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Motivation

Focus on Wireless Networked Control Systems (WNCS)

PlantActuator Sensor
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Motivation
Industrial automation

Source:https://www.digi.com/

Traffic control

Source:https://www.digi.com/

Smart grid

Source:https://www.energysage.com/
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Motivation

Transmission is expensive and consumes energy

Continual transmissions are not efficient

 

Continual transmissions
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WNCS Challenges

WNCS

Partially observed 
   wireless communication 

channel

Half-duplex 
controller

Consider problems 

Risk-sensitive cost
objective
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Partially observed channel

Optimal scheduling policies for remote estimation of
autoregressive Markov processes over time-correlated fading

channel

(2023 62nd IEEE Conference on Decision and Control (CDC)
(pp. 6455-6462))
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Partially observed channel

Sensor Channel state partially observed by the sensor

u(t) = ϕt(F(t)) ∈ {0, 1} where,

F(t) is the information available till time t

Channel model c(t) Markovian; c(t) = 1 : Good, c(t) = 0 : Bad.
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Gilbert-Elliot
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Partially observed channel

Estimator x̂(t) =

{
x(t) if pkt. received,
ax̂(t− 1) otherwise

Estimation error x(t)− x̂(t)

Transmission strategy ϕ = {ϕt}∞t=0
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Problem formulation

Goal

Consider problem:
Optimal dynamic scheduling of sensor packet transmissions
Trade-off between communication cost and estimation error

 

Continual transmissions

 

Dynamic transmissions
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Optimization Problem

Problem

min
ϕ

Eϕ

( ∞∑
t=0

βt
(
(x(t)− x̂(t))2 + λu(t)

))
,

discount factor β ∈ (0, 1), λu(t) is the communication cost
λ > 0, u(t) ∈ {0, 1}
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Literature Overview

Markovian communication channel
[Ren et al., 2017]

Channel state instantaneously known to sensor
Optimal transmission strategy threshold-type w.r.t. error

[Chakravorty and Mahajan, 2017; Chakravorty and
Mahajan, 2019]

Channel state perfectly known to sensor with delay of one
unit
Optimal transmission strategy threshold-type w.r.t. error

Key differences in our model
Channel state partially observed by sensor
Channel state known to sensor only via ACK sent by
estimator when there is transmission attempt
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Contributions

Our contributions
Formulate optimization problem as a Partially Observable
MDP(POMDP)
Identify a dynamic programming decomposition
Introduce “folded POMDP” to ease analysis
Existence of an optimal transmission strategy exhibiting
threshold structure w.r.t. belief state (channel state
estimate)
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POMDP Formulation

State Belief state b(t) := E(c(t)|F(t)),

where F(t) is the information available till time t

Error e(t) = x(t)− ax̂(t− 1)

Control u(t) = ϕt(e(t), b(t)) ∈ {0, 1}

Instantaneous cost

d(e, b, u) :=

{
a2e2 + λu if u = 0,

(1− b)(a2e2 + 1) + λ if u = 1

Transmission strategy ϕ = {ϕt}∞t=0

POMDP

min
ϕ

Eϕ

( ∞∑
t=0

βt(d(e(t), b(t), u(t)))

)
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Technical Assumptions

AR process: x(t+ 1) = ax(t) + w(t)

0 1

p01

1− p11

1− p01 p11

Gilbert-Elliot channel

(A1) Stability: a2(1− p01) < 1

(A2) Positively correlated channel: p11 ≥ p01
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Main Result
Theorem 1: Structure of optimal transmission strategy
There exists a threshold-type optimal strategy,

u(t) = ϕ⋆(e(t), b(t)) =

{
1 if b(t) ≥ b⋆(|e(t)|),
0 if b(t) < b⋆(|e(t)|)

where b⋆(|e(t)|) is threshold
 

𝒃∗(𝟎. 𝟒) 

𝒃∗(𝟎. 𝟐) 

Optimal strategy
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Proof Outline

Step 1 Value iteration to solve the POMDP
Key challenge

Instantaneous cost is unbounded

State-space consists of error taking negative values

Step 2 Equivalent simpler folded POMDP

Step 3 Optimal transmission strategy for folded POMDP

Step 4 Unfolding
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Step 1: Value Iteration

V (β)(e, b) := min
ϕ

Eϕ

(∑∞
t=0 β

td(e(t), b(t), u(t))
)

Value iterates

V
(β)
0 (e, b) = 0

V
(β)
n+1 = min

u∈{0,1}
Q

(β)
n+1(e, b;u) where,

Q
(β)
n+1(e, b;u) = d(e, b, u) + βEe+,b+∼p(·,·|e,b;u)[V

(β)
n (e+, b+)]

lim
n→∞

V
(β)
n (e, b) = V (β)(e, b)
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Step 1: Value Iteration

V (β)(e, b) := minϕ Eϕ

(∑∞
t=0 β

td(e(t), b(t), u(t))
)

Shows existence of optimal policy

V (β) satisfies:

V (β)(e, b) = min
u∈{0,1}

Q(β)(e, b;u),

where,

Q(β)(e, b;u) = d(e, b, u) + βEe+,b+∼p(·,·|e,b;u)

[
V (β)(e+, b+)

]
ϕ⋆(e, b) ∈ argmin

u∈{0,1}
Q(β)(e, b;u) is optimal
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Step 2: Simpler Folded POMDP

Even POMDP

For every b ∈ [0, 1], u ∈ {0, 1}, V (β)(e, b) and any optimal policy
ϕ⋆(e, b) are even in e, i.e.,

V (β)(e, b) = V (β)(−e, b)

ϕ⋆(e, b) = ϕ⋆(−e, b)

0.4 0.2 0.0 0.2 0.4
e(Error)

1.0530

1.0535

1.0540

1.0545

1.0550

1.0555

1.0560

V
(

) (e
,b

)

b = p01

b = (p01)

b = p11

b = (p11)

V (β) even in e Optimal policy
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Step 2: Simpler Folded POMDP

State-space original POMDP R× [0, 1]

folded POMDP R+ × [0, 1]

Folded POMDP
e, e+ ∈ R+

pfold(e+, b+ | e, b;u) = p(e+, b+ | e, b;u) + p(−e+, b+ | e, b;u)
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Step 2: Simpler Folded POMDP

Equivalence result

Q
(β)
fold, V

(β)
fold, ϕ

⋆
fold match with Q(β), V (β), ϕ⋆ of the original

POMDP i.e.,

Q(β)(e, b;u) = Q
(β)
fold (|e|, b;u),

V (β)(e, b) = V
(β)
fold(|e|, b),

ϕ⋆(e, b) = ϕ⋆
fold(|e|, b)

Suffices to consider folded POMDP (that is simpler is
analyze)
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Step 3: Optimal Policy For Folded POMDP

Main Theorem (folded POMDP)

V
(β)
fold satisfies:

(A) For each b, V (β)
fold(e, b) is non-decreasing in e ∈ R+

(B) For each e ∈ R+, V (β)
fold(e, b) is non-increasing in b

(C) For each e ∈ R+, there exits a threshold b⋆(e) s.t.,

u =

{
1 if b ≥ b⋆(e),

0 if b < b⋆(e)
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Step 3: Optimal Policy For Folded POMDP

Key steps
1 Prove using forward induction method on the value

iterates, Vnfold
(e, b)

2 Show (C) holds for n+ 1 given that (A)-(B) hold for n

3 Show (A)-(B) hold for n+ 1 given (C) holds for n+ 1 and
(A)-(B) hold for n
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Step 3: Optimal Policy For Folded POMDP

Qn+1fold(e, b; 0) is concave in b

Qn+1fold(e, b; 1) is linear in b

Qn+1fold(e, 0; 1) ≥ Qn+1fold(e, 0; 0)

Case (i): Qn+1fold(e, 1; 1) < Qn+1fold(e, 1; 0)
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Step 3: Optimal Policy For Folded POMDP

Qn+1fold(e, b; 0) is concave in b

Qn+1fold(e, b; 1) is linear in b

Qn+1fold(e, 0; 1) ≥ Qn+1fold(e, 0; 0)

Case (ii): Qn+1fold(e, 1; 1) ≥ Qn+1fold(e, 1; 0)

b

Qn+1fold(e, b;u)

0 1

Qn+1fold(e, b; 1)

Qn+1fold(e, b; 0)
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Step 4: Unfolding

Using evenness of original POMDP and equivalence of folded
POMDP,

(A) For each b, V (β)(e, b) is non-decreasing in |e|, e ∈ R

0.4 0.2 0.0 0.2 0.4
e(Error)

1.0530

1.0535

1.0540

1.0545

1.0550

1.0555

1.0560

V
(

) (e
,b

)

b = p01

b = (p01)

b = p11

b = (p11)
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Step 4: Unfolding
Using evenness of original POMDP and equivalence of folded
POMDP,

(A) For each b, V (β)(e, b) is non-decreasing in |e|, e ∈ R

(B) For each e ∈ R, V (β)(e, b) is non-increasing in b

(C) For each e ∈ R, there exits a threshold b⋆(|e|) s.t.,

u =

{
1 if b ≥ b⋆(|e|),
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Numerical Simulation

Set-up
Discount factor β = .99

Transmission price λ = 0.65 units

AR process: a = 0.7, w ∼ N (0, 1)

Channel parameters:

 

0 1

1 

𝑝01 = 0.4 

1 − 𝑝11 

1 − 𝑝01 𝑝11 = 0.7 

Gilbert-Elliot channel
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Numerical Simulation

0.4 0.2 0.0 0.2 0.4
e(Error)

1.0530

1.0535

1.0540

1.0545

1.0550

1.0555

1.0560

V
(

) (e
,b

)

b = p01

b = (p01)

b = p11

b = (p11)
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Change in V (β) with b

V (β)(e, b) is even in e and non-decreasing in |e|

V (β)(e, b) is non-increasing in b
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Numerical Simulation

Optimal policy

ϕ⋆(e, b) is even in e

ϕ⋆(e, b) exhibits a threshold structure w.r.t. b
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Numerical simulation

Performance comparison with an i.i.d. policy with
transmission probability p

Performance comparison as p is varied
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Numerical simulation
Performance comparison with an i.i.d. policy with transmission
probability p =average energy consumption of optimal policy

0.5 0.6 0.7 0.8 0.9

p11
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J(β
)

(a)

Optimal Policy
i.i.d. Policy
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(c)

Optimal Policy
i.i.d. Policy

Different system parameters: (a) p01 = 0.4 and a = 0.7, p11 varied; (b) p01 varied,
p11 = 0.7 and a = 0.7; (c) p01 = 0.4 and p11 = 0.7 fixed, a varied
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Extension: Joint optimality
Problem

min
ϕsen,ϕest

Eϕ

( ∞∑
t=0

βt
(
(x(t)− x̂(t))2 + λu(t)

))

x̂(t) = ϕest
t (Fest(t)), u(t) = ϕsen

t (Fsen(t))

Theorem 2: Joint optimality of sensor and estimator

Estimator: x̂(t) =

{
x(t) if pkt. received,
ax̂(t− 1) otherwise

Sensor: u(t) =

{
1 if b(t) ≥ b⋆(|e(t)|),
0 if b(t) < b⋆(|e(t)|)

are jointly optimal
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Risk-sensitive objective

Optimal Risk-Sensitive Scheduling Policies for Remote
Estimation of Autoregressive Markov Processes

(https://arxiv.org/abs/2403.13898v1)
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Risk-sensitive objective

Sensor Channel state observed by the sensor

Estimator x̂(t) =

{
x(t) if pkt. received,
ax̂(t− 1) otherwise
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Regressive(AR)

process
Sensor

Gilbert-Elliot
channel Estimator

Source

0 1

(if pkt. received)



Optimization problem

Problem

min
ϕ

Eϕ

[
exp

(
γ

T∑
t=0

(x(t)− x̂(t))2 + λu(t)

)]
,

risk-sensitivity parameter γ > 0, λu(t) is the communication
cost λ > 0, u(t) ∈ {0, 1}

Advantages
More general than risk-neutral optimization
Penalize higher order moments of costs
Robust to variations in system parameters
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Contributions

Challenges
Infinite horizon discounted MDP might not admit
stationary policy
Multiplicative in nature; policy depends on history

Contributions
Formulate finite horizon problem as MDP
Show existence of optimal deterministic Markov policy
Introduce “folded MDP” to ease analysis
Establish the existence of a threshold-type optimal
scheduling policy w.r.t. error
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MDP Formulation

State Error e(t) = x(t)− ax̂(t− 1)

Channel state c(t) ∈ {0, 1}

Control u(t) = ϕt(F(t)) ∈ {0, 1}

where F(t) is the information available till time t

Instantaneous cost d(e, c, u) := (1− uc)e2 + λu

Transmission strategy ϕ = {ϕt}Tt=0

MDP

min
ϕ

Eϕexp

(
γ

T∑
t=0

d(e(t), c(t), u(t))

)
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Main Result

Theorem 1: Structure of optimal transmission strategy
There exists a threshold-type optimal strategy,

u(t) = ϕ⋆(e(t), c(t)) =

{
1 if |e(t)| ≥ e⋆(c(t)),

0 if |e(t)| < e⋆(c(t))

where e⋆(c(t)) is threshold

0 1 2 3-1-2-3
Error(e(t))

Transmit TransmitNot Transmit
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Proof Outline

Step 1 Value iteration to solve the MDP
Key challenge

Multiplicative Bellman equation

Instantaneous cost is unbounded

State-space consists of error taking negative values

Step 2 Equivalent simpler folded MDP

Step 3 Optimal transmission strategy for folded MDP

Step 4 Unfolding
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Step 1: Value Iteration

V (e, b) := min
ϕ

Eϕexp
(
γ
∑T

t=0 d(e(t), c(t), u(t))
)

Value iterates
V0(e, c) = 0

Vt+1(e, c) = min
u∈{0,1}

Q
(β)
t+1(e, c;u) where,

Q
(β)
t+1(e, c;u) = exp(γd(e, c, u))Ee+,c+∼p(.,.|e,c;u)[Vt(e+, c+)]

VT (e, c) = V (e, c)

ϕ⋆
t (e, c) ∈ argmin

u∈{0,1}
Qt(e, c;u) is optimal
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Step 3: Optimal Policy for folded MDP

State-space folded MDP R+ × {0, 1}

Threshold policy (folded MDP)

1 ct = 0: Qfold
t (e, 0; 0) ≤ Qfold

t (e, 0; 1)

2 ct = 1: If Qfold
t (e, 1; 1) ≤ Qfold

t (e, 1; 0), then

Qfold
t (e′, 1; 1) ≤ Qfold

t (e′, 1; 0) for all e′ ≥ e

0 1 2 3-1-2-3
Error(e(t))

Transmit TransmitNot Transmit
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Half-duplex controller

Optimal Scheduling of Uplink-Downlink Networked Control
Systems with Energy Harvesting Sensor

(https://arxiv.org/abs/2403.14189v1)
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Half-duplex controller

Sensor Battery operated, b(t) ∈ {0, 1, . . . , B}

u(t) ∈ {0, 1, 2}
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Half-duplex controller

Estimator x̂(t+ 1) =

{
ax(t) if pkt. received,
ax̂(t) otherwise
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Half-duplex controller

Controller Half-duplex: Activate either uplink or downlink
channel
Trade-off between plant state estimation and timely
plant control
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Optimization Problem

Problem

min
ϕ

Eϕ

( ∞∑
t=0

βtx(t)2

)
,

discount factor β ∈ (0, 1)
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Contributions

Formulate infinite horizon problem as MDP

Identify dynamic programming decomposition

Show existence of a low complexity optimal scheduling
policy
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MDP formulation

State Plant x(t) ∈ R

Age of packet at the controller τ(t) ∈ Z+

Availability of control packet at the controller

y(t) ∈ {0, 1}

Sensor battery energy level b(t) ∈ {0, 1, . . . , B}

Control u(t) = ϕt(F(t)) ∈ {0, 1, 2}

where F(t) is the information available till time t

Instantaneous cost d(x, τ, y, b, u) := x2

Scheduling strategy ϕ = {ϕt}∞t=0
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Technical Assumptions

Plant: x(t+ 1) = ax(t) + v(t) + w(t)

Controller Gain: K

One-step controllable
(A1) a+K = 0

Finiteness
(A2) There exists a ϕ such that

Eϕ

( ∞∑
t=0

βtx(t)2

)
< ∞
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Main Result

Theorem 1: Structure of optimal scheduling strategy
There exists a threshold-type optimal strategy, i.e.,
1) if u(t− 1) = 0, then

u(t) = ϕ⋆(x(t), τ(t), 1, b(t)) = 2 if |x(t)| ≥ x⋆(τ(t), b(t))

2) if u(t− 1) = 1, then

u(t) = ϕ⋆(x(t), τ(t), 1, b(t)) = 2 if |x(t)| ≥ x⋆(τ(t), b(t))

where x⋆(τ(t), b(t)) is threshold
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Conclusion

Minimize cumulative expected cost incurred

Various assumptions on communication channel and system
setup

Posed as POMDP (MDP); analysis is hard

Construct a simpler folded POMDP (MDP) equivalent to
the original POMDP (MDP)

Derive structural results of the optimal policy
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Thank you!
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