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Distributed Service Model

There are n nodes providing service to multiple concurrent users,

e.g., cloud edge nodes providing streaming, download, computing.

We distinguish between two functional components at each node:

one for data storage and the other for service request processing.

Example:

Three nodes provide data-download service to multiple concurrent users,

where each user wants either data object a or data object b.

λ µ λ µλ µ

a b a+b
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Data Storage Model

Simple Redundant Storage

I k equal size data objects are stored across n servers (k 6 n).

I Data objects are represented as elements of Fq.

I Coded object are linear combinations of data specified by Fkq vectors.

I Each server stores a single coded object (one of n).

=⇒ A data object can be recovered from multiple sets of coded objects.

Example: Data objects a, b, and c stored across n = 7 nodes:

a

[
0
0
1

]

b

[
0
1
0

]

a+ b

[
0
1
1

]

c

[
1
0
0

]

a+ c

[
1
0
1

]

b+ c

[
1
1
0

] [
1
1
1

]

a+ b+ c

Ra1 Ra2 Ra3 Ra4

=⇒ a can be recovered from any of the sets Ra1,Ra2,Ra3,Ra4.
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Data Service and Request Models

Different practical service models are mathematically equivalent.

For service , we consider the bandwidth and the queuing model:

W

III· · ·II
µ1 2

stores one data object

Server’s bandwidthW can
accomodate up to µ users.

µ

stores one data object

Users queue for download.

Download is done at rate µ.

Requests for objects i, i ∈ {1, . . . ,k}:

I In the queuing model, requests for object i arrive at rate λi.

I In the bandwidth model, the number of requests for object i is λi

=⇒
A server can handle multiple download requests.
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Distributed Service Model – An Example

λa is the request rate (demand) for object a

λaj is the portion of λa assigned to the recovery set Raj, j ∈ {1, 2, 3, 4}.

µ µ µ µ µ µ µ

1 2 3 4 5 6 7

a b a+ b c a+ c b+ c a+ b+ c

Ra1 Ra2 Ra3 Ra4

λa
λa4λa3λa2λa1

{λa1, λa2, λa3, λa4} is a request allocation for λa.

Which request vectors (λa, λb, λc) can be serviced by the system?

6 / 50



Distributed Service Model – An Example

λa is the request rate (demand) for object a

λaj is the portion of λa assigned to the recovery set Raj, j ∈ {1, 2, 3, 4}.

µ µ µ µ µ µ µ

1 2 3 4 5 6 7

a b a+ b c a+ c b+ c a+ b+ c

Ra1 Ra2 Ra3 Ra4

λa
λa4λa3λa2λa1

{λa1, λa2, λa3, λa4} is a request allocation for λa.

Which request vectors (λa, λb, λc) can be serviced by the system?

6 / 50



Codes with Locality and Availability in Service

What are the simultaneous recovery sets for a in the following code?

a b a+b a−b

I There are two a-recovery sets in the LRC/availability model, e.g.,


a


b


a+ b


a− b

Ra,1

Ra,2

I There are four a-recovery sets in the service model:


a


b


a+ b


a− b

Ra,1

Ra,2

Ra,3

Ra,4
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Service Rate Region – A Polytope in Rk
Set of vectors (λ1, . . . ,λk) that can be served by the system

λi is the request rate (demand) for object i, i = 1, . . . ,k.

λij is the portion of λi assigned to the recovery set Rij , j = 1, . . . , ti.

The request vector (λ1, . . . , λk) can be serviced by the system

iff there exist λij satisfying the following constraints:

1. No server is assigned requests in excess of its service rate:

k∑
i=1

∑
16j6ti
`∈Rij

λij 6 µ for 1 6 ` 6 n.

2. All objects’ requests are served:
∑ti
j=1 λij = λi for 1 6 i 6 k

{λij : 1 6 i 6 k, 1 6 j 6 ti} is a request allocation for (λ1, . . . , λk).

If we require that λij be either 0 or µ, we speak of integral service rates.
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Three Storage Schemes and Their Service Rates
k = 3 data objects stored across n = 4 nodes

a) b) c)ab c c ab cb+c ab ca+b+c

λa

λb

λc

λa

λb

λc

λa

λb

λc

Many (kinds of) questions are of interest.
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Service Rate Region Problem(s) Formulation

System Model:
I k data objects are stored redundantly across n nodes.

I Data objects are represented as elements of some finite field.

I Each server stores a linear combination of data objects,

i.e., a coded object of the same size (same field).

I Requests for object i, i ∈ {1, . . . ,k} arrive to the system at rate λi .

I At each node, requests are serviced at rate µ = 1 .

SOME OBJECTIVES:

1. Determine the set of rates (λ1, . . . , λk) that can be supported

by the system implementing some common redundancy scheme.

2. Design a redundancy scheme in order to maximize and/or shape the

of region of supported arrival rates under some limited resources.

3. Evaluate the system’s performance for a given stochastic model of

(λ1, . . . , λk) (e.g., probability of supported rates, load imbalance).
10 / 50



A Problem of City with Two Movies & Three Cinemas

I There are two movies a & b and three cinemas with 100 seats each.

I λa people want to see a and λb people want to see b.

I We know that the city’s population is 200 =⇒ λa + λb 6 200

Q1: Which movie should each cinema play?

a b a+ b

11 / 50
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A Problem of City with Two Movies & Three Cinemas

a b a+ b

Q2: Can λa people see a and λb people see b as long as λa + λb 6 200?

Q3: Which vectors (λa, λb) are possible for a given redundancy scheme?

12 / 50



“Matrix” G - A Collection of Storage Specifying Columns

G is a k× n, k 6 n, rank-k matrix &

Columns of G are a multi-set V of points in PG(k− 1,q).

Example #1 – the [7, 3] binary Simplex code

Matrix G =



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 encodes data [c b a] as follows:

[c b a] ·G = [a b a+b c a+c b+c a+b+c]

Example #2 – two [4, 2] MDS codes (α is a primitive in Fq, q > 4.)

G0 =

[
1 1 1 1

1 α α2 α3

]
G2 =

[
1 0 1 1

0 1 1 α

]

These storage schemes provide different data access performance.
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Minimal Recovery Sets

Subset R of columns in G is a minimal recovery set of data object a if

I a ∈ span(R)

I S ⊂ R =⇒ a /∈ span(S)

Example:

a

[
0
0
1

]

b

[
0
1
0

]

a+ b

[
0
1
1

]

c

[
1
0
0

]

a+ c

[
1
0
1

]

b+ c

[
1
1
0

] [
1
1
1

]

a+ b+ c

Ra1 Ra2 Ra3 Ra4

Ra1, Ra2, Ra3, and Ra4 are the recovery sets of size one and two of a in

G =



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1




1 2 3 4 5 6 7

There is a minimal recovery set for a of size three!
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Minimal Recovery Sets
Subset R of columns in G is a recovery set of ej if

I ej ∈ span(R)

I S ⊂ R =⇒ ej /∈ span(S)

Example:

Let G =

[
1 0 1 1
0 1 1 α

]
. Then

I the (size one and two) recovery sets of e1 =
[
1
0

]
are{[

1
0

]} {[
0
1

]
,
[
1
1

]} {[
0
1

]
,
[
1
α

]} {[
1
1

]
,
[
1
α

]}
I the (size one and two) recovery sets of e2 =

[
0
1

]
are{[

0
1

]} {[
1
0

]
,
[
1
1

]} {[
1
0

]
,
[
1
α

]} {[
1
1

]
,
[
1
α

]}
The recovery sets do not have to be disjoint (as for LRCs).
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The Recovery Graph ΓG of a 2× n Matrix G
and other matrices with only size-2 recovery sets

NODES:

ΓG has n nodes corresponding to the columns of G, and

i additional nodes
[
0
0

]
j

for systematic columns j = 1, . . . , i.

EDGES:

If two nodes correspond to a recovery set of ej,

they are connected by an edge which is given label ej.

Example:

G =

[
1 0 1 1
0 1 1 α

]

[
1
1

]

[
0
1

][
1
0

]

[
1
α

]

[
0
0

]
1

[
0
0

]
2

e1 e2

e2

e2

e1

e2e1

e1

We call edges connecting the j-th systematic node with
[
0
0

]
j

systematic.
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Recovery Graphs of Binary Simplex Codes

a

[
0
0
1

]

b

[
0
1
0

]

a+ b

[
0
1
1

]

c

[
1
0
0

]

a+ c

[
1
0
1

]

b+ c

[
1
1
0

] [
1
1
1

]

a+ b+ c

Ra1 Ra2 Ra3 Ra4

•a

•b

•c

•a+b+c

•0a

•0b

•0c

•a+b

•a+c

•b+c

a

a

a

a

b

b

b

b

c

c

c

c

[
1
1
1

]
[
0
1
1

] [
1
1
0

]

[
0
1
1

][
0
0
1

] [
1
0
1

] [
1
0
0

]

[
0
1
0

]

cf.
ac

b

ca

b

ac

b

b

a c

0©

0© 0©
7©

3© 6©

4©1© 5© 4©

2©
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Fractional Matching & Service Rates on Recovery Graphs

A fractional matching in (V,E) is a vector w ∈ R|E| whose components

(weights) wε, ε ∈ E, are non-negative and
∑
ε3vwε 6 1 for each v ∈ V.

We define λwj , the service rate for ej in matching w as the sum of

weights wε of all ej-labeled edges ε ∈ E. We say that w yields λwj .

A matching with service rates λ1 = 2.5 and λ2 = 0.

G2(4, 2) =

[
1 0 1 1
0 1 1 α

]
−→ Γ2(4, 2)

[
1
1

]

[
0
1

][
1
0

]

[
1
α

]

[
0
0

]
1

[
0
0

]
2

e11 e20

e20

e20

e10.5

e20

e10.5

e10.5
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A Service Vector and its Matchings

Two matchings for (1.5, 0.75) service vector in Γ2(4, 2):

greedy matching
[
1
1

]

[
0
1

][
1
0

]

[
1
α

]

[
0
0

]
1

[
0
0

]
2

e11 e20.75

e20

e20

e10

e20

e10.5

e10

[
1
1

]

[
0
1

][
1
0

]

[
1
α

]

[
0
0

]
1

[
0
0

]
2

e10.5 e20.25

e20

e20.5

e10.5

e20

e10.5

e10
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Fractional Matching and Service Polytopes of ΓG = (V ,E)

The set of all fractional matchings in ΓG = (V,E) is a polytope in R|E|,

called the fractional matching polytope and denoted by FMP(ΓG) .

The set of all service vectors in ΓG = (V,E) is a polytope in Rk.

We call it the service rate region, and denote by R(ΓG) .

=⇒ R(ΓG) is the image of FMP(ΓG) under a linear map from R|E| to Rk.

The service rate region problem:

Find R(ΓG) =
{
λw ∈ Rk : w ∈ FMP(ΓG), λwi =

∑
ε labeled byei

wε

}
.
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What does it mean to characterize a polytope?
We need to specify points or hyperplanes!

Convex Polytope in Rd:
I convex hull of a finite set of points OR

I intersection of finitely many closed half spaces that is bounded

Ziegler’s Lectures on Polytopes, Springer, GTM 152, revised first edition.
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A Service Rate Polytope Example

G =

[
1 0 1 1
0 1 1 α

]
−→ ΓG

[
1
1

]

[
0
1

][
1
0

]

[
1
α

]

[
0
0

]
1

[
0
0

]
2

e1 e2

e2

e2

e1

e2e1

e1

2.5

2.5

λ2

λ1

λ1 + λ2 = 3

λ1 + 2λ2 = 5

2λ1 + λ2 = 5

Some bounds on R(ΓG) follow from the fractional matching number of ΓG.
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Two Bounding Simplexes (and the LRC Simplex)
Bounds on

∑k
i=1 λi for any vertex (λ1 . . . ,λk) of the service region

λa

λb

2

2

3

3

2.5

2.5

maximal matching simplex

LRC simplex

service polytope

maximal achevable simplex

We often compare service rate regions based on their bounding simplexes.
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The Maximal Matching Simplex
Fractional Matching and Vertex Cover Numbers

For matching w, we have
k∑
i=1

λwi =
∑
ε∈E

wε,←− the size of w.

=⇒

For all λ ∈ R(ΓG), we have
k∑
i=1

λi 6 max
w∈FMP(ΓG)

∑
ε∈E

wε = ν∗(ΓG)

ν∗(ΓG) is the fractional matching number of ΓG.

FMP(ΓG) =
{
w ∈ R|E| : Aw 6 1, w > 0

}
=⇒ finding ν∗(ΓG) is an LP problem.

Its dual finds the fractional vertex cover number τ∗(ΓG) = ν∗(ΓG):

τ∗(ΓG) = min
∑
v∈V

ωv s.t. ATω > 1, ω>0

A fractional vertex cover in (V,E) is a vector ω ∈ R|V | whose components

(weights) ωv, v ∈ V, are non-negative and
∑
v∈εωv > 1 for each ε ∈ E.
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(weights) ωv, v ∈ V, are non-negative and
∑
v∈εωv > 1 for each ε ∈ E.
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The Maximal Matching Simplex
Axes Intercept Points of R(ΓG)

Two easy-to-prove observations:

1. Let λmax
j = max

λ∈R(ΓG)
λj. Then λmax

j ej is a vertex of R(ΓG).

2. Let Γ jG be the sub-graph of ΓG induced by ej-edges.

Then λmax
j is equals to the matching number of Γ jG.

The convex hull of points 0 and λmax
j ej is a k-simplex within R(ΓG).
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Bounding Simplexes for G =

[
1 0 1 1

0 1 1 α

]

λa

λb

2

2

3

3

2.5

2.5

maximal matching simplex

LRC simplex

service polytope

maximal achevable simplex

maximal matching simplex:

intersection of half spaces∑k
i=1 λi 6 ν

∗(ΓG) & λ > 0.

(Some points are achievable!)

maximal achievable simplex:

convex hull of points

λmax
i ei, i = 1, . . . ,k, & λ = 0.

For binary simplex codes, these simplexes coincide.
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Binary Simplex Codes and their Recovery Graphs
aka Hadamard Codes in CS literature

Gk consist of all distinct nonzero vectors of Fk2 .

=⇒ Γk nodes are labeled by k-bit stings with even and odd weight.

Lemma: Structure of the recovery graph Γk:

1. Γk is bipartite. Edges connect odd-weight with odd-weight nodes.

2. Each odd-weight node of Γk has degree k.

3. The 2k−1 odd-weight nodes of form a minimum vertex cover of Γk.
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Service Rate Region of [2k − 1,k] Binary Simplex Codes

Theorem: A simplex in Rk!

The service region of the [2k − 1,k] binary Simplex code is defined by

λ1 + λ2 + · · ·+ λk 6 2k−1, λi > 0, i = 1, . . . ,k.

Proof Sketch for the Achevability:

Fractional matching on the recovery graph that assigns weight λi/2k−1

to each ei-labeled edge gives λ1 + λ2 + · · ·+ λk = 2k−1.

Proof Sketch for the Converse:

For bipartite graphs, the size of the minimum vertex cover (here 2k−1)

is equal to the (fractional) matching number.
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A Class of MDS Matrices Gi(n,k), i = 0, 1, 2, . . . ,k
α is a primitive in Fq, q > n

G0(n,k) =




1 1 1 . . . 1 . . . 1

1 α α2 . . . αi−1 . . . αn−1

...
...

...
. . .

...
. . .

...

1 αk−1 α2(k−1) . . . α(i−1)(k−1) . . . α(n−1)(k−1)




,

Gi(n,k) =




1 0 . . . 0 1 . . . 1

0 1 . . . 0 αi . . . αn−1

...
...

. . .
...

...
. . .

...

0 0 . . . 1 α(i−1)i . . . α(i−1)(n−1)

...
...

. . .
...

...
. . .

...

︸ ︷︷ ︸
i columns of Ik

0 0 . . . 0 ︸ ︷︷ ︸
n− i columns of G0(n,k)

α(k−1)i . . . α(k−1)(n−1)




for i = 1, . . . ,k.

We denote the j-th column of Ik by ej and call it systematic, j = 1, . . . ,k.
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Quasi-Uniform Recovery Hypergraphs

A hypergraph is a pair (V,E), where

I V is a finite set, the set of of vertices &

I E is a multiset of subsets of V called edges.

Uniform and Quasi-uniform Hypergraphs

We say that a hypergraph is

I k-uniform if each of its edges has size k

I (k,m)-quasi-uniform if each of its edges has either size k or m.

=⇒ Graphs are 2-uniform hypergraphs.

Q: What about recovery graphs Γi(n,k) of Gi(n,k), i = 0, 1, 2, . . . ,k?

A: They are (k, 2)-quasi-uniform and Γ0(n,k) is k-uniform.

The systematic edges have size 2; all other edges have size k.
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[4, 2] MDS Matrices, Recovery Graphs, and Rate Regions

G0 =

[
1 1 1 1

1 α α2 α3

]

[
1

α2

]

[
1
α

][
1
1

]

[
1

α3

]

e1

e2

e1
e2

e1
e2

e2

e1

e2e1

e1
e2

λ2

λ1

2

2

G1 =

[
1 1 1 1

0 α α2 α3

]

[
1

α2

]

[
1
α

][
1
0

]

[
1

α3

]

[
0
0

]
1

e1

e2

e2

e2

e2

e1

e2e1

e1
e2

λ2

λ1

2

2.5

G2 =

[
1 0 1 1

0 1 α2 α3

]

[
1

α2

]

[
0
1

][
1
0

]

[
1

α3

]

[
0
0

]
1

[
0
0

]
2

e1 e2

e2

e2

e1

e2e1

e1

λ2

λ1

2.5

2.5
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An Inclusion Theorem for Ri(n,k), i = 0, 1, . . . , k
The proof follows from characterizing the maximal achievable and matching simplexes

For any k and n > k, we have

R0(n,k) ⊂ R1(n,k) ⊂ R2(n,k) ⊂ · · · ⊂ Rk−1(n,k) ⊂ Rk(n,k)

Can we completely characterize these polytopes?

Yes, we can, but with much more work.
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Perfect Matching, Matching Bound, and Greedy Matchings
TOOLS: New & Old

A fractional matching in (V,E) is a vector w ∈ R|E| whose components

(weights) wε, ε ∈ E, are non-negative and
∑
ε3vwε 6 1 for each v ∈ V.

=⇒ the matching bound

|V | >
∑
v∈V

∑
ε3v

wε =
∑
ε∈E

wε|ε|.

A matching that saturates the bound is called perfect.

Greedy Matching Theorem

Let λ be a point in Ri(n,k), i.e., ∃w ∈ FMP(Γi(n,k)) s.t. λ = λw.

Then there exist a greedy matching σ ∈ FMP(Γi(n,k)) s.t. λ = λσ and

the weight of the j-th systematic edge σj = min{1, λj}, for all j 6 i.
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Ri(n,k) for n > 2k
Slicing Γi(n,k), n− i > k, into k-Uniform Subgraphs

Consider λ = (λ1, . . . , λiA︸ ︷︷ ︸
>1

, λiA+1, . . . , λi, . . . , λk︸ ︷︷ ︸
<1

) ∈ Ri(n,k)

+ matching constraint at nodes, greedy matching, Γi(n,k) structure.
=⇒ There is a perfect matching that saturates the matching bound

k ·
iA∑
j=1

(λj − 1) +
i∑

j=iA+1

λj + k ·
k∑

j=i+1

λj 6 n− iA

Example: A perfect matching on Γ3(6, 3) with iA = 1, λ2=0.8, λ3 = 0.3.

λ1 λ2 λ3
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Ri(n,k) for n > 2k

Observe that when n > 2k, then n− i > k for all i = 0, 1, 2, . . . ,k.

Consider λ = (λ1, . . . , λk) ∈ Ri(n,k) and a partition of {1, . . . ,k} into

sets A, B, C s.t. if j > i, j ∈ C; if j 6 i, j ∈ A if λj > 1, otherwise j ∈ B.

=⇒

Ri(n,k) is the intersection for the following half spaces:

λ > 0 and
k ·
∑
j∈A

(λj − 1) +
∑
j∈B

λj + k ·
∑
j∈C

λj 6 n− |A|,

for all partitions A ∪ B = {1, . . . , i} s.t. λj > 1 for j ∈ A and λj < 1 for j ∈ B,

and C = {i+ 1, . . . ,k}. If i = k, then A = ∅ does not give an active constraint.

=⇒
There are k+ 2i hyperplanes for i = 0, . . . ,k− 1, and k+ 2k − 1 for i = k.
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Ri(6, 3), i = 0, 1, 2, 3

2

2

2

λ3

λ2

λ1

λ3

λ2

λ1

λ3

λ2

λ1

λ3

λ2

λ1
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Ri(12, 3), i = 0, 1, 2, 3

4

4

4

λ3

λ2

λ1

λ3

λ2

λ1

λ3

λ2

λ1

λ3

λ2

λ1
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Ri(n,k) for n− i < k
=⇒ There may not be a matching that saturates the matching bound

k ·
iA∑
j=1

(λj − 1) +
i∑

j=iA+1

λj + k ·
k∑

j=i+1

λj 6 n− iA

What about the vertex cover bound
∑k
j=1 λj 6 i?

Example: Two matchings on Γ3(5, 3) with iA = 1, λ2=0.8, λ3 = 0.3.

size 3size 1 + 4
3 + 2

3λ2

λ1 λ2 λ3 λ1 λ2 λ3

saturates the vertex cover boundhits a brick wall
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The Vertex Cover Bound on Rk(n,k) for n < 2k

Multiple points in Rk(n,k) saturate the bound when n = 2k− 1

λ = (1, . . . , 1) is the only point reaching the bound when n < 2k− 1.

Example: Γ3(5, 3) vs. Γ3(4, 3) when iA = 1, λ2=0.8, λ3 = 0.3.

λ1 λ2 λ3

vs.

λ1 λ2 λ3

39 / 50



The Vertex Cover Bound on Rk(n,k) for n < 2k

Multiple points in Rk(n,k) saturate the bound when n = 2k− 1

λ = (1, . . . , 1) is the only point reaching the bound when n < 2k− 1.

Example: Γ3(5, 3) vs. Γ3(4, 3) when iA = 1, λ2=0.8, λ3 = 0.3.

λ1 λ2 λ3

vs.

λ1 λ2 λ3

39 / 50



Ri(5, 3), i = 0, 1, 2, 3
and some remarks on Ri(2k− 1,k)

5
3

5
3

5
3

λ3

λ2

λ1

λ3

λ2

λ1

λ3

λ2

λ1

λ3

λ2

λ1

In Ri(2k− 1,k),

I if i < k, then n− i > k for which we know n+ 2i matching bounds.

I if i = k, multiple points achieve the vertex cover bound.
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Ri(4, 3), i = 0, 1, 2, 3
and some remarks on Ri(n,k) for n < 2k− 1

λ3

λ2

λ1

4
3

4
3

4
3

λ3

λ2

λ1

λ3

λ2

λ1

λ3

λ2

λ1

4
3

4
3

4
3

In Ri(n,k) for n < 2k− 1,

I if n− i > k and we have n+ 2i matching bounds.

I if i = k, a single point achieves the vertex cover bound.
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Service Rate Region Problem(s) Formulation

System Model:
I k data objects are stored redundantly across n nodes.

I Data objects are represented as elements of some finite field.

I Each server stores a linear combination of data objects,

i.e., a coded object of the same size (same field).

I Requests for object i, i ∈ {1, . . . ,k} arrive to the system at rate λi .

I At each node, requests are serviced at rate µ = 1 .

SOME OBJECTIVES:

1. Determine the set of rates (λ1, . . . , λk) that can be supported

by the system implementing some common redundancy scheme.

2. Design a redundancy scheme in order to maximize and/or shape the

of region of supported arrival rates under some limited resources.

3. Evaluate the system’s performance for a given stochastic model of

(λ1, . . . , λk) (e.g., probability of supported rates, load imbalance).
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Asynchronism
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Asynchronous Service Rate Region
Asynchronous Batch Codes by Riet, Skachek, and Thomas

Consider the (7, 3) simplex code and two ways to satisfy demand (1, 3, 0):

a b a+ b c a+ c b+ c a+ b+ c

•a

•b

•c

•a+b+c

•0a

•0b

•0c

•a+b

•a+c

•b+c

a

a

a

a

b

b

b

b

c

c

c

c

recovery graph

•a

•b

•c

•a+b+c

•0a

•0b

•0c

•a+b

•a+c

•b+c

1/4

1/4

1/4

1/4

3/4

3/4

3/4

3/4

fractional matching

•a

•b

•c

•a+b+c

•0a

•0b

•0c

•a+b

•a+c

•b+c

integral matching

Q: If some users leave the system, can others use the freed resources?
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Benefits and Costs of Adding Server(s)

←
−
←
−
←
−
←
−
←
−

in
c
r
e
a
si
n
g

sy
st

e
m
’s

r
e
l
ia
b
il
it
y
←
−
←
−
←
−
←
−
←
−

a,b, c, c

a,b, c,b+ c

a,b, c,a+ b+ c

λa

λb

λc

λa

λb

λc

λa

λb

λc

λc

COST

2

2

λc

COST

2

3

2

λc

COST

2

4

2
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Covering a Region with Minimal Storage

We need to serve requests in the region λa 6 α, λb 6 β, λa + λb 6 γ.

λa

λb

(0,α)
(γ−α,α)

(γ−β,β)

(β, 0)

The columns of the generator matrix can only be [ 10 ], [
0
1 ], and [ 11 ].

[ 10 ] . . . [ 10 ]︸ ︷︷ ︸
n
[10 ]

[ 01 ] . . . [ 01 ]︸ ︷︷ ︸
n
[01 ]

[ 11 ] . . . [ 11 ]︸ ︷︷ ︸
n
[11 ]

Find n[ 10 ]
,n[ 01 ]

,n[ 11 ]
that minimize n = n[ 10 ]

+ n[ 01 ]
+ n[ 11 ]

.
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Covering a Region with Minimal Storage – Examples

What is the minimal number of servers and the redundancy scheme

that satisfy the demand described by λa 6 α, λb 6 β, λa + λb 6 γ?

a a b b a+b a+b

α = 4,β = 4,γ = 4

λa

λb

4

4

a b b b a+b

α = 2,β = 4,γ = 4

λa

λb

4

4

2

4

a a b b b a+b

α = 3,β = 4,γ = 4

λa

λb

4

4

3

4

a b b b b

α = 1,β = 4,γ = 4

λa

λb

4

4

1

4
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Maximizing Service Rate Region with Fixed Resources

How should we store k objects on n servers?

a a a a b b b b

a+b a+αb a+α2b a+α3b a+α4b a+α5b a+α6b a+α7b

a+b a+αb a+α2b a+α3b a+α4b a+α5b a b

a+b a+αb a a a b b b

λa

λb

4

4

5

5

I Combining coding and replication is beneficial in multiple ways.

I Service rate region depends on the generator matrix of the code.
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Covered Requests, Server Utilization, Load (Im)balance
Requests: λa ∼ N+(4, 4) and λb ∼ N+(8, 8) and vice versa.

Two systems with equal total service bandwidth, storing k = 2 objects.

System 1: n = 3 with µ = 8

with codes

[a,a,b] [a,b,b] [a,b,a+b]

System 2: n = 4 with µ = 6

with codes

[a,a,b,b] [a,b,a+b,a−b]

λa

λb

16

16

12

12

15

15

8

8

aab

abb

aabb

aba+b

aba+ba−b

Request coverage: 0.7366 for [a,a,b] & [a,b,b], 0.8727 for [a,b,a+b]

0.9211 for [a,a,b,b], and 0.9434 [a,b,a+b,a−b].

49 / 50



Codes for (Un)Expected Loads

New applications create new performance metrics for codes,

and thus the needs for new coding schemes to be designed.

collects b

collects a

a a b b

vs.
a b a+ b a− b

vs.
a a b a+ b

λb

λa

2

2

2.5

2.5 3
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