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Gaming

Applications:

1 Health risk predictions

2 Bank loan approvals

3 Corporate
hiring/promotions ...

Gaming: Train

Deploy

Agents
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Strategic Classification Setting 1

Classical vs strategic classification: Dtrain ̸= Dtest in strategic
classification

Dtest is a obtained from implemented classifier f and Dtrain

Game Theory interpretation: Two players, System and User(s) play
following Stackelberg game

▶ System learns a classifier f from training data Dtrain

▶ System makes f public
▶ User, on observing f , misreport (at cost) her features to obtain the

desired outcome from f

Goal: To minimize risk under strategic data distribution shift (strategic
error).

1Strategic Classification, Hardt, Maggiddo, Papadimitriou, Wooters, ITCS 2016.
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Utility Model, Cost ...

Strategies and Utilities:

Users want favourable outcome; Users utility is 1 if classified
positively and 0 otherwise.

System wants to predict true label accurately;

Users optimal response to f

∆f (x) ∈ arg min
x ′∈X

(
f (x ′)︸ ︷︷ ︸
classfier

− c(x , x ′)︸ ︷︷ ︸
cost

)
- c(x , x ′) : cost of reporting x as x ′.
- cost is non-negative, truthful reports incur zero cost

System’s payoff:Px∈D(y = f (∆f (x))). Throughout this talk we will
consider strategic error.

f ∗ ∈ argmin
f ∈F

Px∈D(y ̸= f (∆f (x)))

Systems goal: Find f ∗ that adjusts to distribution shift in test data.
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Separable Cost Functions

Definition (Separable costs)

A cost function c(x , y) is called separable if it can be written as

c(x , y) = max(0, c2(y)− c1(x)) (1)

c1, c2 : X → R and, c2(X ) ⊆ c1(X ).

Introduction Models of Strategic Learning 9 / 22



Separable Cost: Example

Example

c(x , y) = ⟨α, y − x⟩+.

Figure: Let f be an optimal classifier. Then since moving perpendicular to α is
cost-free for agent, Systems payoff from f ′ is equivalent that from f .
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General Setting

Definition (Cost threshold classifier)

ci [t](x) =

{
+1 ci (x) ≥ t

−1 otherwise

Definition (Rademacher Complexity)

Let F be a function class and m > 0 be a number of i.i.d. samples from
D. Define σi as i.i.d. Rademacher random variables then

Rm(F) = Ex1,x2,··· ,xm∼DEσ1,σ2,···σn

[
sup

{ 1

m

m∑
i=1

σi f (xi ) : f ∈ F
}]

(2)
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Algorithm for SC

Algorithm 1 Strategic ERM

Require: Data: (xi , yi )i∈[m], c(x , y) = max(0, c2(y)− c1(x)).
1: for i = 1 to m do
2: ti := c1(xi )

3: si =

{
max(c2(X ∩ [ti , ti + 2]) c2(X ) ∩ [ti , ti + 2] ̸= ∅
∞ otherwise

4: set sm+1 = ∞
5: end for
6: Compute:

Êrr(si ) =
1

m

m∑
j=1

1{h(xj) ̸= c1[si − 2](xj)}. (3)

7: Find i∗, 1 ≤ i∗ ≤ m + 1 that minimizes Êrr(si ).
8: return f := c2[s

∗
i ]
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Important Results

Theorem

Let H be a concept class, D be a distribution and c be a separable cost
function. Further, let m denote the number of samples and suppose

Rm(H) + 2

√
log(m + 1)

m
+

√
log(2/δ)

8m
≤ ε

8
. (4)

Then with probability atleast 1− δ,

Px∈D(h(x) = f (∆(x))) ≥ Opth(D, c)− ε.
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Variation 1: SC in the Dark 2

1 Agent(s) may not have complete access to f ;

2 Agents may have access to decisions by f ; Example: OpenShufa

Definition (Strategic error in the dark)

Err(f , f̂ ) = Px∼D(y ̸= f (∆
f̂
(x))) (5)

Who is in the dark? By making f public, System can anticipate agents’
response better (and construct robust f ). By keeping f private, System is
also in the dark as uninformed (partially informed) users may lead to
unpredictable response.

2Ghalme et al. Strategic Classification in the Dark, ICML 2021.
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Price of Opacity
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Main Results

Definition (Price of Opacity (POP))

POP(f , f ′) := Err(f , f ′)−Err(f , f ).

Here f is the System’s classifier and f ′ is the classifier Agents’ classifier
(Agent responds to f ′).

Theorem (POP characterization)

If Px∼D(x ∈ E ) > 2Err(f ∗, f ∗) + 2ε, then POP > 0, for a given ε > 0.
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Results

Figure: Price of Opacity is positive and decreases with the training samples m
used to construct f̂ .
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Variation 2: Performative Prediction

SC assumption: Labels are immutable

Performative Prediction: The distribution D changes (inclding true
labels) to Dθ.
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Performative Prediction

Definition (Performative Risk)

PR(θ) = RZ∼D(θ)ℓ(Z ; θ)

Definition (Iterative Version)

θt+1 = argmin
θ

EZ∼D(θt)ℓ(Z ; θ)

Definition (Performative Stability)

A model fθps is called performatively stable if

θPS = argmin
θ

EZ∼D(θPS )ℓ(z ; θ)) (6)
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Results: Performative Predictions

Theorem (Informal)

If the loss is smooth, strongly convex, and the mapping D(.) is sufficiently
Lipschitz, then repeated risk minimization converges to performative
stability at a linear rate.

Theorem (Informal)

If the loss is Lipschitz and strongly convex, and the map D() is Lipschitz,
all stable points and performative optima lie in a small neighbourhood
around each other.
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Takeaways

Traditional ML algorithms perform poorly in a strategic setting

The other extreme; overfit to strategic nature

Strategic classifiers are learnable under reasonable assumptions on
cost functions

Many questions: Heterogeneous Users, Social Burden, Information
disparity, Herd Behavior....

Beyond SC: Ranking, clustering, Online learning...

System Manipulation: strategic representation, User targetting,
Persuasion ...
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Thank you!
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