CT Scan for Your Network: Topology Inference from End-to-End Measurements

Ting He Associate Professor, CSE@Penn State

Students:

Yilei Lin, Yudi Huang, Akash Kumar (Penn State)

Network Sciences Research Group (NSRG)

- **Interests:**
	- **communication networking** (network tomography, SDN, overlay, 5G, security)
	- **distributed machine learning** (coreset, data reduction, federated learning)
	- **mobile edge computing** (resource allocation)
	- **cyber-physical systems** (smart grid, state estimation, false data injection)
- **Members:**
	- **Ting He, Associate Professor**
	- 6 PhD students
	- Alumni: 4 PhD, 6 MS (Bucknell, Google, Meta, ByteDance, HP, Amazon, Oracle)
- **Example projects:**
- **Network tomography**

- **Security in SDN** Network Software Defined Network attack target routing access with a controller load balance Software control agent f<mark>low</mark> table CA CA CA CA attack target
- **Communication-efficient ML**

Network Inference Network Control

- $\langle \alpha_{(2,3)} \rangle$ rate more candidates L Alg I - Greedy lg II - Graph Sparsification
	-

• **Data reduction for ML**

PennState College of Engineering

> **ELECTRICAL ENGINEERING AND COMPUTER SCIENCE**

Overview: What is network tomography

• Using *external observations* to infer *internal network state*

Motivation: Why topology inference

• **Topology information is useful**

- Routing
- Service placement
- Client-server association
- Overlay management
- Load balancing
- Trouble shooting
- But **it is not always observable**
	- Use protocols to collect topology information (e.g., SNMP, OpenFlow) \rightarrow admin privilege
	- Use ICMP to measure topology (e.g., traceroute) \rightarrow supportive internal nodes

• …

Q: Is it possible to infer **network topology** from **end-to-end measurements**? If so, how?

Toy example: Why it is feasible

• Multicast measurements reveal internal topology

$$
-\log \alpha_1 - \log \alpha_2 = -\log \Pr\{X_{p_1} = 1\},
$$

$$
-\log \alpha_1 - \log \alpha_3 = -\log \Pr\{X_{p_2} = 1\},
$$

$$
-\log \alpha_1 = -\log \left(\frac{\Pr\{X_{p_1} = 1\} \Pr\{X_{p_2} = 1\}}{\Pr\{X_{p_1} = X_{p_2} = 1\}}\right).
$$

 X_{p_i} : success indicator for path i

History: Where we are

Our approach: Revisiting topology inference problems in new application contexts

Restriction on measurement

Scenario: Probe all paths, arbitrary routing

- **Motivation**: Inferring the structure and state of *SDN-NFV network*
	- general topology
	- waypoint traversal
	- known service chain

• **Observation:**

- Measured: end-to-end performance measurements (e.g., losses)
- Inferred: lengths of paths, shared paths, union of paths
	- "length" measured by additive metric
	- E.g., $\theta_e = -\log \alpha_e$ (α_e : success prob. of edge e)
- Static: source, destination, service chain

Tree-based topology inference is insufficient

- Classic topology inference algorithms all assume tree-based routing
- But trees cannot always reconstruct the observations from a non-tree topology

 $\text{length}(p_1)=4$ $\text{length}(p_2)=6$ $leng(p_3)=3$

leng(p₁∩p₂)=4 leng(p₁∩p₃)=1 leng(p₂∩p₃)=3

No tree topology reconstructs all these lengths \rightarrow not even guarantee a feasible solution

Category weights are identifiable

• **Weight Inference Problem**:

- Partition edges into 2n-1 *categories*
	- **Category** Γ_F : set of edges *traversed by and only by* paths with indices in F
	- **Category weight** W_F **:** sum metric of edges in category Γ_F
- Observe *cast weights*, infer category weights
	- **Cast weight** ρ_F **for a multicast on paths in F:**

$$
\rho_F := -\log(\Pr\{X_F = 1\}) = -\log\left(\prod_{e \in \bigcup_{i \in F} p_i} \alpha_e\right) = \sum_{e \in \bigcup_{i \in F} p_i} \theta_e
$$

• Relationship between cast weights and category weights

Topologyagnostic

 $\rho_F =$ $F' \subset F \cdot F' \cap F \neq \emptyset$ W_F , $\forall F \subseteq E$

¹⁰ **Theorem: Category weights are uniquely determined by cast weights.**

Category weights help, but are not enough

- Under mild assumption, category $\Gamma_F \neq \emptyset \leftrightarrow W_F \neq 0$
- For trees, knowing non-empty categories \rightarrow knowing (logical) topology Q_{\bullet}

$$
\Gamma_{1,2,3} \neq \emptyset
$$
\n
$$
\Gamma_{1,2} \neq \emptyset
$$
\n
$$
\Gamma_{1,1} \Gamma_{2,1} \Gamma_{3} \neq \emptyset
$$
\n
$$
\rho_{3} \neq \rho_{2} \neq \rho_{1}
$$

- But not so for arbitrary topology
	- E.g., can always embed the non-empty categories in a clique-like topology

Idea: Combining categories with service chain

• **String Augmentation Problem (SAP):**

- view each service chain as a string s_i, f_{i,1}, f_{i,2},...,t_i
- insert dummy letters f_0^1 , f_0^2 ,... s.t. for every positive-weight category A, ∃a pair of letters appearing *only* in string i (i∈A) $\frac{S}{\sqrt{2}}$

p'₁: s f₁ f₂ f₃ t
\np'₂: s f₂ f₁ f₄ t
\np'₃: s f₄ f₂ f₃ t
\nA₄: {1}, {2}, {3},
\nA₄: {1}, {2}, {3},
\n
$$
\{1,2\}, \{1,3\}, \{2,3\},
$$
\n
$$
p_3: s f_0 f_4 f_2 f_0 f_3 t
$$
\n
$$
\{1,2\}, \{1,3\}, \{2,3\},
$$
\n
$$
p_3: s f_0 f_4 f_2 f_0 f_3 t
$$
\n
$$
\{1,2,3\}
$$
\n
$$
p_4
$$
\n
$$
p_5
$$
\n
$$
p_5
$$
\n
$$
p_6
$$
\n
$$
p_7
$$
\n
$$
p_8
$$
\n
$$
p_9
$$
\n
$$
p
$$

• Minimize #nodes/#links (can be formulated as an ILP) $\frac{1}{12}$

Evaluation: VNF topology inference

• Based on VNF overlays randomly generated on Rocketfuel AS topologies

Topology inference from the perspective of upper-layer application

Restriction on measurement

Overlay Network

- A logical network running on top of an underlying communication infrastructure (underlay network)
	- Enhance best-effort IP-based underlay network
		- Caching, traffic engineering (service-chaining, multicast), fast failover, network slicing, …
	- Focus: **overlay-based routing**
- Example: SD-WAN
	- Software-Defined Wide-Area Networks

Managed SD-WAN Solutions

AT&T SD-WAN solutions can improve your network's agility and provide centralized control and improve total cost of ownership.

 $1/21$ Cisco SD-WAN overlay fabric

Routing in Overlay Network is Challenging

- Challenges
	- Seemingly independent tunnels share underlay links
		- Congestion
	- Uncooperative underlay
		- No direct underlay topology information

Q: Do we need the full topology for overlay routing? A: No!

- Flow: $a \rightarrow e$ and $b \rightarrow d$
- Direct tunnel: both traverse $h_1 \rightarrow h_2$
- Congestion-free overlay routing:
	- $a \rightarrow e$
	- \cdot b->c->d

Overlay Routing Problem

Q: What is the **minimum information** for **imposing capacity constraints** for an **uncooperative underlay**?

Recall: Underlay Link Categorization

- (Underlay) link category
	- $\Gamma_F(E)$: A category of links traversed by F **out of** E ($F \subseteq E$) is the set of underlay links traversed **by and only by** the tunnels in F out of all the tunnels in E
		- i.e., $\Gamma_F(E) \coloneqq \left(\bigcap_{(i,j)\in F} p_{i,j} \right) / \left(\bigcup_{(i,j)\in E\setminus F} p_{i,j} \right)$ Links shared by F All links traversed by $E\backslash F$

• Category weight:
$$
w_F(E) := \sum_{\underline{e} \in \Gamma_F(E)} \theta_{\underline{e}}
$$

Observation: Knowledge of **link categories suffices for congestion-free overlay routing**

Example: $E = \{(a, d), (b, e)\}\;$

•
$$
F_1 = \{(a, d), (b, e)\}
$$

•
$$
\Gamma_{F_1}(E) = \{(h_1, h_2)\}\
$$

• $F_2 = \{(a, d)\}\$ • $\Gamma_{F_2}(E) = \{(a, h_1), (h_2, d)\}$

•
$$
F_3 = \{(b, e)\}\
$$

• $\Gamma_{F_3}(E) = \{(b, h_1), (h_2, e)\}\$

Category-based Capacity Constraints

Challenge of Category Inference

• **Full rank** linear system

•
$$
w_F(E) > 0 \Rightarrow \Gamma_F(E) \neq \emptyset
$$

Q: Is problem solved? A: Unfortunately, **no**

- **Exponential complexity!** #variables = $2^{|E|} = 2^{O(|V|^2)}$
- Example: $|V| = 10$, number of candidate categories: 2^{90}

Taming the Complexity in Category Inference

Idea: Given $\{w_F(E_{t-1})\}$ and $E_t \leftarrow E_{t-1} \cup \{e_t\}$, augment it into $\{w_F(E_t)\}$ \rightarrow Dynamic programming

Idea for Dynamic Programming

• Category weights are decomposed gradually

 $(*non-empty categories \leq *⊭*underlay links)$

• For any $E' \subset E$ and $e \in E \setminus E'$, $w_F(E') = w_{F \cup \{e\}}(E' \cup \{e\}) + w_F(E' \cup$

 $E_{t-1} = \{(a, d), (b, e)\}\$

b a d e b a d e overlay underlay $h₁$ $\rm h_{2}$ b a b a overlay underlay h_{1} $\rm h^{}_{2}$ $W_F(E_{t-1})$ } $\{ (a, d) \}$ $\qquad \qquad \{ (a, d), (b, d) \}, \{ (a, d) \}$ $\{(a, d), (b, e)\}\$ $\{(a,d)\}\$ $\{(b,e)\}\$ $\{(a, d), (b, e), (b, d)\}, \{(a, d), (b, e)\}\$ $\{(b, e), (b, d)\}, \{(b, e)\}\$ $\{(b,d)\}\$ $|supp(\mathbf{w}(E_{t-1}))| \leq |E|$

#variables = $2 | supp(w(E_{t-1}))| + 1$

 $E_t = \{(a, d), (b, e), (b, d)\}\$

candidates

d

e

e

d

Algorithm for Category Inference

- Dynamic programming with the update rule:
	- $E_t \leftarrow E_{t-1} \cup \{e\}$
	- $w_{\{e\}}(E_t) \leftarrow \rho_{E_t} \rho_{E_{t-1}}$
	- For $F \in supp(w(E_{t-1}))$ in an increasing order of |F|:
		- $W_{F \cup \{e\}}(E_t) \leftarrow \rho_{(E_{t-1} \setminus F) \cup \{e\}} \rho_{E_{t-1} \setminus F} W_{\{e\}}(E_t) \sum_{F'\subset F: F\in supp(w(E_{t-1}))} w_{F\prime\cup\{e\}}(E_t)$
		- $w_F(E_t) \leftarrow w_F(E_t) w_{F \cup \{e\}}(E_t)$
	- #variables = $2 | supp(w(E_{t-1}))| + 1 = O(|E|)$
		- In each iteration, solve a **linear system** whose size is **linear in the underlay network size**.
		- In total $|E|$ iterations, **linear in the overlay network size**
		- The first **polynomial-time** algorithm for category inference

Effective Category Capacity Inference

• The minimum capacity of the links in a category may not be measurable

• Effective Category Capacity: maximum flow through the tunnels associated with the category

•
$$
\tilde{C}_F := \max_{(f_e)_{e \in E}} \sum_{e \in F} f_e (f_e: \text{flow assigned to tunnel e})
$$

s.t. $\sum_{e' \in F'} f_{e'} \leq C_{F} \quad \forall F' \subseteq E, \Gamma_{F'} \neq \emptyset$
 $f_e \geq 0, \forall e \in E$

Effective Category Capacity Estimation

• Algorithm:

[1] Jain M, Dovrolis C. "End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput," IEEE/ACM TNET, 2003.

Algorithm 3: Effective Category Capacity Estimation input : set $\mathcal F$ of category indices of interest (e.g., $\mathcal{F} \coloneqq \{ F \subseteq E : \hat{w}_F > \eta \}$ **output**: Estimated effective category capacities $\{\hat{C}_F\}_{F \in \mathcal{F}}$ 1 for each $F := \{e_{i_1}, \cdots, e_{i_{|F|}}\} \in \mathcal{F}$ do Initialize all flows f_e to zero Subroutine [1]: test the residual capacity of a tunnel given flow assignment Sum of flow rates 6 return $\{\hat{C}_F\}_{F \in \mathcal{F}}$;

• Performance guarantee

- If Line~4 is accurate, then Algorithm 3 achieves $^{1}\!/_{q_{F}}$ approximation
	- $q_F := \max_{e \in F} |\{F' \subseteq E : e \in F', \Gamma_{F'} \neq \emptyset, |F' \cap F| > 1 \}|$ e∈F
	- maximum number of nonempty categories a tunnel in F traverses that are shared by at least another tunnel in F

Resulting Overlay Routing Problem

NS3-Based Simulation

• Topologies from Internet Topology Zoo

• Background traffic

- ON-OFF process for each link independently
	- Duration follows Pareto distribution
	- Utilization: [10%,40%]

• Probing

- Number of overlay nodes: 10
- 50-byte packets for probing; 1000-byte packets for routings
- Measurements: end-to-end delays
- Routing cost: link (propagation) delays

Performance of Inference

Non-Empty Category Detection

• **Low false alarm rate** although the absolute number is not small

• **High miss rate:** Inaccurate estimation of ρ_F if (1) $|F|$ is large or (2) tunnels in F have different sources

Effective Category Capacity Estimation

• **Highly accurate capacity estimation:** *False alarms will not hurt* in most case, but *misses may lead to congestions*.

Performance of Overlay Routing

• Benchmarks

- "**Agnostic**": an underlay-agnostic routing
- "**LCC**": the state-of-the-art solution from [2]
- "**Proposed**"
- "**Enhanced proposed**": "Proposed" + "LCC"

[2] Y. Zhu and B. Li, "Overlay networks with linear capacity constraints," IEEE TPDS, 2008

Improved overlay routing performance despite notable estimation errors

Concluding Remark

- Topology inference: **Jointly infer network** *internal structure & state* **from** *external observations*
	- What structures are possible, what measurements are allowed
	- → A tool for **application-layer network optimization** (e.g., overlay routing)

Restriction on measurement

CT Scan for Your Network: Topology Inference from End-to-End Measurements

Ting He, tinghe@psu.edu

Backup slides

Restriction on measurement

Scenario: Passive monitoring only

• A network of independent M/M/1 queues

- **Goal**: Address two key limitations of existing solutions
	- Active probing \rightarrow **passive monitoring**
	- Logical topology \rightarrow **physical topology**

Why it is feasible

- Queue parameter: $\delta_i = \mu_i \lambda_i$ (residual capacity)
- Sojourn time: exponential r.v. with PDF $\delta_i e^{-\delta_i t_i}$
- End-to-end delay: hypoexponential r.v. with parameters $\boldsymbol{\delta}\coloneqq (\delta_i)_{i=1}^K$
- Idea: **Queue fingerprinting**

Parameter estimation for tandem of M/M/1 queues: Estimator

 $h=1$

• Idea 1: MLE
$$
\hat{\delta} = argmax_{\delta} \sum_{h=1}^{n} log g(x_h; \delta)
$$

• PDF:
$$
g(x; \delta) = \sum_{i=1}^{K} \delta_i e^{-x \delta_i} \left(\prod_{j=1, j \neq i}^{K} \frac{\delta_j}{\delta_j - \delta_i} \right)
$$

- Idea 2: **Fitting Laplace transform**
	- Laplace transform: $L(s; \delta) := \prod_{i=1}^K \frac{\delta_i}{\delta_i + s}, \quad s > \min_{i=1,\dots,K} \delta_i.$
	- Empirical Laplace transform: $\hat{L}(s; x) := \frac{1}{n} \sum_{n=0}^n e^{-s x_n}$

$$
\Rightarrow \quad \boxed{\min \sum_{s \in S} |L(s; \delta) - \hat{L}(s; \mathbf{x})|}_{\text{s.t. } 0 < \delta_1 \leq \cdots \leq \delta_K,}
$$

Parameter estimation for tandem of M/M/1 queues: Performance

• **Theorem.** As n→∞, Laplace fitting has a unique optimal solution that equals the ground truth δ if $|S| > K$.

Queueing topology inference: idea

Queueing topology inference: challenges

- Parameter estimation is not perfect
	- An upper bound Δ , such that

 $D_{\{q_{i_1j_1},...,q_{i_kj_k}\}} := \max\{\delta_{i_1j_1},...,\delta_{i_kj_k}\}-\min\{\delta_{i_1j_1},...,\delta_{i_kj_k}\}\leq \Delta$

- Topology is not arbitrary
	- Partially overlapping categories cannot coexist
- Exponential complexity if brute-forcing
	- $O(K^N)$ ways to merge queues

Queueing topology inference: solution

- A *greedy* algorithm with *progressively constructed search space* to infer estimated parameters associated with the same queue
	- $O(K^4N^5)$ time complexity, $O(K^2N^3)$ space complexity
	- Correct if estimated parameters are sufficiently accurate
		- **Theorem.** All parameters for the same queue are correctly identified if $\delta_{ij} - \delta_{ij}^* \leq \frac{\Delta}{2}$ 2 $<\frac{\Delta^*}{4}$ $\frac{1}{4}$ (where $\Delta^* \coloneqq \min_{e \neq e'}$ $|\delta_e^* - \delta_{e}^*|$

→ Under this condition, the inferred topology will be identical to the **ground truth**, up to a permutation of queues on the same branch.

Performance evaluation

• Routing trees generated from AS6461 of Abovenet

solid line: edit distance for inferred topology; dotted line: edit distance for multicast tree 41

How to improve the scalability

- Idea: Combining passive & active measurements
	- Passive measurements \rightarrow queue fingerprints
	- Active measurements \rightarrow shared path length

Restriction on measurement

Scenario: Cross-path attack

• An attacker in control of a set of *attack paths* wants to launch indirect DoS attack on a set of *target paths* by consuming shared resources

Example 1: Data \rightarrow *Control Plane Attack in SDN*

Example 2: Cross-slice Attack in 5G

Cross-path attack: A high-level description

• Cross-path attack contains a *reconnaissance phase* and an *active attack phase*

Which attack paths share resource with target paths? What is the capacity of the shared resource?

Which attack paths to use? How much traffic to send?

Adversarial reconnaissance: A topology inference problem

- **Observation model**: *Active probing* on attack paths, *passive monitoring* on target paths
- **Goal:** Support optimal attack design
	- Knowing the true routing topology formed by all attack/target paths is sufficient, but not necessary
- **Idea:** Use mimicked multicast to infer "attack paths + 1 target path" topologies

Adversarial reconnaissance: Results

• Recursive algorithm to detect shared links

• **Theorem.** If all shared links have non-zero metrics and **category weights are estimated accurately**, then all **shared links will be correctly detected**.

- Recursive algorithm to estimate parameters of detected shared links
	- Modeled as M/M/1, M/D/1, or G/G/1 queue
	- Estimated by fitting average delay under K different probing rates
	- **Theorem.** If all shared links are correctly detected, and the **average delays on target paths are accurately estimated**, then the **parameters of shared links will be accurately estimated** if (i) $K > 2$ under M/M/1 or M/D/1, and (ii) $K > 2$ 4 under G/G/1

Attack design: Objectives and results

• Objective 1: Delay maximization

$$
\max f(\bar{\lambda}) := \sum_{i=1}^{N_B} \beta_i \sum_{e \in \mathcal{T}: W_{ie} > 0} d(\xi_{ie}; \sum_{k=1}^{N_A} h_{ek} \bar{\lambda}_k)
$$

s.t.
$$
\sum_{k=1}^{N_A} \bar{\lambda}_k \leq \lambda,
$$

$$
\sum_{k=1}^{N_A} h_{ek} \bar{\lambda}_k \leq \tilde{r}_e, \forall e \in \mathcal{T},
$$

$$
\bar{\lambda}_k \geq 0, k = 1, ..., N_A,
$$

• Objective 2: Overload maximization

max $\boldsymbol{\lambda}$ s.t. $\sum_{k=1}^{N_A} \bar{\lambda}_k \leq \lambda$, $\sum_{k=1}^{N_A} h_{ek} \bar{\lambda}_k \leq \tilde{r}_e$, $\forall e \in \mathcal{T}$, $\bar{\lambda}_k \geq 0$, $k = 1, ..., N_A$,

Both **maximizing convex function under linear constraints**

 \rightarrow Optimum at a vertex

→ If attack rate $\lambda \leq \min_{e \in T} \tilde{r}_e$, optimal to send all attack traffic on one attack path

Performance evaluation: NS3 + 5G Lena

• Scenario: 5G IAB (Integrated Access and Backhaul) network

• ON-OFF traffic, discrete packet sizes 49

Performance evaluation: Results

- a) Can detect most of the shared links
- b) Notable error in estimated parameters
- c) Near-optimal performance in attack design

Concluding Remark

- Topology inference: Jointly infer network *internal structure* from *external observations*
	- what "internal structure" to infer, what structures are possible, what measurements are allowed
	- \rightarrow A double-sided sword (overlay management vs. adversarial reconnaissance)

CT Scan for Network: Topology Inference from End-to-End Measurements

Ting He, tinghe@psu.edu

Backup slides

Example: Shared link detection

Parameter Estimation

Top-down: One queue at a time

$$
M/D/1: d(\lambda_e, \mu_e; \bar{\lambda}) = \frac{2\mu_e - \lambda_e - \lambda}{2\mu_e(\mu_e - \lambda_e - \bar{\lambda})}
$$

$$
\mathsf{G/G/1:}\quad d(\lambda_e, \mu_e, \sigma_{ae}, \sigma_{se}; \bar{\lambda}) \approx
$$
\n
$$
\frac{1}{2\mu_e} \frac{\lambda_e + \bar{\lambda}}{\mu_e - \lambda_e - \bar{\lambda}} \left(\sigma_{ae}^2 (\lambda_e + \bar{\lambda})^2 + \sigma_{se}^2 \mu_e^2 \right) + \frac{1}{\mu_e}
$$

Ground truth

Parameter Estimation

