
GraphQL Generation for
Querying Data Lakehouse

Balaji Ganesan, Avirup Saha, Manish Kesarwani, Nitin Gupta, Sambit Ghosh,
Renuka Sindhgatta, Carlos Eberhardt, Dan Debrunner, Sameep Mehta

September 10, 2024

bganesa1@in.ibm.com

Disclaimer: None of the material presented here are forward looking statements about IBM’s products and services

mailto:bganesa1@in.ibm.com

SQL REST API GraphQL
Databases - Designed for relational databases. Databases - Designed for variety of databases, including

relational and non-relational databases.
Databases - Designed for variety of databases, including relational
and non-relational databases (like REST API). But GraphQL's
flexibility can simplify integration with different data sources.

Data Fetching - Direct queries to a database. Data Fetching - Predefined endpoints for resources. Data Fetching - Single flexible endpoint, custom data fetching.

SELECT first_name, last_name FROM employees
WHERE department_id = 101;

Directly queries a relational database for specific fields
from the 'employees' table based on a condition.

GET /api/employees?departmentId=101

Predefined endpoint for retrieving employee data in a

specific department.

query { employees(departmentId: 101)
{
firstName

lastName
} }
Single flexible endpoint allows clients to request only the required
data for employees in a specific department.

Performance Considerations - Efficient for database
operations.

Performance Considerations - Multiple requests, potential
over-fetching.

Performance Considerations - Single request, precise data retrieval.

SELECT
e.firstName,
e.lastName,
e.salary,
d.name
FROM employee e JOIN department d
ON e.department_id = d.id
WHERE e.department_id = 101
A SQL query fetching detailed information about
employees and their departments.

GET /api/employees
GET /api/departments

Requires multiple requests to fetch both employee and
department data.

query {
employees(departmentId: 101)
{
firstName
lastName
salary
department { name }
} }
A GraphQL query fetching detailed information about employees
and their departments.

Over-fetching/Under-fetching
Single request for precise data retrieval reduces
network overhead. However, it only works for
relational databases, and a little more complex in logic
as compared to GraphQL.

Over-fetching/Under-fetching
The response may include more data than needed,
impacting bandwidth.

Over-fetching/Under-fetching
• Single request for precise data retrieval reduces network

overhead.
• Allows clients to specify exactly the data they need,

preventing over-fetching.

Why not SQL and Rest API?

LLM-powered GraphQL Generator for Data Retrieval

Ganesan, Balaji, Sambit Ghosh, Nitin Gupta, Manish Kesarwani, Sameep Mehta, and Renuka Sindhgatta. "LLM-
powered GraphQL Generator for Data Retrieval." In International Joint Conference on Artificial Intelligence. 2024.

LLM-powered GraphQL Generator for Data Retrieval

API Sequencing for GraphQL Schema Generation

type Query {

location(ip: String!, lang: String! = "en"): IpApi_Location
 @rest(
 endpoint: "http://ip-
api.com/json/$ip?fields=64745471&lang=$lang"
 setters: [{ field: "ip", path: "query" }]
)

weatherReport(openweather_appid: Secret!
 lang: String! = "en"
 lat: Float!
 lon: Float!): Openweather_WeatherForecast

 @rest(
 endpoint:
"https://api.openweathermap.org/data/2.5/onecall?appid=$o
penweather_appid&lang=$lang&lat=$lat&lon=$lon&exclude=
minutely%2Chourly"

 setters: [{ field: "clouds", path: "current.clouds" },{
field: "temp", path: "current.temp" }]
)

many other type queries

 }

weather(ip: String! openweather_appid: Secret! lang: String! = "en"):
Openweather_WeatherForecast
 @sequence(
 steps: [
 { query: "location"}
 { query: "weatherReport", arguments: [{name: "openweather_appid", argument:
"openweather_appid"}] }
]

)

query MyQuery {
 weather(
 ip: "72.188.196.163"
 openweather_appid:
"b4548ecd778518b766619e797744de85"
) {
 clouds
 temp
 }
}

{
 "data": {
 "weather": {
 "clouds": 40,
 "temp": 303.5
 }
 }
}

The task is to identify and order location and weatherReport type queries to use with the @sequence directive

Dataset: tmdb
Utterance1: tell me where the
company universal pictures was
founded?

Dataset: spotify
Utterance2: Recommend

more artists based on my first
following artist

API Search (LLM prompt + RAG)

Utterance1: ['/search/company',
'/company/{company_id}’]

Utterance2: ['/me/following',
'/artists/{id}/related-artists']

Vanilla StepZen
generated schema

from stepzen
import curl

LLM Prompt for
Schema Modification

Modified schema
with @sequence

directive

Schema
deployment

Query with
GraphiQL interface

API Sequencing and Schema Modification

Sequential API/Function Calling Using GraphQL Schema

Agents for Schema Generation

User
utterance

API search
Basic schema

generation

LLM Agent
(Code

Executor)

Generate a
weather report for
the IP address
72.188.196.163

http://ip-api.com/json/
https://api.openweathermap
.org/data/

Complex
schema

generation and
deployment

(Simple)
Query

generation
and testing

User
feedback

Automatic Debugging

http://ip-api.com/json
https://api.openweathermap.org/data/2.5/onecall?appid=$openweather_appid&lang=$lang&lat=$lat&lon=$lon&exclude=minutely%2Chourly
https://api.openweathermap.org/data/2.5/onecall?appid=$openweather_appid&lang=$lang&lat=$lat&lon=$lon&exclude=minutely%2Chourly

NLU: "Unfollow the artist of the song now playing and skip to the next song"

RAG Agent

Code Agent

Retrieve (NLU) Obs1, Feasible actions

A1

Retrieve (NLU, Obs1, A1) Obs 2, Feasible actions

A2

Retrieve (NLU, Obs1,Obs2, A2) Obs 3, Feasible actions

StopOracle
Return Sequence of APIs

Retrieve APIs
from VectorDB /
Graph

Retrieve
Feedback from
other agents

Ask Oracle to
determine if the
task is complete

RL Agent

API Sequencing with Reinforcement Learning
Lakshmi Mandal (IISc), Balaji Ganesan, Avirup Saha, Renuka Sindhgatta

GraphQL for RAG in Legal Petition Drafting

Sudipto Ghosh, Devanshu Verma, Balaji Ganesan, Purnima Bindal, Vikas Kumar, Vasudha Bhatnagar. InLegalLLaMA: Indian Legal Knowledge
Enhanced Large Language Models. OpenKG Workshop at IJCAI 2024.

Schema Generation for BFF (Backend for Frontend) in Lakehouse

Spider REST API as proxy for Lakehouse Data Steward Persona to SchemaGen Data Analyst Persona for QueryGen

Few Shot
Prompting

Metadata KG

CoT, ReAct

APIs
Function Signs
NL Utterances

Fine Tuning Direct Preference Optimization (DPO)

Preference Learning Frameworks

Other RL Methods

Instruct Lab

Compositional
Skills

Knowledge

API sequencing
for type query

GraphQL Queries

GLAN

GraphQL Schema

Data Expert LLMExpert Knowledge

Knowledge Sources

GraphQL Schema Generation – Potential Directions

Structure information
from Stepzen GraphQL

LAB Training

LLMs

RLHF

Querying Lakehouse
A brief discussion of reasoning in benchmarks

BIRD

Models must handle that only "OWNER"
accounts are eligible for loans.

Li, Jinyang, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang et al. "Can llm already serve as a database interface? a
big bench for large-scale database grounded text-to-sqls." Advances in Neural Information Processing Systems 36 (2024).

BIRD

• We hypothesize that the internal multi-step knowledge reasoning of LLMs is not
compatible with the way of external knowledge (evidence) in this situation.
Therefore, the development of methods that effectively combine the strong multi-
step self-reasoning capabilities of LLMs with external knowledge reasoning
coherently presents a promising future direction [See Mialon et al].

Li, Jinyang, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang et al. "Can llm already serve as a database interface? a
big bench for large-scale database grounded text-to-sqls." Advances in Neural Information Processing Systems 36 (2024).

Archer

Zheng, Danna, Mirella Lapata, and Jeff Z. Pan. "Archer: A Human-Labeled Text-to-SQL Dataset with Arithmetic, Commonsense and
Hypothetical Reasoning." arXiv preprint arXiv:2402.12554 (2024).

Beaver

Chen, Peter Baile, Fabian Wenz, Yi Zhang, Moe Kayali, Nesime Tatbul, Michael Cafarella, Çağatay Demiralp, and Michael
Stonebraker. "BEAVER: An Enterprise Benchmark for Text-to-SQL." arXiv preprint arXiv:2409.02038 (2024).

Beaver

Chen, Peter Baile, Fabian Wenz, Yi Zhang, Moe Kayali, Nesime Tatbul, Michael Cafarella, Çağatay Demiralp, and Michael
Stonebraker. "BEAVER: An Enterprise Benchmark for Text-to-SQL." arXiv preprint arXiv:2409.02038 (2024).

Infusing Knowledge into Large Language Models with Contextual Prompts

Kinshuk Vashist, Balaji Ganesan, Vikas Kumar, Vasudha Bhatnagar

Kinshuk Vasisht, Balaji Ganesan, Vikas Kumar, and Vasudha Bhatnagar. 2023. Infusing Knowledge into Large Language Models
with Contextual Prompts. In Proceedings of the 20th International Conference on Natural Language Processing (ICON)

Sherpas Framework

Bhattacharjya, Debarun, Junkyu Lee, Don Joven Ravoy Agravante, Balaji Ganesan, and Radu Marinescu. "A Framework for Agents Guiding Foundation
Models through Knowledge and Reasoning." In Trustworthy AI Workshop at International Joint Conference on Artificial Intelligence. 2024.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Sequential API/Function Calling Using GraphQL Schema
	Slide 7
	Slide 8
	Slide 9: GraphQL for RAG in Legal Petition Drafting
	Slide 10: Schema Generation for BFF (Backend for Frontend) in Lakehouse
	Slide 11
	Slide 12: Querying Lakehouse
	Slide 13: BIRD
	Slide 14: BIRD
	Slide 15: Archer
	Slide 16: Beaver
	Slide 17: Beaver
	Slide 18: Infusing Knowledge into Large Language Models with Contextual Prompts
	Slide 19: Sherpas Framework

