Codes for (Un)Expected Loads

Emina Soljanin, Rutgers

Acknowledgments

Collaborators:

G. Alfarano, M. Aktaş, S. Andersen, A. Johnston, G. Joshi, S. Kadhe, E. Karimi, F. Kazemi, A. Kılıç, O. Kolosev, **H. Ly Minh**, G. Matthews, C. Mayer, A. Ravagnani, A. Sprintson, G. Yadgar

Funding:

NSF Award # 2122400: Service Rates of Codes ICERM WiSDM programs in 2017 and 2019

Distributed Service Model

There are n nodes providing service to multiple <u>concurrent users</u>, e.g., cloud edge nodes providing streaming, download, computing.

We distinguish between <u>two functional components</u> at each node: one for data <u>storage</u> and the other for <u>service</u> request processing.

Distributed Service Model

There are n nodes providing service to multiple <u>concurrent users</u>, e.g., cloud edge nodes providing streaming, download, computing.

We distinguish between <u>two functional components</u> at each node: one for data <u>storage</u> and the other for <u>service</u> request processing.

Example:

Three nodes provide data-download service to multiple concurrent users, where each user wants either data object a or data object b.

Data Storage Model

Simple Redundant Storage

- ▶ k equal size data objects are stored across n servers $(k \leq n)$.
- Data objects are represented as elements of \mathbb{F}_q .
- Coded object are linear combinations of data specified by \mathbb{F}_a^k vectors.
- Each server stores a single coded object (one of n).
- \implies A data object can be recovered from multiple sets of coded objects.

Data Storage Model

Simple Redundant Storage

- ▶ k equal size data objects are stored across n servers $(k \leq n)$.
- Data objects are represented as elements of \mathbb{F}_q .
- Coded object are linear combinations of data specified by \mathbb{F}_{a}^{k} vectors.
- Each server stores a single coded object (one of n).

 \implies A data object can be recovered from multiple sets of coded objects. Example: Data objects a, b, and c stored across n = 7 nodes:

 \implies a can be recovered from any of the sets R_{a1}, R_{a2}, R_{a3}, R_{a4}.

Data Service and Request Models

Different practical service models are mathematically equivalent.

For service, we consider the bandwidth and the queuing model:

stores one data object

Server's bandwidth W can accomodate up to μ users.

stores one data object

Users queue for download.

Download is done at rate μ .

Data Service and Request Models

Different practical service models are mathematically equivalent.

For service, we consider the bandwidth and the queuing model:

Requests for objects $i, i \in \{1, \ldots, k\}$:

- ln the queuing model, requests for object i arrive at rate λ_i .
- ▶ In the bandwidth model, the number of requests for object i is λ_i

A server can handle multiple download requests.

Distributed Service Model – An Example

 λ_{α} is the request rate (demand) for object α

 $\lambda_{\alpha j}$ is the portion of λ_{α} assigned to the recovery set $R_{\alpha j}$, $j \in \{1, 2, 3, 4\}$.

 $\{\lambda_{a1}, \lambda_{a2}, \lambda_{a3}, \lambda_{a4}\}$ is a request allocation for λ_a .

Distributed Service Model – An Example

 $\frac{1}{1}$ is the request rate (demand) for object a

 $\lambda_{\alpha j} \text{ is the portion of } \lambda_{\alpha} \text{ assigned to the recovery set } R_{\alpha j}, \ j \in \{1, 2, 3, 4\}.$

 $\{\lambda_{\alpha 1}, \lambda_{\alpha 2}, \lambda_{\alpha 3}, \lambda_{\alpha 4}\}$ is a request allocation for λ_{α} .

Which request vectors $(\lambda_a, \lambda_b, \lambda_c)$ can be serviced by the system?

Codes with Locality and Availability in Service

What are the simultaneous recovery sets for a in the following code?

Codes with Locality and Availability in Service

What are the simultaneous recovery sets for a in the following code?

There are two α-recovery sets in the LRC/availability model, e.g.,

Codes with Locality and Availability in Service

What are the simultaneous recovery sets for a in the following code?

There are two α-recovery sets in the LRC/availability model, e.g.,

▶ There are four a-recovery sets in the service model:

Service Rate Region – A Polytope in \mathbb{R}^k Set of vectors $(\lambda_1, ..., \lambda_k)$ that can be served by the system

The request vector $(\lambda_1, \ldots, \lambda_k)$ can be serviced by the system iff there exist λ_{ij} satisfying the following constraints:

1. No server is assigned requests in excess of its service rate:

$$\sum_{i=1}^k \sum_{1\leqslant j\leqslant t_i\atop \ell\in R_{ij}} \lambda_{ij}\leqslant \mu \quad \text{for } \ 1\leqslant \ell\leqslant n.$$

2. All objects' requests are served: $\sum_{j=1}^{t_i} \lambda_{ij} = \lambda_i$ for $1 \leq i \leq k$ $\{\lambda_{ij} : 1 \leq i \leq k, 1 \leq j \leq t_i\}$ is a request allocation for $(\lambda_1, \dots, \lambda_k)$. If we require that λ_{ij} be either 0 or μ , we speak of integral service rates.

Three Storage Schemes and Their Service Rates k = 3 data objects stored across n = 4 nodes

Many (kinds of) questions are of interest.

Service Rate Region Problem(s) Formulation System Model:

- \blacktriangleright k data objects are stored redundantly across n nodes.
- Data objects are represented as elements of some finite field.
- Each server stores a <u>linear combination</u> of data objects, i.e., a coded object of the same size (same field).
- ► Requests for object i, $i \in \{1, ..., k\}$ arrive to the system at rate λ_i .
- At each node, requests are serviced at rate $\mu = 1$.

SOME OBJECTIVES:

- 1. Determine the set of rates $(\lambda_1, \ldots, \lambda_k)$ that can be supported by the system implementing some common redundancy scheme.
- 2. <u>Design a redundancy scheme</u> in order to maximize and/or shape the of region of supported arrival rates under some limited resources.
- $\label{eq:constraint} \begin{array}{c} 3. & \underline{\text{Evaluate the system's performance}} \text{ for a given stochastic model of} \\ \hline (\lambda_1,\ldots,\lambda_k) \text{ (e.g., probability of supported rates, load imbalance)}. \end{array}$

- There are two movies a & b and three cinemas with 100 seats each.
- λ_a people want to see a and λ_b people want to see b.
- \blacktriangleright We know that the city's population is 200 $\implies \lambda_a + \lambda_b \leqslant$ 200
- Q1: Which movie should each cinema play?

- ▶ There are two movies a & b and three cinemas with 100 seats each.
- λ_a people want to see a and λ_b people want to see b.
- \blacktriangleright We know that the city's population is 200 $\implies \lambda_{\alpha}+\lambda_{b}\leqslant$ 200
- **Q1:** Which movie should each cinema play?

- ▶ There are two movies a & b and three cinemas with 100 seats each.
- λ_a people want to see a and λ_b people want to see b.
- \blacktriangleright We know that the city's population is 200 $\implies \lambda_{\alpha}+\lambda_{b}\leqslant$ 200
- **Q1:** Which movie should each cinema play?

- ▶ There are two movies a & b and three cinemas with 100 seats each.
- λ_a people want to see a and λ_b people want to see b.
- \blacktriangleright We know that the city's population is 200 $\implies \lambda_{\alpha}+\lambda_{b}\leqslant$ 200
- **Q1:** Which movie should each cinema play?

Q2: Can λ_a people see a and λ_b people see b as long as $\lambda_a + \lambda_b \leq 200$? Q3: Which vectors (λ_a, λ_b) are possible for a given redundancy scheme?

"Matrix" G - A Collection of Storage Specifying Columns

G is a $k \times n$, $k \leq n$, rank-k matrix &

"Matrix" G - A Collection of Storage Specifying Columns

G is a $k \times n$, $k \leq n$, rank-k matrix &

Columns of G are a multi-set V of points in $\mathbb{PG}(k-1,q)$.

$$\frac{\text{Example }\#1}{\text{Matrix }G} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \frac{\text{encodes data}}{\text{encodes data}} \begin{bmatrix} c & b & a \end{bmatrix} \text{ as follows:}$$
$$\begin{bmatrix} c & b & a \end{bmatrix} \cdot \mathbf{G} = \begin{bmatrix} a & b & a+b & c & a+c & b+c & a+b+c \end{bmatrix}$$

"Matrix" G - A Collection of Storage Specifying Columns

G is a $k \times n$, $k \leq n$, rank-k matrix &

Columns of G are a multi-set V of points in $\mathbb{PG}(k-1,q)$.

$$\begin{array}{l} \underline{\text{Example } \#1} - \text{the } [7,3] \text{ binary Simplex code} \\ \\ \text{Matrix } G = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \underbrace{\text{encodes data}}_{[c \ b \ a]} [c \ b \ a] \text{ as follows:} \\ \\ \hline [c \ b \ a] \cdot G = [a \ b \ a + b \ c \ a + c \ b + c \ a + b + c] \\ \\ \hline \underline{\text{Example } \#2} - \text{two } [4,2] \text{ MDS codes } (\alpha \text{ is a primitive in } \mathbb{F}_q, q > 4.) \end{array}$$

$$G_0 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 & \alpha^3 \end{bmatrix} \qquad G_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & \alpha \end{bmatrix}$$

These storage schemes provide different data access performance.

Minimal Recovery Sets

Subset R of columns in G is a minimal recovery set of data object a if

- ▶ $a \in span(R)$
- $\blacktriangleright \ S \subset R \implies \alpha \notin \mathsf{span}(S)$

Minimal Recovery Sets

Subset R of columns in G is a minimal recovery set of data object a if

a ∈ span(R)
S ⊂ R ⇒ a ∉ span(S)

Example:

 $R_{\alpha1},\ R_{\alpha2},\ R_{\alpha3},$ and $R_{\alpha4}$ are the recovery sets of size one and two of α in

$$\mathbf{G} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

 $\overset{(\hat{\ell})}{\longrightarrow}$ There is a minimal recovery set for a of size three!

Minimal Recovery Sets

Subset R of columns in G is a recovery set of e_j if

▶
$$e_j \in \text{span}(R)$$

▶ $S \subset R \implies e_j \notin \text{span}(S)$

Example: Let $G = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & \alpha \end{bmatrix}$. Then • the (size one and two) recovery sets of $e_1 = \begin{vmatrix} 1 \\ 0 \end{vmatrix}$ are $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \alpha \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \alpha \end{bmatrix} \right\}$ • the (size one and two) recovery sets of $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are $\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ \alpha \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \alpha \end{bmatrix} \right\}$

The recovery sets do not have to be disjoint (as for LRCs).

The Recovery Graph $\Gamma_{\!G}$ of a $2\times n$ Matrix G

and other matrices with only size-2 recovery sets

NODES:

 Γ_{G} has **n** nodes corresponding to the columns of G, and **i** additional nodes $\begin{bmatrix} 0\\0\\i \end{bmatrix}_{i}$ for systematic columns j = 1, ..., i.

EDGES:

If two nodes correspond to a recovery set of e_j ,

they are connected by an edge which is given label e_j .

The Recovery Graph $\Gamma_{\!G}$ of a $2\times n$ Matrix G

and other matrices with only size-2 recovery sets

NODES:

 Γ_G has n nodes corresponding to the columns of G, and i additional nodes $\begin{bmatrix} 0\\0 \end{bmatrix}_i$ for systematic columns j = 1, ..., i.

EDGES:

If two nodes correspond to a recovery set of e_j ,

they are connected by an edge which is given label e_j .

Recovery Graphs of Binary Simplex Codes

Fractional Matching & Service Rates on Recovery Graphs

A fractional matching in (V, E) is a vector $\boldsymbol{w} \in \mathbb{R}^{|E|}$ whose components (weights) w_{ε} , $\varepsilon \in E$, are non-negative and $\sum_{\varepsilon \ni v} w_{\varepsilon} \leqslant 1$ for each $v \in V$.

Fractional Matching & Service Rates on Recovery Graphs

A fractional matching in (V, E) is a vector $\boldsymbol{w} \in \mathbb{R}^{|E|}$ whose components (weights) w_{ϵ} , $\epsilon \in E$, are non-negative and $\sum_{\epsilon \ni \nu} w_{\epsilon} \leqslant 1$ for each $\nu \in V$.

We define $\lambda_j^{\boldsymbol{w}}$, the service rate for e_j in matching \boldsymbol{w} as the sum of weights w_{ϵ} of all e_j -labeled edges $\epsilon \in E$. We say that \boldsymbol{w} yields $\lambda_j^{\boldsymbol{w}}$.

Fractional Matching & Service Rates on Recovery Graphs

A fractional matching in (V, E) is a vector $\boldsymbol{w} \in \mathbb{R}^{|E|}$ whose components (weights) w_{ϵ} , $\epsilon \in E$, are non-negative and $\sum_{e \ni v} w_{\epsilon} \leqslant 1$ for each $v \in V$.

We define λ_j^{w} , the service rate for e_j in matching w as the sum of weights w_{ϵ} of all e_j -labeled edges $\epsilon \in E$. We say that w yields λ_j^{w} .

A matching with service rates $\lambda_1 = 2.5$ and $\lambda_2 = 0$.

A Service Vector and its Matchings

Fractional Matching and Service Polytopes of $\Gamma_G = (V, E)$

The set of all fractional matchings in $\Gamma_G = (V, E)$ is a polytope in $\mathbb{R}^{|E|}$, called the **fractional matching polytope** and denoted by $FMP(\Gamma_G)$.

The set of all service vectors in $\Gamma_G = (V, E)$ is a polytope in \mathbb{R}^k .

We call it the **service rate region**, and denote by $\Re(\Gamma_G)$.

 $\implies \Re(\Gamma_G)$ is the image of $FMP(\Gamma_G)$ under a linear map from $\mathbb{R}^{|\mathsf{E}|}$ to \mathbb{R}^k .

Fractional Matching and Service Polytopes of $\Gamma_G = (V, E)$

<u>The set of all fractional matchings</u> in $\Gamma_G = (V, E)$ is a polytope in $\mathbb{R}^{|E|}$, called the **fractional matching polytope** and denoted by **FMP**(Γ_G). The set of all service vectors in $\Gamma_G = (V, E)$ is a polytope in \mathbb{R}^k .

We call it the **service rate region**, and denote by $\Re(\Gamma_G)$.

 $\implies \mathcal{R}(\Gamma_G)$ is the image of $FMP(\Gamma_G)$ under a linear map from $\mathbb{R}^{|\mathsf{E}|}$ to \mathbb{R}^k .

The service rate region problem:

$$\mathsf{Find}\ \mathfrak{R}(\Gamma_G) = \Big\{ \lambda^{\boldsymbol{w}} \in \mathbb{R}^k : \boldsymbol{w} \in \mathsf{FMP}(\Gamma_G), \lambda^{\boldsymbol{w}}_{\mathfrak{i}} = \sum_{\varepsilon \text{ labeled by } e_{\mathfrak{i}}} w_{\varepsilon} \Big\}.$$
What does it mean to characterize a polytope?

We need to specify points or hyperplanes!

Convex Polytope in \mathbb{R}^d :

- convex hull of a finite set of points OR
- intersection of finitely many closed half spaces that is bounded

Ziegler's Lectures on Polytopes, Springer, GTM 152, revised first edition.

A Service Rate Polytope Example

Some bounds on $\Re(\Gamma_G)$ follow from the fractional matching number of Γ_G .

Two Bounding Simplexes (and the LRC Simplex) Bounds on $\sum_{i=1}^{k} \lambda_i$ for any vertex $(\lambda_1 \dots, \lambda_k)$ of the service region

We often compare service rate regions based on their bounding simplexes.

Fractional Matching and Vertex Cover Numbers

For matching
$$w$$
, we have $\sum_{i=1}^{k} \lambda_{i}^{w} = \sum_{e \in E} w_{e}$, \leftarrow the size of w .
 \Rightarrow
For all $\lambda \in \Re(\Gamma_{G})$, we have $\sum_{i=1}^{k} \lambda_{i} \leq \max_{w \in FMP(\Gamma_{G})} \sum_{e \in E} w_{e} = \mathbf{v}^{*}(\Gamma_{G})$
 $\mathbf{v}^{*}(\Gamma_{G})$ is the fractional matching number of Γ_{G} .

 $\mathsf{FMP}(\Gamma_G) = \left\{ w \in \mathbb{R}^{|\mathsf{E}|} \colon Aw \leqslant 1, \, w \geqslant 0 \right\} \Longrightarrow \mathsf{finding} \ \nu^*(\Gamma_G) \text{ is an LP problem}.$

Fractional Matching and Vertex Cover Numbers

For matching
$$w$$
, we have $\sum_{i=1}^{k} \lambda_{i}^{w} = \sum_{e \in E} w_{e}$, \leftarrow the size of w .
 \Rightarrow
For all $\lambda \in \mathcal{R}(\Gamma_{G})$, we have $\sum_{i=1}^{k} \lambda_{i} \leq \max_{w \in FMP(\Gamma_{G})} \sum_{e \in E} w_{e} = \mathbf{v}^{*}(\Gamma_{G})$
 $\mathbf{v}^{*}(\Gamma_{G})$ is the fractional matching number of Γ_{G} .

 $\mathsf{FMP}(\Gamma_G) = \{ w \in \mathbb{R}^{|\mathsf{E}|} : Aw \leq 1, w \geq 0 \} \Longrightarrow \text{ finding } \nu^*(\Gamma_G) \text{ is an LP problem.}$ Its dual finds the fractional vertex cover number $\tau^*(\Gamma_G) = \nu^*(\Gamma_G)$:

$$\tau^*(\Gamma_G) = \min \sum_{\nu \in V} \omega_{\nu} \text{ s.t. } A^T \omega \geqslant 1, \ \omega \geqslant 0$$

A fractional vertex cover in (V, E) is a vector $\boldsymbol{\omega} \in \mathbb{R}^{|V|}$ whose components (weights) $\boldsymbol{\omega}_{\nu}, \nu \in V$, are non-negative and $\sum_{\nu \in \varepsilon} \boldsymbol{\omega}_{\nu} \ge 1$ for each $\varepsilon \in E$.

Axes Intercept Points of $\mathcal{R}(\Gamma_G)$

Two easy-to-prove observations:

- $1. \text{ Let } \lambda_j^{\text{max}} = \max_{\lambda \in \mathcal{R}(\Gamma_G)} \lambda_j. \text{ Then } \lambda_j^{\text{max}} e_j \text{ is a vertex of } \mathcal{R}(\Gamma_G).$
- Let Γ^j_G be the sub-graph of Γ_G induced by e_j-edges. Then λ^{max}_i is equals to the matching number of Γ^j_G.

Axes Intercept Points of $\mathcal{R}(\Gamma_G)$

Two easy-to-prove observations:

$$1. \text{ Let } \lambda_j^{\text{max}} = \max_{\lambda \in \mathcal{R}(\Gamma_G)} \lambda_j. \text{ Then } \lambda_j^{\text{max}} e_j \text{ is a vertex of } \mathcal{R}(\Gamma_G).$$

 Let Γ^j_G be the sub-graph of Γ_G induced by e_j-edges. Then λ^{max}_i is equals to the matching number of Γ^j_G.

The convex hull of points 0 and $\lambda_i^{\max} e_j$ is a k-simplex within $\Re(\Gamma_G)$.

For binary simplex codes, these simplexes coincide.

Binary Simplex Codes and their Recovery Graphs aka Hadamard Codes in CS literature

 G_k consist of all distinct nonzero vectors of \mathbb{F}_2^k .

 \implies Γ_k nodes are labeled by k-bit stings with even and odd weight.

Binary Simplex Codes and their Recovery Graphs aka Hadamard Codes in CS literature

 G_k consist of all distinct nonzero vectors of \mathbb{F}_2^k .

 \implies Γ_k nodes are labeled by k-bit stings with even and odd weight.

Lemma: Structure of the recovery graph Γ_k :

- 1. Γ_k is bipartite. Edges connect odd-weight with odd-weight nodes.
- 2. Each odd-weight node of Γ_k has degree k.
- 3. The 2^{k-1} odd-weight nodes of form a minimum vertex cover of Γ_k .

Service Rate Region of $[2^k - 1, k]$ Binary Simplex Codes

Theorem:

A simplex in \mathbb{R}^k !

The service region of the $[2^k - 1, k]$ binary Simplex code is defined by

 $\lambda_1+\lambda_2+\dots+\lambda_k\leqslant 2^{k-1},\quad \lambda_i\geqslant 0,\ i=1,\dots,k.$

Service Rate Region of $[2^k - 1, k]$ Binary Simplex Codes

Theorem:

A simplex in \mathbb{R}^k !

The service region of the $[2^k - 1, k]$ binary Simplex code is defined by

$$\lambda_1+\lambda_2+\dots+\lambda_k\leqslant 2^{k-1},\quad \lambda_i\geqslant 0,\ i=1,\dots,k.$$

Proof Sketch for the Achevability:

Fractional matching on the recovery graph that assigns weight $\lambda_i/2^{k-1}$ to each e_i -labeled edge gives $\lambda_1 + \lambda_2 + \cdots + \lambda_k = 2^{k-1}$.

Service Rate Region of $[2^k - 1, k]$ Binary Simplex Codes

Theorem:

A simplex in \mathbb{R}^k !

The service region of the $[2^k - 1, k]$ binary Simplex code is defined by

$$\lambda_1+\lambda_2+\dots+\lambda_k\leqslant 2^{k-1},\quad \lambda_i\geqslant 0,\ i=1,\dots,k.$$

Proof Sketch for the Achevability:

Fractional matching on the recovery graph that assigns weight $\lambda_i/2^{k-1}$ to each e_i -labeled edge gives $\lambda_1 + \lambda_2 + \cdots + \lambda_k = 2^{k-1}$.

Proof Sketch for the Converse:

For <u>bipartite</u> graphs, the size of the minimum vertex cover (here 2^{k-1}) is equal to the (fractional) matching number.

A Class of MDS Matrices $G_i(n,k),\ i=0,1,2,\ldots,k$ α is a primitive in $\mathbb{F}_q,\ q>n$

$$\begin{split} G_0(n,k) = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots & 1 & \dots & 1 \\ 1 & \alpha & \alpha^2 & \dots & \alpha^{i-1} & \dots & \alpha^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \alpha^{k-1} & \alpha^{2(k-1)} & \dots & \alpha^{(i-1)(k-1)} & \dots & \alpha^{(n-1)(k-1)} \end{bmatrix}, \\ G_i(n,k) = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \\ i \text{ columns of } I_k \end{bmatrix} \underbrace{ \begin{array}{c} 1 & \dots & 1 \\ \alpha^i & \dots & \alpha^{n-1} \\ \vdots & \ddots & \vdots \\ \alpha^{(i-1)i} & \dots & \alpha^{(i-1)(n-1)} \\ \vdots & \ddots & \vdots \\ \alpha^{(k-1)i} & \dots & \alpha^{(k-1)(n-1)} \\ n-i \text{ columns of } G_0(n,k) \end{bmatrix}} for \ i = 1, \dots, k. \end{split}$$

We denote the j-th column of I_k by e_j and call it systematic, j = 1, ..., k.

Quasi-Uniform Recovery Hypergraphs

- A hypergraph is a pair (V, E), where
 - ► V is a finite set, the set of of vertices &
 - E is a multiset of subsets of V called edges.

Uniform and Quasi-uniform Hypergraphs

We say that a hypergraph is

- k-uniform if each of its edges has size k
- (k, m)-quasi-uniform if each of its edges has either size k or m.
- \implies Graphs are 2-uniform hypergraphs.

Quasi-Uniform Recovery Hypergraphs

- A hypergraph is a pair (V, E), where
 - ▶ V is a finite set, the set of of vertices &
 - E is a multiset of subsets of V called edges.

Uniform and Quasi-uniform Hypergraphs

We say that a hypergraph is

- k-uniform if each of its edges has size k
- (k, m)-quasi-uniform if each of its edges has either size k or m.
- \implies Graphs are 2-uniform hypergraphs.
- Q: What about recovery graphs $\Gamma_i(n,k)$ of $G_i(n,k)$, i = 0, 1, 2, ..., k?
- A: They are (k, 2)-quasi-uniform and $\Gamma_0(n, k)$ is k-uniform. The systematic edges have size 2; all other edges have size k.

[4, 2] MDS Matrices, Recovery Graphs, and Rate Regions

An Inclusion Theorem for $\mathcal{R}_i(n, k)$, i = 0, 1, ..., k

The proof follows from characterizing the maximal achievable and matching simplexes

For any k and n > k, we have

 $\mathcal{R}_0(n,k) \subset \mathcal{R}_1(n,k) \subset \mathcal{R}_2(n,k) \subset \cdots \subset \mathcal{R}_{k-1}(n,k) \subset \mathcal{R}_k(n,k)$

An Inclusion Theorem for $\mathcal{R}_i(n, k)$, i = 0, 1, ..., k

The proof follows from characterizing the maximal achievable and matching simplexes

For any k and n > k, we have

 $\mathcal{R}_0(n,k) \subset \mathcal{R}_1(n,k) \subset \mathcal{R}_2(n,k) \subset \cdots \subset \mathcal{R}_{k-1}(n,k) \subset \mathcal{R}_k(n,k)$

Can we completely characterize these polytopes? Yes, we can, but with much more work.

Perfect Matching, Matching Bound, and Greedy Matchings TOOLS: New & Old

A fractional matching in (V, E) is a vector $\boldsymbol{w} \in \mathbb{R}^{|E|}$ whose components (weights) w_{ϵ} , $\epsilon \in E$, are non-negative and $\sum_{\epsilon \ni \nu} w_{\epsilon} \leqslant 1$ for each $\nu \in V$. \implies the matching bound

$$|V| \geqslant \sum_{\nu \in V} \sum_{\varepsilon \ni \nu} w_{\varepsilon} = \sum_{\varepsilon \in E} w_{\varepsilon} |\varepsilon|.$$

A matching that saturates the bound is called perfect.

Perfect Matching, Matching Bound, and Greedy Matchings TOOLS: New & Old

A <u>fractional matching</u> in (V, E) is a vector $\boldsymbol{w} \in \mathbb{R}^{|E|}$ whose components (weights) w_{ϵ} , $\epsilon \in E$, are non-negative and $\sum_{\epsilon \ni \nu} w_{\epsilon} \leqslant 1$ for each $\nu \in V$. \implies the matching bound

$$|V| \ge \sum_{v \in V} \sum_{\varepsilon \ni v} w_{\varepsilon} = \sum_{\varepsilon \in E} w_{\varepsilon} |\varepsilon|.$$

A matching that saturates the bound is called perfect.

Greedy Matching Theorem

Let λ be a point in $\mathfrak{R}_{\mathfrak{i}}(n, k)$, i.e., $\exists w \in \mathsf{FMP}(\Gamma_{\mathfrak{i}}(n, k))$ s.t. $\lambda = \lambda^{w}$.

Then there exist a greedy matching $\sigma \in FMP(\Gamma_i(n,k))$ s.t. $\lambda = \lambda^{\sigma}$ and the weight of the j-th systematic edge $\sigma_j = \min\{1, \lambda_j\}$, for all $j \leq i$.

$\mathfrak{R}_i(n,k)$ for $n \ge 2k$

Slicing $\Gamma_i(n, k)$, $n - i \ge k$, into k-Uniform Subgraphs

$$\text{Consider } \boldsymbol{\lambda} = (\underbrace{\lambda_1, \ldots, \lambda_{i_A}}_{\geqslant 1}, \underbrace{\lambda_{i_A+1}, \ldots, \lambda_i, \ldots, \lambda_k}_{<1}) \in \mathcal{R}_i(n,k)$$

+ matching constraint at nodes, greedy matching, $\Gamma_i(n, k)$ structure. \implies There is a perfect matching that saturates the matching bound

$$k \cdot \sum_{j=1}^{i_A} (\lambda_j - 1) + \sum_{j=i_A+1}^{i} \lambda_j + k \cdot \sum_{j=i+1}^{k} \lambda_j \leqslant n - i_A$$

$\mathfrak{R}_i(n,k)$ for $n \ge 2k$

Slicing $\Gamma_i(n, k)$, $n - i \ge k$, into k-Uniform Subgraphs

$$\text{Consider } \boldsymbol{\lambda} = (\underbrace{\lambda_1, \ldots, \lambda_{i_A}}_{\geqslant 1}, \underbrace{\lambda_{i_A+1}, \ldots, \lambda_i, \ldots, \lambda_k}_{<1}) \in \mathcal{R}_i(n,k)$$

+ matching constraint at nodes, greedy matching, $\Gamma_t(n, k)$ structure. \implies There is a perfect matching that saturates the matching bound

$$k \cdot \sum_{j=1}^{i_A} (\lambda_j - 1) + \sum_{j=i_A+1}^{i} \lambda_j + k \cdot \sum_{j=i+1}^{k} \lambda_j \leqslant n - i_A$$

Example: A perfect matching on $\Gamma_3(6,3)$ with $i_A = 1$, $\lambda_2 = 0.8$, $\lambda_3 = 0.3$.

$\mathcal{R}_i(n,k)$ for $n \ge 2k$

Observe that when $n \ge 2k$, then $n - i \ge k$ for all i = 0, 1, 2, ..., k.

Consider $\lambda = (\lambda_1, \dots, \lambda_k) \in \mathfrak{R}_i(n, k)$ and a partition of $\{1, \dots, k\}$ into sets A, B, C s.t. if j > i, $j \in C$; if $j \leq i$, $j \in A$ if $\lambda_j \ge 1$, otherwise $j \in B$. \Longrightarrow

 $\begin{aligned} &\mathcal{R}_i(n,k) \text{ is the intersection for the following half spaces:} \\ &\lambda \geqslant 0 \text{ and} \\ & k \cdot \sum_{i \in A} (\lambda_j - 1) + \sum_{i \in B} \lambda_j + k \cdot \sum_{i \in C} \lambda_j \leqslant n - |A|, \end{aligned}$

for all partitions $A \cup B = \{1, \ldots, i\}$ s.t. $\lambda_j \ge 1$ for $j \in A$ and $\lambda_j < 1$ for $j \in B$, and $C = \{i + 1, \ldots, k\}$. If i = k, then $A = \emptyset$ does not give an active constraint.

 \implies

There are $k + 2^i$ hyperplanes for i = 0, ..., k - 1, and $k + 2^k - 1$ for i = k.

 $\mathfrak{R}_i(6,3), \ i=0,1,2,3$

$$\Re_i(12,3), i = 0, 1, 2, 3$$

$\Re_i(n, k)$ for n - i < k

 \implies There may not be a matching that saturates the matching bound

$$k \cdot \sum_{j=1}^{i_A} (\lambda_j - 1) + \sum_{j=i_A+1}^{i} \lambda_j + k \cdot \sum_{j=i+1}^{k} \lambda_j \leqslant n - i_A$$

What about the vertex cover bound $\sum_{j=1}^k \lambda_j \leqslant i?$

$\Re_i(n, k)$ for n - i < k

 \implies There may not be a matching that saturates the matching bound

$$k \cdot \sum_{j=1}^{i_{\mathcal{A}}} (\lambda_j - 1) + \sum_{j=i_{\mathcal{A}}+1}^{i} \lambda_j + k \cdot \sum_{j=i+1}^{k} \lambda_j \leqslant n - i_{\mathcal{A}}$$

What about the vertex cover bound $\sum_{j=1}^k \lambda_j \leqslant i?$

Example: Two matchings on $\Gamma_{\!3}(5,3)$ with $i_{\mathcal{A}}=1,\,\lambda_2{=}0.8,\lambda_3=0.3.$

hits a brick wall

saturates the vertex cover bound

The Vertex Cover Bound on $\Re_k(n, k)$ for n < 2k

Multiple points in $\mathfrak{R}_k(n,k)$ saturate the bound when n=2k-1

 $\lambda = (1, \ldots, 1)$ is the only point reaching the bound when n < 2k-1.

The Vertex Cover Bound on $\Re_k(n, k)$ for n < 2k

Multiple points in $\Re_k(n, k)$ saturate the bound when n = 2k - 1 $\lambda = (1, ..., 1)$ is the only point reaching the bound when n < 2k - 1.

Example: $\Gamma_3(5,3)$ vs. $\Gamma_3(4,3)$ when $i_A = 1$, $\lambda_2 = 0.8$, $\lambda_3 = 0.3$.

 $\Re_i(5,3), i = 0, 1, 2, 3$

and some remarks on $\Re_i(2k-1,k)$

 $\ln \mathcal{R}_i(2k-1,k),$

▶ if i < k, then $n - i \ge k$ for which we know $n + 2^i$ matching bounds.

• if i = k, multiple points achieve the vertex cover bound.

 $\Re_i(4,3), i = 0, 1, 2, 3$

and some remarks on $\Re_i(n,k)$ for n < 2k-1

In $\mathcal{R}_i(n,k)$ for n < 2k-1,

• if $n - i \ge k$ and we have $n + 2^i$ matching bounds.

▶ if i = k, a single point achieves the vertex cover bound.

Service Rate Region Problem(s) Formulation System Model:

- \blacktriangleright k data objects are stored redundantly across n nodes.
- Data objects are represented as elements of some finite field.
- Each server stores a <u>linear combination</u> of data objects, i.e., a coded object of the same size (same field).
- **•** Requests for object i, $i \in \{1, ..., k\}$ arrive to the system at rate λ_i .
- At each node, requests are serviced at rate $\mu = 1$.

SOME OBJECTIVES:

- 1. Determine the set of rates $(\lambda_1, \ldots, \lambda_k)$ that can be supported by the system implementing some common redundancy scheme.
- 2. <u>Design a redundancy scheme</u> in order to maximize and/or shape the of region of supported arrival rates under some limited resources.
- $\label{eq:constraint} \begin{array}{c} 3. & \underline{\text{Evaluate the system's performance}} \text{ for a given stochastic model of} \\ \hline (\lambda_1,\ldots,\lambda_k) \text{ (e.g., probability of supported rates, load imbalance)}. \end{array}$

Asynchronism

Asynchronous Service Rate Region

Asynchronous Batch Codes by Riet, Skachek, and Thomas

Consider the (7, 3) simplex code and two ways to satisfy demand (1, 3, 0):

Asynchronous Service Rate Region

Asynchronous Batch Codes by Riet, Skachek, and Thomas

Consider the (7, 3) simplex code and two ways to satisfy demand (1, 3, 0):

Q: If some users leave the system, can others use the freed resources?
Benefits and Costs of Adding Server(s)

Covering a Region with Minimal Storage

We need to serve requests in the region $\lambda_a \leqslant \alpha$, $\lambda_b \leqslant \beta$, $\lambda_a + \lambda_b \leqslant \gamma$.

The columns of the generator matrix can only be $\begin{bmatrix} 1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1 \end{bmatrix}$, and $\begin{bmatrix} 1\\1 \end{bmatrix}$.

Find $n_{[1]}, n_{[1]}, n_{[1]}$ that minimize $n = n_{[1]} + n_{[1]} + n_{[1]}$.

Covering a Region with Minimal Storage - Examples

What is the minimal number of servers and the redundancy scheme that satisfy the demand described by $\lambda_a \leq \alpha$, $\lambda_b \leq \beta$, $\lambda_a + \lambda_b \leq \gamma$?

Maximizing Service Rate Region with Fixed Resources

How should we store k objects on n servers?

Combining coding and replication is beneficial in multiple ways.

Service rate region depends on the generator matrix of the code.

Covered Requests, Server Utilization, Load (Im)balance

Requests: $\lambda_a \sim \mathcal{N}^+(4,4)$ and $\lambda_b \sim \mathcal{N}^+(8,8)$ and vice versa.

Two systems with equal total service bandwidth, storing k = 2 objects.

Request coverage: 0.7366 for [a, a, b] & [a, b, b], 0.8727 for [a, b, a+b]0.9211 for [a, a, b, b], and 0.9434 [a, b, a+b, a-b].

Codes for (Un)Expected Loads

New applications create new performance metrics for codes, and thus the needs for new coding schemes to be designed.

