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Distributed Service Model

There are 1. nodes providing service to multiple concurrent users,
e.g., cloud edge nodes providing streaming, download, computing.

We distinguish between two functional components at each node:

one for data storage and the other for service request processing.
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Distributed Service Model

There are 1. nodes providing service to multiple concurrent users,
e.g., cloud edge nodes providing streaming, download, computing.

We distinguish between two functional components at each node:

one for data storage and the other for service request processing.

Example:
Three nodes provide data-download service to multiple concurrent users,
where each user wants either data object a or data object b.

~ > ~ —~ N

a b a+b
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Data Storage Model

Simple Redundant Storage

> k equal size data objects are stored across n servers (k < n).
» Data objects are represented as elements of F.
» Coded object are linear combinations of data specified by FE vectors.

> Each server stores a single coded object (one of n).

4

— A data object can be recovered from multiple sets of coded objects.
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Data Storage Model

Simple Redundant Storage

> k equal size data objects are stored across n servers (k < n).
» Data objects are represented as elements of F.

» Coded object are linear combinations of data specified by FE vectors.

> Each server stores a single coded object (one of n).

4

— A data object can be recovered from multiple sets of coded objects.
Example: Data objects a, b, and ¢ stored across n = 7 nodes:

1 1 1
I

0
a b a+b c a+c b+c a+b+c

Ral L Ru2 J L Ra3 J L Ru4 J
= a can be recovered from any of the sets Rqy1, Rq2, Ra3, Ras.
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Data Service and Request Models

Different practical service models are mathematically equivalent.

For service , we consider the bandwidth and the queuing model:

stores one data object stores one data object
K 4 N >

— — Users queue for download.
w Server’s bandwidth W can 1

accomodate up to p users. .
p ot Download is done at rate pt.
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Data Service and Request Models

Different practical service models are mathematically equivalent.

For service , we consider the bandwidth and the queuing model:

stores one data object stores one data object
A > N~ ~

— W — . Users queue for download.
Server’s bandwidth W can
accomodate up to p users.

Requests for objects 1, i € {1, ..., k}:
» In the queuing model, requests for object 1 arrive at rate A;.
» In the bandwidth model, the number of requests for object 1 is A4

—
A server can handle multiple download requests.

Download is done at rate pt.
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Distributed Service Model — An Example

Aa is the request rate (demand) for object a

Aqj is the portion of A, assigned to the recovery set Rqj, j € {1,2,3,4}.

R(11 h Ra2 ﬂ h Ra3 ﬂ h Ra4 ﬂ
a b a+b c a+c b+c a+b+c

A0.2 }\a3 ?\a4

Tilili

3 4 5 6 7

Aa —

{Aq1, Aa2, Aa3, Aaal is a request allocation for Ag.
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Distributed Service Model — An Example

Aa is the request rate (demand) for object a

Aqj is the portion of A, assigned to the recovery set Rqj, j € {1,2,3,4}.

Ral hRQQ ﬂ hRaB ﬂ hRaél ﬂ
a_ b atb c atc btc atbtec

A¢12 )\a3 ?\a4

SERER R

3 4 5 6 7

» <€ » € »

Aa

{Aq1, Aa2, Aa3, Aaal is a request allocation for Ag.

Which request vectors (Aq, Ap, Ac) can be serviced by the system? J
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Codes with Locality and Availability in Service

What are the simultaneous recovery sets for a in the following code?

a b atb a-b
P
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Codes with Locality and Availability in Service

What are the simultaneous recovery sets for a in the following code?

o b oafh
& & ©

=]

—

»

~)

» There are two a-recovery sets in the LRC/availability model, e.g.,

Ra2

= T |
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Codes with Locality and Availability in Service

What are the simultaneous recovery sets for a in the following code?

a b a+b —

-

€& &

fe
Wi

» There are two a-recovery sets in the LRC/availability model, e.g.,

Ra2
LiLEL: JIIIEI LIIIII IIIIIE
a b a+b a—b

» There are four a-recovery sets in the service model:

Ray4
Ras
Rap2
Roy ———— l l
3 A
SLILEEE SEIIEE LELIEE I
a b a+b b
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Service Rate Region — A Polytope in R

Set of vectors (A1,...,A) that can be served by the system
Ai is the request rate (demand) for object i, i=1,..., k.
Aij is the portion of A; assigned to the recovery set Ry ,j=1,..., t;.
The request vector (Aq,...,Ax) can be serviced by the system

iff there exist Ayj satisfying the following constraints:

1. No server is assigned requests in excess of its service rate:

Kk
Z Z Ay <p for 1<E<n.

i=1 1<ty
(ERY;

2. All objects’ requests are served: th":l Ay =Asfor 1<igk

A 11 <i<k 1 <j<ti)isa request allocation for (Aq, ..., Ax).

If we require that Aj; be either 0 or p, we speak of integral service rates.

8/50



Three Storage Schemes and Their Service Rates

k = 3 data objects stored across n = 4 nodes

a) Ac abce b) Ac abeb+e

}\b )\b

Ag Ad

Many (kinds of) questions are of interest.

c) Ac abca+b+c

Ab

9/50



Service Rate Region Problem(s) Formulation
System Model:

» k data objects are stored redundantly across n nodes.
» Data objects are represented as elements of some finite field.

» Each server stores a linear combination of data objects,
i.e., a coded object of the same size (same field).

» Requests for object i, 1 € {1, ..., k} arrive to the system at rate [Aj|.

» At each node, requests are serviced at rate [p=1.

SOME OBJECTIVES:
1. Determine the set of rates (A1,...,Ax) ?»’; that can be supported
by the system implementing some common redundancy scheme.

2. Design a redundancy scheme in order to maximize and/or shape the
of region of supported arrival rates under some limited resources.

3. Evaluate the system's performance for a given stochastic model of
(A1, ..., Ax) (e.g., probability of supported rates, load imbalance).
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A Problem of City with Two Movies & Three Cinemas

» There are two movies a & b and three cinemas with 100 seats each.
> Ao people want to see a and A people want to see b.

» We know that the city’s population is 200 = A4 + Ap < 200

Q1: Which movie should each cinema play?
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A Problem of City with Two Movies & Three Cinemas

» There are two movies a & b and three cinemas with 100 seats each.
> Ao people want to see a and A people want to see b.

> We know that the city's population is 200 = A4 + Ap < 200

Q1: Which movie should each cinema play?
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A Problem of City with Two Movies & Three Cinemas

Q2: Can A, people see a and Ay, people see b as long as Aq + A, < 2007

Q3: Which vectors (Aq, Ap) are possible for a given redundancy scheme?
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“Matrix” G - A Collection of Storage Specifying Columns

Gisa k xn, k <n, rank-k matrix & J

N2 Columns of G are a multi-set V of points in PG(k —1, q).
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“Matrix” G - A Collection of Storage Specifying Columns

Gisa k xn, k <n, rank-k matrix &

e

YV? Columns of G are a multi-set V of points in PG(k —1, q).

Example #1 — the [7, 3] binary Simplex code

] 00 0 1 1 1 1
Matrix G=[0 1 1 0o o 1 1| encodes data[c b a] as follows:
1 0 1 0 1 0 1

c ba -G=[ab at+b ¢ at+c b+ec a+b+c]
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“Matrix” G - A Collection of Storage Specifying Columns
Gisak xmn, k<n, rank-k matrix &

N2 Columns of G are a multi-set V of points in PG(k — 1, q).

Example #1 — the [7, 3] binary Simplex code

00 0 1 1 1
1 encodes data [c b a] as follows:
1

1
Matrix =0 1 0 0 1 1
10 01 0 1

c ba -G=[ab at+b ¢ at+c b+ec a+b+c]
Example #2 — two [4,2] MDS codes (« is a primitive in Fq, q > 4.)

11 1 1 1 011
GOL o« o? oc3} G2{O 11 oc]

o0
"p’s—
v;.f =

These storage schemes provide different data access performance.
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Minimal Recovery Sets

Subset R of columns in G is a minimal recovery set of data object a if

» a € span(R)
» SCR = a ¢ span(S)
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Minimal Recovery Sets

Subset R of columns in G is a minimal recovery set of data object a if
» a € span(R)

» SCR = a ¢ span(S)
Example:

HI ]

a b a+b c a+c

i

b+c a+b+c

Ral L Ru2 - L RaS - L Ra4 -

Ra1, Ra2, Ra3, and Ryy are the recovery sets of size one and two of a in

1 2 3 4 5 6 7
0o 0 0 1 1 1 1
G=(0 1 1 0 0 1 1
1 0 1 0 1 0 1

)

N2 There is a minimal recovery set for a of size three!
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Minimal Recovery Sets

Subset R of columns in G is a recovery set of ej if

> ¢; € span(R)
> SCR = ¢ ¢span(S)

Example:

Let G:[(l) (1) 1 (ﬂ Then

» the (size one and two) recovery sets of e; = m are

IR (BRI (R RAR Y

> the (size one and two) recovery sets of e, = [2 are

IR (R AR (R R R Y

N2 The recovery sets do not have to be disjoint (as for LRCs).




The Recovery Graph I'g of a 2 x n Matrix G

and other matrices with only size-2 recovery sets

NODES:

I'c has n nodes corresponding to the columns of G, and

1 additional nodes [8]). for systematic columns j =1, ..., 1.
EDGES:

If two nodes correspond to a recovery set of e;j,
they are connected by an edge which is given label e;.
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The Recovery Graph I'g of a 2 x n Matrix G

and other matrices with only size-2 recovery sets

NODES:

I'c has n nodes corresponding to the columns of G, and

1 additional nodes [8]). for systematic columns j =1, ..., 1.
EDGES:

If two nodes correspond to a recovery set of e;j,
they are connected by an edge which is given label e;.

Example:

§)
NN
EIAN
A\ S

(1] (0]
(o] [7]
\ \

[

\ / 2,

o
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Recovery Graphs of Binary Simplex Codes

R A T I ]

a b atb ¢ atc btc atbic
\Ral/ \ L/RaQ \J / \\ L/Ra3 ! / \\ L/Ra4 ! /
"t ]
e AN AN
e _a b
‘\'.;.:.:"::.,_.... w0 ) of [ﬂ [ﬂ
:,...\‘C ':.,.:’“':,’ / C\®/a \ Nt
R VAR AN / [ﬂ>k\l
. B PEN M ~ 0 1
T
T
e B ebtc
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Fractional Matching & Service Rates on Recovery Graphs

A fractional matching in (V, E) is a vector w € R/¥l whose components
(weights) we, e € E, are non-negative and ) .., we < 1foreachveV.
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Fractional Matching & Service Rates on Recovery Graphs

A fractional matching in (V, E) is a vector w € R/¥l whose components
(weights) we, e € E, are non-negative and ) .., we < 1foreachveV.

We define )\jw, the service rate for ej in matching w as the sum of
weights w. of all ej-labeled edges € € E. We say that w yields )\jw. J

18/50



Fractional Matching & Service Rates on Recovery Graphs

A fractional matching in (V, E) is a vector w € R/¥l whose components
(weights) we, e € E, are non-negative and ) .., we < 1foreachveV.

We define )\jw, the service rate for ej in matching w as the sum of
weights w. of all ej-labeled edges € € E. We say that w yields )\jw. J

A matching with service rates A; = 2.5 and A, = 0.

/ \
es0 \ e10.5
/ €20 \
G-l § 1 i —n@a (3 / 9]
61\1\ €10.5 ez‘O
| e0 e10.5 |
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A Service Vector and its Matchings

Two matchings for (1.5,0.75) service vector in T3(4, 2):

greedy matching [1] (1]
o/ \ 0 o/ \\ 0.5
[]]/ T \[0] [‘]/ T \[O]
\ \ e10.5 \
! €20.75 1<‘> 5\ /20 25
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Fractional Matching and Service Polytopes of ' = (V, E)

The set of all fractional matchings in T'g = (V, E) is a polytope in RIFl,

called the fractional matching polytope and denoted by FMP(Ig) .

The set of all service vectors in T'g = (V, E) is a polytope in R¥.

We call it the service rate region, and denote by R(I'g) .

= R(I'g) is the image of FMP(I'g) under a linear map from RIFl to R¥.
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Fractional Matching and Service Polytopes of ' = (V, E)

The set of all fractional matchings in T'g = (V, E) is a polytope in RIFl,

called the fractional matching polytope and denoted by FMP(Ig) .

The set of all service vectors in T'g = (V, E) is a polytope in R¥.

We call it the service rate region, and denote by R(I'g) .

= R(I'g) is the image of FMP(I'g) under a linear map from RIFl to R¥.

The service rate region problem:

Find R(Tg) = {A™ € R*:w e FMP(Tg) A = ) we .

€ labeled by e;
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What does it mean to characterize a polytope?
We need to specify points or hyperplanes!

Convex Polytope in R¢:
» convex hull of a finite set of points OR

» intersection of finitely many closed half spaces that is bounded

Ziegler's Lectures on Polytopes, Springer, GTM 152, revised first edition.
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A Service Rate Polytope Example

A2
2.5
A +20 =5
AMAA2=3
A1 +A2 =5
A
25 !

Some bounds on R(Tg) follow from the fractional matching number of Tg.
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Two Bounding Simplexes (and the LRC Simplex)

Bounds on Z!f:l Ai for any vertex (A1 ..., Ay ) of the service region

Aa

“-maximal matching simplex

2.5

maximal achevable simplex

service polytope

LRC simplex

Ab

We often compare service rate regions based on their bounding simplexes.
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The Maximal Matching Simplex

Fractional Matching and Vertex Cover Numbers

k
For matching w, we have Z AV = Z We, <— the size of w.
i=1 eck
=
k
Forall A € R(T'g), h A < =v* (I
orall A € R(Tg), we ave; i WEFmlvlalg<rG Zwe v*(I'g)

v*(Tg) is the fractional matching number of FG.

FMP(Tg) = {w ERF:AWLT, w2 0} = finding v*(I'g) is an LP problem.

24 /50



The Maximal Matching Simplex

Fractional Matching and Vertex Cover Numbers

k
For matching w, we have Z AV = Z We, <— the size of w.

i=1 eckE
—

K

For all A I h ; =v*(T
or a € R(I'g), we have ;7\1 weFmMalg(rG Zwe v*(I'g)
v*(Tg) is the fractional matching number of Fg.

FMP(Tg) = {w ERF:AWLT, w2 0} = finding v*(I'g) is an LP problem.

Its dual finds the fractional vertex cover number t*(I'g) = v*(I'g):

T"(Tg) = min Z wyst. ATw>1, w>0
vev

A fractional vertex cover in (V,E) is a vector w € RV whose components
(weights) w,, v € V, are non-negative and > __w, > 1 for each e € E.

veEe
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The Maximal Matching Simplex

Axes Intercept Points of R(T'g)

Two easy-to-prove observations:

1. Let A" = max A;. Then A"e; is a vertex of R(Tg).

AER(TG)

2. Let Fé be the sub-graph of I'g induced by e;-edges.
Then ?\;"ax is equals to the matching number of F’G.
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The Maximal Matching Simplex

Axes Intercept Points of R(T'g)

Two easy-to-prove observations:

1. Let A = max A;. Then A"®*¢; is a vertex of R(I'g).
J AER(TG) )

2. Let Fé be the sub-graph of I'g induced by e;-edges.
Then ?\jmax is equals to the matching number of F’G.

The convex hull of points 0 and A"e; is a k-simplex within R(Tg).
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Bounding Simplexes for G = E - 1}

Aa

1~

maximal matching simplex: ““maximal matching simplex

intersection of half spaces 2.5 h
Zl'lexi <v¥(Tg) &A>0.

(Some points are achievable!)

maximal achevable simplex

maximal achievable simplex: service polytope

convex hull of points
)\Enaxei, i= 1’ o ,k, &A=0. LRC simplex

For binary simplex codes, these simplexes coincide.
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Binary Simplex Codes and their Recovery Graphs

aka Hadamard Codes in CS literature

Gy consist of all distinct nonzero vectors of FX.
= T nodes are labeled by k-bit stings with even and odd weight.
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Binary Simplex Codes and their Recovery Graphs

aka Hadamard Codes in CS literature

Gy consist of all distinct nonzero vectors of FX.
= T nodes are labeled by k-bit stings with even and odd weight.

Lemma: Structure of the recovery graph Ty:
1. Ty is bipartite. Edges connect odd-weight with odd-weight nodes.
2. Each odd-weight node of T has degree k.

3. The 271 odd-weight nodes of form a minimum vertex cover of Iy.
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Service Rate Region of [2% — 1, k] Binary Simplex Codes

Theorem: A simplex in R¥!

The service region of the [2X — 1, k] binary Simplex code is defined by

AMAA4 A <2 A >0 1=1,....k

28/50



Service Rate Region of [2¢ — 1, k] Binary Simplex Codes

Theorem: A simplex in R¥!

The service region of the [2X — 1, k] binary Simplex code is defined by

MAM+- A <25 A >0 i=1,... k.

Proof Sketch for the Achevability:

Fractional matching on the recovery graph that assigns weight A; /271
to each ej-labeled edge gives Ay 4+ Ay + - -+ + A = 2571,
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Service Rate Region of [2¢ — 1, k] Binary Simplex Codes

Theorem: A simplex in R¥!

The service region of the [2¢ — 1,k] binary Simplex code is defined by

MAAM+- A <250 Ay >0, i=1,...,k

Proof Sketch for the Achevability:

Fractional matching on the recovery graph that assigns weight A; /271

to each ej-labeled edge gives Ay 4+ Ay + - -+ + A = 2571,

Proof Sketch for the Converse:

For bipartite graphs, the size of the minimum vertex cover (here 251)
is equal to the (fractional) matching number.

28/50



A Class of MDS Matrices Gi(n,k),1=0,1,2,...,k

o is a primitive in Fq, q>n

Go (Tl, k) =

Gi(n, k) =

We denote the j-th column of Iy by e; and call it systematic, j =1,..., k.

1 1

o o?
0(1;71 o@“.‘*”

0 0

1 0

0 1

0 0

1 1
o(ifl (xnfl
o(i-1)(k—1) o1 (k1)
1 1 T
(Xi (xnfl
oi-Di (x(ifl-)(nfl] fori=1,....k
a1

i columns of Iy

n — i columns of Gg(n, k)
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Quasi-Uniform Recovery Hypergraphs

A hypergraph is a pair (V, E), where
» V is a finite set, the set of of vertices &
> E is a multiset of subsets of V called edges.

Uniform and Quasi-uniform Hypergraphs
We say that a hypergraph is
» k-uniform if each of its edges has size k

» (k, m)-quasi-uniform if each of its edges has either size k or m.

= Graphs are 2-uniform hypergraphs.
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Quasi-Uniform Recovery Hypergraphs

A hypergraph is a pair (V, E), where
» V is a finite set, the set of of vertices &
> E is a multiset of subsets of V called edges.

Uniform and Quasi-uniform Hypergraphs
We say that a hypergraph is
» k-uniform if each of its edges has size k

» (k, m)-quasi-uniform if each of its edges has either size k or m.

= Graphs are 2-uniform hypergraphs.

Q: What about recovery graphs I'i(n, k) of Gi(n,k),1=0,1,2,...,k?
A: They are (k, 2)-quasi-uniform and Ty(n, k) is k-uniform.
The systematic edges have size 2; all other edges have size k.
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[4,2] MDS Matrices, Recovery Graphs, and Rate Regions

1

11 1
0 o o

= |

101 1 1
1« o o

o
Q

/
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An Inclusion Theorem for Ri(n,k),1=0,1,...,k

The proof follows from characterizing the maximal achievable and matching simplexes

For any k and n > k, we have
:Ro(n, k) C Rl(n, k) C fRz(Tl,k) c---C kafl(n, k) - ‘Rk(n, k) j
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An Inclusion Theorem for Ri(n,k),1=0,1,...,k

The proof follows from characterizing the maximal achievable and matching simplexes

For any k and n > k, we have

fRo(Tl., k) C Rl(n, k) C fRz(Tl, k) c---C kafl(T\., k) - iRk(n, k)

Can we completely characterize these polytopes?
Yes, we can, but with much more work.

32/50



Perfect Matching, Matching Bound, and Greedy Matchings

TOOLS: New & Old

A fractional matching in (V, E) is a vector w € RIEl whose components
(weights) we, € € E, are non-negative and Zeav Wwe < 1foreachveV.
=—> the matching bound

VIZ D) ) we=) welel.

veV edv €€k

A matching that saturates the bound is called perfect.
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Perfect Matching, Matching Bound, and Greedy Matchings

TOOLS: New & Old

A fractional matching in (V, E) is a vector w € RIEl whose components
(weights) we, € € E, are non-negative and Zeav Wwe < 1foreachveV.
=—> the matching bound

VIZ D) ) we=) welel.

veV edv €€k

A matching that saturates the bound is called perfect.

Greedy Matching Theorem
Let A be a point in Ri(n, k), i.e,, Iw € FMP(T;(n, k)) s.t. A =A™,

Then there exist a greedy matching o € FMP(Ti(n, k)) s.t. A = A° and
the weight of the j-th systematic edge o = min{1, A;}, for all j <.

33/50



Ri(m, k) for n > 2k
Slicing Ty (n, k), n —1 > k, into k-Uniform Subgraphs

Consider A = (Al,...,)\iA,7\1A+1,...,7\1‘,,...,7\k) € fRi(ﬂ,,k)

>1 <1
+ matching constraint at nodes, greedy matching, TI';(n, k) structure.
= There is a perfect matching that saturates the matching bound

kZ?\—l—i—Z?\—i—k Z?\ n—ia
j=

j=ia+1 j=i+1
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Ri(n, k) for n > 2k
Slicing Ty (n, k), n —1 > k, into k-Uniform Subgraphs

Consider A = (Aq, ..., Mg Aiattr - Moo Ak) € Ri(m, k)

>1 <1
+ matching constraint at nodes, greedy matching, TI';(n, k) structure.
= There is a perfect matching that saturates the matching bound

kZ?\—l—i—Z?\—i—k Z?\ n—ia
j=

j=ia+1 j=i+1

Example: A perfect matching on T3(6,3) with ia = 1, A,=0.8,A3 = 0.3.
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Ri(n, k) for n > 2k

Observe that when n > 2k, thenn—1i >k forall1i=0,1,2,..., k.
Consider A = (Aq,...,Ak) € Ri(n, k) and a partition of {1,...,k} into
sets A, B, Cs.t.ifj>1,j € Cifj <i,j € Aif Aj > 1, otherwise j € B.
=

Ri(mn, k) is the intersection for the following half spaces:

A>0and
KeY =1 +) A+k-) Ay <n—]A|
JEA jEB jeC
for all partitions AUB ={1, ..., i}st.A\j > 1forje Aand Aj <1 forjeB,
and C={i+1,..., k}. If 1=k, then A = () does not give an active constraint.

v

—
There are k + 2' hyperplanes for i =0, ..., k—1, and k+ 2% —1 for i = k.
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Ri(6,3),1=0,1,2,3

N n A

>
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Ri(12,3),1=0,1,2,3
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Ri(m, k) forn—1i< k

== There may not be a matching that saturates the matching bound

Z}\71+Z)\+k Z}\ n—in

j=ia+1 j=i+1

What about the vertex cover bound Z}(ﬂ Ay <7
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Ri(n, k) forn —1 < k
== There may not be a matching that saturates the matching bound
Z}\71+Z)\+k Z}\ n—in
j=ia+1 j=i+1
What about the vertex cover bound Z}(ﬂ Ay <7
Example: Two matchings on I73(5,3) with i =1, A,=0.8, A3 = 0.3.

size 1 + % + %7\2 size 3

hits a brick wall saturates the vertex cover bound

38/50



The Vertex Cover Bound on Ry (n, k) for n < 2k

Multiple points in Ry (n, k) saturate the bound when n =2k — 1
A =(1,...,1) is the only point reaching the bound when n < 2k — 1. J
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The Vertex Cover Bound on Ry (n, k) for n < 2k

Multiple points in Ry (n, k) saturate the bound when n =2k — 1

A=(1,...

, 1) is the only point reaching the bound when n < 2k — 1.

|

Example: T3(5,3) vs. I'3(4,3) when iy =1, A,=0.8,A3 = 0.3.

VS.
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Ri(5,3),1=0,1,2,3

and some remarks on R;(2k — 1, k)

M A A

A3
Az

In Ry (2k — 1, %),
» if i <k, then n —1i > k for which we know n + 2' matching bounds.

» if i =k, multiple points achieve the vertex cover bound.
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Ri(4,3),1=0,1,2,3

and some remarks on R;(n, k) forn <2k —1

M A A1

A1

(IS

Az

[ORTTS
&

A3 A3
A3

In Ri(n, k) forn < 2k — 1,
» if n —1i >k and we have n + 2! matching bounds.

> if i =k, a single point achieves the vertex cover bound.
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Service Rate Region Problem(s) Formulation
System Model:

» k data objects are stored redundantly across n nodes.
» Data objects are represented as elements of some finite field.

» Each server stores a linear combination of data objects,
i.e., a coded object of the same size (same field).

» Requests for object i, 1 € {1, ..., k} arrive to the system at rate Ay .

> At each node, requests are serviced at rate p=1.

SOME OBJECTIVES:
1. Determine the set of rates (A1,...,Ax) ?»’; that can be supported
by the system implementing some common redundancy scheme.

2. Design a redundancy scheme in order to maximize and/or shape the
of region of supported arrival rates under some limited resources.

3. Evaluate the system's performance for a given stochastic model of
(A1, ..., Ax) (e.g., probability of supported rates, load imbalance).
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Asynchronism

43/50



Asynchronous Service Rate Region
Asynchronous Batch Codes by Riet, Skachek, and Thomas

Consider the (7, 3) simplex code and two ways to satisfy demand (1, 3,0):

a b a+b c a+c b+c a+b+c
L _ 3 ) W _ € y e’ L ) q _

fractional matching integral matching

o0,
“w°0b
o0,
ea+b

ea+c

" ebtc
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Asynchronous Service Rate Region
Asynchronous Batch Codes by Riet, Skachek, and Thomas

Consider the (7, 3) simplex code and two ways to satisfy demand (1, 3,0):

. b atb ¢ atc

recovery graph fractional matching

~ bt

b+c a+b+c

integral matching

o0,
- Ov
o0,
ea+b

ea+c

" ebtc

Q: If some users leave the system, can others use the freed resources?
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Benefits and Costs of Adding Server(s)

l a,b,c

|

|

l A
|

2

<]

=2}

=

g

» b,c,b+

5

7

A

2 A
7]

g

g

3]

l

l a,b,c,a+b+

|

l

! A

45 /50



Covering a Region with Minimal Storage

We need to serve requests in the region Aq < o, A, < B, Aqg +Ap <Y

(v—a, )

A
(3,0) °

The columns of the generator matrix can only be [}], [9], and [}].

i

Find n[é],n[?],n[%] that minimize n = TL[(1)] +Tl[(1)] +n[%].
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Covering a Region with Minimal Storage — Examples

What is the minimal number of servers and the redundancy scheme
that satisfy the demand described by Aq < o, Ap < B, Aq +Ap < V7

Aa Aa
aabba+ba+tb abbba+b

a=4,p=4y=4 T a=2,p=4y=4

M M
Aa Aa
aabbba+b abbbb
! T x=3,Bp=4y=4 ! T.oa=1p=4y=4
1
I Ab 1 Av
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Maximizing Service Rate Region with Fixed Resources

How should we store k objects on 1 servers?

a a a a b b b b Aa
I « ’ <’ I  » ) € Ly

a+b  atab at+a’b at+a’b a+alb at+a’b a+a’b a+a’b
- ; - L ) ©3 ey -

a+b atab at+a’b ata’b atotb ata’d  a b
; \ - ; y © -

atb at+ab  a a a b b b
; " L « » - L ;

Ab

» Combining coding and replication is beneficial in multiple ways.

» Service rate region depends on the generator matrix of the code.
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Covered Requests, Server Utilization, Load (Im)balance
Requests: Aq ~NT(4,4) and Ap ~NT(8,8) and vice versa.
Two systems with equal total service bandwidth, storing k = 2 objects.

System 1: n =3 with u =38
with codes
la, a,b] [a,b,b] [a,b, at+b]

System 2: n =4 with u =06
with codes
la,a,b,b] [a, b, at+b, a—b]

Aa

16
15

abatba-b

aabb

aba+b

8

A
12 1516 °

Request coverage: 0.7366 for [a, a,b] & [a, b, b], 0.8727 for [a, b, a+b]
0.9211 for [a, a, b, b], and 0.9434 [a, b, a+b, a—Db].
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Codes for (Un)Expected Loads

New applications create new performance metrics for codes,
and thus the needs for new coding schemes to be designed.

/'Lr collects b

Av

collects a
ey LI T ey 2

VS.
o b afb a-b
9 &9 €& &€ \

s 2 25 3 Aa
o _a b athb
9y €9 €9 &€
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