h_2)\}$$

- $F_2 = \{(a, d)\}$ • $\Gamma_T (F) = \{(a, h_1), (h_2)\}$
 - $\Gamma_{F_2}(E) = \{(a, h_1), (h_2, d)\}$

$$F_3 = \{(b, e)\}$$

• $\Gamma_{F_3}(E) = \{(b, h_1), (h_2, e)\}$

Category-based Capacity Constraints

Challenge of Category Inference

• Full rank linear system

•
$$w_F(E) > 0 \Longrightarrow \Gamma_F(E) \neq \emptyset$$

Q: Is problem solved? A: Unfortunately, **no**

- **Exponential complexity**! #variables = $2^{|E|} = 2^{O(|V|^2)}$
- Example: |V| = 10, number of candidate categories: 2^{90}

Taming the Complexity in Category Inference

Idea: Given $\{w_F(E_{t-1})\}$ and $E_t \leftarrow E_{t-1} \cup \{e_t\}$, augment it into $\{w_F(E_t)\}$ \rightarrow Dynamic programming

Idea for Dynamic Programming

- Category weights are decomposed gradually
 - For any $E' \subset E$ and $e \in E \setminus E'$, $w_F(E') = w_{F \cup \{e\}}(E' \cup \{e\}) + w_F(E' \cup \{e\})$

 $E_{t-1} = \{(a, d), (b, e)\}$

overlay overlay h₁ underlay underlay $\{(a, d), (b, e)\}$ $\{(a,d), (b,e), (b,d)\}, \{(a,d), (b,e)\}$ $\{w_F(E_{t-1})\}$ $\{(a, d)\}$ $\{(a,d), (b,d)\}, \{(a,d)\}$ $\{(b, e)\}$ $\{(b,e), (b,d)\}, \{(b,e)\}$ $\{(b, d)\}$ $|supp(w(E_{t-1}))| \leq |\underline{E}|$

(#non-empty categories \leq #underlay links)

 $E_t = \{(a, d), (b, e), (b, d)\}$

#variables = 2 $|supp(w(E_{t-1}))| + 1$

Algorithm for Category Inference

- Dynamic programming with the update rule:
 - $E_t \leftarrow E_{t-1} \cup \{e\}$
 - $w_{\{e\}}(E_t) \leftarrow \rho_{E_t} \rho_{E_{t-1}}$
 - For $F \in supp(w(E_{t-1}))$ in an increasing order of |F|:
 - $w_{F\cup\{e\}}(E_t) \leftarrow \rho_{(E_{t-1}\setminus F)\cup\{e\}} \rho_{E_{t-1}\setminus F} w_{\{e\}}(E_t) \sum_{F' \subset F: F \in supp(w(E_{t-1}))} w_{F'\cup\{e\}}(E_t)$
 - $w_F(E_t) \leftarrow w_F(E_t) w_{F \cup \{e\}}(E_t)$
 - #variables = $2|supp(w(E_{t-1}))| + 1 = O(|\underline{E}|)$
 - In each iteration, solve a **linear system** whose size is **linear in the underlay network size**.
 - In total |*E*| iterations, **linear in the overlay network size**
 - The first **polynomial-time** algorithm for category inference

Effective Category Capacity Inference

• The minimum capacity of the links in a category may not be measurable

• Effective Category Capacity: maximum flow through the tunnels associated with the category

•
$$\tilde{C}_F \coloneqq \max_{\substack{(f_e)_{e \in E}}} \sum_{e \in F} f_e \ (f_e: \text{flow assigned to tunnel e})$$

s.t. $\sum_{e' \in F'} f_{e'} \leq C_{F'}, \forall F' \subseteq E, \Gamma_{F'} \neq \emptyset$
 $f_e \geq 0, \forall e \in E \quad \text{UNKNOWN}$

Effective Category Capacity Estimation

• Algorithm:

[1] Jain M, Dovrolis C. "End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput," IEEE/ACM TNET, 2003.

Algorithm 3: Effective Category Capacity Estimationinput : set \mathcal{F} of category indices of interest (e.g.,
 $\mathcal{F} := \{F \subseteq E : \hat{w}_F > \eta\}$ output: Estimated effective category capacities $\{\hat{C}_F\}_{F \in \mathcal{F}}$ 1 for each $F := \{e_{i_1}, \cdots, e_{i_{|F|}}\} \in \mathcal{F}$ do2 $f_{e_{i_1}} \leftarrow \hat{C}_{e_{i_1}}(\mathbf{0}); \longrightarrow$ Initialize all flows f_e to zero3for $j = 2, \cdots, |F|$ do4 $\int f_{e_{i_j}} \leftarrow \hat{C}_{e_{i_j}}(f); \longrightarrow$ Subroutine [1]: test the residual capacity of a tunnel given flow assignment5 $\hat{C}_F \leftarrow \sum_{j=1}^{|F|} f_{e_{i_j}}; \longrightarrow$ Sum of flow rates6return $\{\hat{C}_F\}_{F \in \mathcal{F}};$

• Performance guarantee

- If Line~4 is accurate, then Algorithm 3 achieves $1/q_F$ approximation
 - $q_F \coloneqq \max_{e \in F} |\{F' \subseteq E : e \in F', \Gamma_{F'} \neq \emptyset, |F' \cap F| > 1\}|$
 - maximum number of nonempty categories a tunnel in F traverses that are shared by at least another tunnel in F

Resulting Overlay Routing Problem

NS3-Based Simulation

• Topologies from Internet Topology Zoo

	AttMpls	AboveNet	GTS-CE	BellCanada
$ \underline{V} $	25	23	149	48
<u> </u> <u>E</u>	114	62	386	130
<i>C<u>e</u></i> (Gbps)	1	1	1	1
Link delays (us)	[206,4973]	[100, 13800]	[5,1081]	[78, 6160]

• Background traffic

- ON-OFF process for each link independently
 - Duration follows Pareto distribution
 - Utilization: [10%,40%]

• Probing

- Number of overlay nodes: 10
- 50-byte packets for probing; 1000-byte packets for routings
- Measurements: end-to-end delays
- Routing cost: link (propagation) delays

Performance of Inference

Non-Empty Category Detection

	AttMpls	AboveNet	GTS-CE	BellCanada
#empty cat.	$2^{90} - 69$	$2^{90} - 52$	$2^{90} - 59$	$2^{90} - 51$
#nonempty cat.	69	52	59	51
#false alarms	603	542	2159	1695
#misses	20	27	40	30

- Low false alarm rate although the absolute number is not small
- **High miss rate:** Inaccurate estimation of ρ_F if (1) |F| is large or (2) tunnels in F have different sources

Effective Category Capacity Estimation

	AttMpls	AboveNet	GTS-CE	BellCanada
ideal subroutine	0.10%	0.13%	0.13%	0.4%
Pathload	1.07%	1.18%	1.15%	1.49%

• Highly accurate capacity estimation: False alarms will not hurt in most case, but misses may lead to congestions.

Performance of Overlay Routing

Benchmarks

- "Agnostic": an underlay-agnostic routing
- "LCC": the state-of-the-art solution from [2]
- "Proposed"
- "Enhanced proposed": "Proposed" + "LCC"

[2] Y. Zhu and B. Li, "Overlay networks with linear capacity constraints," IEEE TPDS, 2008

Improved overlay routing performance despite notable estimation errors

Concluding Remark

- Topology inference: Jointly infer network internal structure & state from external observations
 - What structures are possible, what measurements are allowed
 - → A tool for application-layer network optimization (e.g., overlay routing)

Restriction on measurement

CT Scan for Your Network: Topology Inference from End-to-End Measurements

Ting He, tinghe@psu.edu

Backup slides

Restriction on measurement

Scenario: Passive monitoring only

• A network of independent M/M/1 queues

- Goal: Address two key limitations of existing solutions
 - Active probing → passive monitoring
 - Logical topology → physical topology

Why it is feasible

- Queue parameter: $\delta_i = \mu_i \lambda_i$ (residual capacity)
- Sojourn time: exponential r.v. with PDF $\delta_i e^{-\delta_i t_i}$
- End-to-end delay: hypoexponential r.v. with parameters $\boldsymbol{\delta} \coloneqq (\delta_i)_{i=1}^K$
- Idea: Queue fingerprinting

Parameter estimation for tandem of M/M/1 queues: Estimator

h=1

• Idea 1: MLE
• PDF:
$$g(x; \delta) = \sum_{i=1}^{K} \delta_i e^{-x\delta_i} \left(\prod_{j=1, j \neq i}^{K} \frac{\delta_j}{\delta_j - \delta_i} \right)$$

- Idea 2: Fitting Laplace transform
 - Laplace transform: $L(s; \delta) := \prod_{i=1}^{K} \frac{\delta_i}{\delta_i + s}, \quad s > -\min_{i=1,...,K} \delta_i.$
 - Empirical Laplace transform: $\hat{L}(s; \boldsymbol{x}) := \frac{1}{n} \sum_{k=1}^{n} e^{-sx_{k}}$

$$\rightarrow \qquad \min \quad \sum_{s \in S} |L(s; \, \boldsymbol{\delta}) - \hat{L}(s; \, \boldsymbol{x})| \\ \text{s.t. } 0 < \delta_1 \leq \cdots \leq \delta_K,$$

Parameter estimation for tandem of M/M/1 queues: Performance

• **Theorem.** As $n \rightarrow \infty$, Laplace fitting has a unique optimal solution that equals the ground truth δ if |S| > K.

Queueing topology inference: idea

Queueing topology inference: challenges

- Parameter estimation is not perfect
 - An upper bound Δ , such that

 $D_{\{q_{i_1j_1},...,q_{i_kj_k}\}} := \max\{\delta_{i_1j_1},...,\delta_{i_kj_k}\} - \min\{\delta_{i_1j_1},...,\delta_{i_kj_k}\} \le \Delta$

- Topology is not arbitrary
 - Partially overlapping categories cannot coexist
- Exponential complexity if brute-forcing
 - $O(K^N)$ ways to merge queues

Queueing topology inference: solution

- A *greedy* algorithm with *progressively constructed search space* to infer estimated parameters associated with the same queue
 - $O(K^4N^5)$ time complexity, $O(K^2N^3)$ space complexity
 - Correct if estimated parameters are sufficiently accurate
 - **Theorem.** All parameters for the same queue are correctly identified if $|\delta_{ij} \delta^*_{ij}| \leq \frac{\Delta}{2} < \frac{\Delta^*}{4}$ (where $\Delta^* \coloneqq \min_{e \neq e'} |\delta^*_e \delta^*_{e'}|$)

 \rightarrow Under this condition, the inferred topology will be identical to the ground truth, up to a permutation of queues on the same branch.

Performance evaluation

Routing trees generated from AS6461 of Abovenet

solid line: edit distance for inferred topology; dotted line: edit distance for multicast tree

How to improve the scalability

- Idea: Combining passive & active measurements
 - Passive measurements \rightarrow queue fingerprints
 - Active measurements \rightarrow shared path length

Outline

Restriction on measurement

Scenario: Cross-path attack

• An attacker in control of a set of *attack paths* wants to launch indirect DoS attack on a set of *target paths* by consuming shared resources

Example 1: Data \rightarrow Control Plane Attack in SDN

Example 2: Cross-slice Attack in 5G

Cross-path attack: A high-level description

• Cross-path attack contains a *reconnaissance phase* and an *active attack phase*

Which attack paths share resource with target paths?WWhat is the capacity of the shared resource?Hc

Which attack paths to use? How much traffic to send?

Adversarial reconnaissance: A topology inference problem

- Observation model: Active probing on attack paths, passive monitoring on target paths
- Goal: Support optimal attack design
 - Knowing the true routing topology formed by all attack/target paths is sufficient, but not necessary
- Idea: Use mimicked multicast to infer "attack paths + 1 target path" topologies

Adversarial reconnaissance: Results

• Recursive algorithm to detect shared links

 Theorem. If all shared links have non-zero metrics and category weights are estimated accurately, then all shared links will be correctly detected.

- Recursive algorithm to estimate parameters of detected shared links
 - Modeled as M/M/1, M/D/1, or G/G/1 queue
 - Estimated by fitting average delay under *K* different probing rates
 - Theorem. If all shared links are correctly detected, and the average delays on target paths are accurately estimated, then the parameters of shared links will be accurately estimated if (i) K > 2 under M/M/1 or M/D/1, and (ii) K > 4 under G/G/1

Attack design: Objectives and results

• Objective 1: Delay maximization

$$\begin{split} \max f(\bar{\boldsymbol{\lambda}}) &\coloneqq \sum_{i=1}^{N_B} \beta_i \sum_{e \in \mathcal{T}: W_{ie} > 0} d(\xi_{ie}; \sum_{k=1}^{N_A} h_{ek} \bar{\lambda}_k) \\ \text{s.t.} &\sum_{k=1}^{N_A} \bar{\lambda}_k \leq \lambda, \\ &\sum_{k=1}^{N_A} h_{ek} \bar{\lambda}_k \leq \tilde{r}_e, \ \forall e \in \mathcal{T}, \\ &\bar{\lambda}_k \geq 0, \ k = 1, \dots, N_A, \end{split}$$

• Objective 2: Overload maximization

$$\max_{\bar{\lambda}} \max_{e \in \mathcal{T}: \exists W_{ie} > 0} \left(\sum_{k=1}^{N_A} h_{ek} \bar{\lambda}_k - \min_{i \in \{1, \dots, N_B\}: W_{ie} > 0} r_{ie} \right)$$

s.t.
$$\sum_{k=1}^{N_A} \bar{\lambda}_k \le \lambda, \quad \sum_{k=1}^{N_A} h_{ek} \bar{\lambda}_k \le \tilde{r}_e, \ \forall e \in \mathcal{T}, \quad \bar{\lambda}_k \ge 0, \ k = 1, \dots, N_A,$$

Both maximizing convex function under linear constraints

→ Optimum at a vertex
 → If attack rate $\lambda \le \min_{e \in T} \tilde{r}_e$, optimal to send all attack traffic on one attack path

Performance evaluation: NS3 + 5G Lena

• Scenario: 5G IAB (Integrated Access and Backhaul) network

• ON-OFF traffic, discrete packet sizes

Performance evaluation: Results

- a) Can detect most of the shared links
- b) Notable error in estimated parameters
- c) Near-optimal performance in attack design

Concluding Remark

- Topology inference: Jointly infer network *internal structure* from *external observations*
 - what "internal structure" to infer, what structures are possible, what measurements are allowed
 - → A double-sided sword (overlay management vs. adversarial reconnaissance)

CT Scan for Network: Topology Inference from End-to-End Measurements

Ting He, tinghe@psu.edu

Backup slides

Example: Shared link detection

54

Parameter Estimation

Top-down: One queue at a time

M/D/1:
$$d(\lambda_e, \mu_e; \bar{\lambda}) = \frac{2\mu_e - \lambda_e - \bar{\lambda}}{2\mu_e(\mu_e - \lambda_e - \bar{\lambda})}$$

$$\begin{aligned} \mathsf{G/G/1:} \quad d(\lambda_e, \mu_e, \sigma_{ae}, \sigma_{se}; \bar{\lambda}) \approx \\ \quad \frac{1}{2\mu_e} \frac{\lambda_e + \bar{\lambda}}{\mu_e - \lambda_e - \bar{\lambda}} \Big(\sigma_{ae}^2 (\lambda_e + \bar{\lambda})^2 + \sigma_{se}^2 \mu_e^2 \Big) + \frac{1}{\mu_e} \Big] \end{aligned}$$

Ground truth

Parameter Estimation

