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Strategic Classification Setting !

o Classical vs strategic classification: Dyrain 7 Drest in strategic
classification

@ Dyest is a obtained from implemented classifier £ and Dyyain

e Game Theory interpretation: Two players, System and User(s) play
following Stackelberg game
» System learns a classifier f from training data Dy..in
» System makes f public
» User, on observing f, misreport (at cost) her features to obtain the
desired outcome from f

Goal: To minimize risk under strategic data distribution shift (strategic
error).

IStrategic Classification, Hardt, Maggiddo, Papadimitriou, Wooters, ITCS 2016.
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Utility Model, Cost ...

Strategies and Utilities:
@ Users want favourable outcome; Users utility is 1 if classified
positively and O otherwise.
@ System wants to predict true label accurately;
@ Users optimal response to f
Af(x) € arg min ( f(x') — c(x,x’))
X'€EX \ ~~ ——

classfier cost
- ¢(x,x’) : cost of reporting x as x’.
- cost is non-negative, truthful reports incur zero cost

e System’s payoff:Pyep(y = f(Af(x))). Throughout this talk we will
consider

f* € arg ?féi]rlpxeD(y # f(Ar(x)))

(J
Systems goal: Find * that adjusts to distribution shift in test data«,ﬂv -
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Separable Cost Functions

Definition (Separable costs)

A cost function c(x, y) is called separable if it can be written as

c(x,y) = max(0, e2(y) — e(x)) (1)

¢, X = Rand, oa(X) C c1(X).
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Separable Cost: Example

Example
C(X,y):<01,y—X>+. J

Figure: Let f be an optimal classifier. Then since moving perpendicular to « is
cost-free for agent, Systems payoff from f’ is equivalent that from f. R

Models of Strategic Learning 10 / 22




General Setting

Definition (Cost threshold classifier)

cilt](x) = {+1 G(x) >t

—1 otherwise

Definition (Rademacher Complexity)

Let F be a function class and m > 0 be a number of i.i.d. samples from
D. Define o} as i.i.d. Rademacher random variables then

1 m
Rn(F) = Exy 50, xmDEo1,00,-0n [sup{; Za,-f(x,—) f e f}] (2)
i=1

Introduction Models of Strategic Learning



Algorithm for SC

Algorithm 1 Strategic ERM
Require: Data: (x;,yi)ic[m], <(x,y) = max(0, c2(y) — c1(x)).

1: for i=1to mdo
2: ti = C1(X,')
3 s — max((X N[t ti +2]) co(X)N [t ti +2] # 0
00 otherwise

4. set Spp1 = 00
5. end for
6: Compute:

_ 1

ERR(sj) = — > 1{h(x) # alsi — 21(x)}- (3)

j=1

7: Find i*,1 < i* < m + 1 that minimizes Eﬁ(si). o
8: return f = o[s’] "
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Important Results

Theorem

Let H be a concept class, D be a distribution and ¢ be a separable cost
function. Further, let m denote the number of samples and suppose

Rm(H)+2\/Iog(r:rn+ 1) N \/Iog(2/5) < % ()

8m

Then with probability atleast 1 — 9,

Pyep(h(x) = F(A(x))) = OPTH(D, c) — ¢.

Introduction
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Variation 1: SC in the Dark 2

© Agent(s) may not have complete access to f;
@ Agents may have access to decisions by f; Example: OpenShufa

Definition (Strategic error in the dark)
ERR(f, F) = Panp(y # F(B4(x))) (5)

Who is in the dark? By making f public, System can anticipate agents’
response better (and construct robust f). By keeping f private, System is
also in the dark as uninformed (partially informed) users may lead to
unpredictable response.

2Ghalme et al. Strategic Classification in the Dark, ICML 2021.
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Price of Opacity
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Main Results

Definition (Price of Opacity (POP))

POP(f,f') := ERR(f, f') — ERRr(f, f).

Here f is the System’s classifier and f’ is the classifier Agents’ classifier
(Agent responds to f').

Models of Strategic Learning 16 / 22



Main Results

Definition (Price of Opacity (POP))
POP(f,f') := ERR(f, f') — ERRr(f, f).

Here f is the System’s classifier and f’ is the classifier Agents’ classifier
(Agent responds to f').

Theorem (POP characterization)
If Pyp(x € E) > 2ERR(f*, f*) + 2¢, then POP > 0, for a given ¢ > 0.

l.l
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Results
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Variation 2: Performative Prediction

@ SC assumption: Labels are immutable

@ Performative Prediction: The distribution D changes (inclding true
labels) to Dy.

l.l
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Performative Prediction
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Definition (Performative Risk)
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Performative Prediction

Definition (Performative Risk)

PR(0) = Rz.p(9)¢(Z:0)

Definition (lterative Version)

Ory1 = arg mein Ezp@)lZ;0)

Definition (Performative Stability)

A model fy,, is called performatively stable if

Ops = arg min Ezp(9p5)((2: 6)) (6)

Models of Strategic Learning 19 / 22
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Results: Performative Predictions

Theorem (Informal)

If the loss is smooth, strongly convex, and the mapping D(.) is sufficiently

Lipschitz, then repeated risk minimization converges to performative
stability at a linear rate.
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Results: Performative Predictions

Theorem (Informal)

If the loss is smooth, strongly convex, and the mapping D(.) is sufficiently
Lipschitz, then repeated risk minimization converges to performative
stability at a linear rate.

Theorem (Informal)

If the loss is Lipschitz and strongly convex, and the map D() is Lipschitz,
all stable points and performative optima lie in a small neighbourhood
around each other.
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Thank you!
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