

Applications:

- **1** Health risk predictions
- ² Bank loan approvals
- **3** Corporate hiring/promotions ...

Applications:

- **1** Health risk predictions
- **2** Bank loan approvals
- **3** Corporate hiring/promotions ...

Time

Time

THE COBRA EFFECT A WELL-INTENTIONED MEASURE CAN OFTEN BACKFIRE AND HAVE THE OPPOSITE EFFECT TO INTENDED WANTED DEAD COBRAS COBRA FARM 3 CASH REWARD INTENTION **ACTION** EFFECT A BOUNTY FOR **REDUCE COBRA** PEOPLE START POPULATION DEAD COBRAS! COBRA FARMING

• Classical vs strategic classification: $D_{train} \neq D_{test}$ in strategic classification

- Classical vs strategic classification: $\mathcal{D}_{train} \neq \mathcal{D}_{test}$ in strategic classification
- \bullet \mathcal{D}_{test} is a obtained from implemented classifier f and \mathcal{D}_{train}

- Classical vs strategic classification: $\mathcal{D}_{train} \neq \mathcal{D}_{test}$ in strategic classification
- \bullet \mathcal{D}_{test} is a obtained from implemented classifier f and \mathcal{D}_{train}
- Game Theory interpretation: Two players, System and User(s) play following Stackelberg game

- Classical vs strategic classification: $\mathcal{D}_{train} \neq \mathcal{D}_{test}$ in strategic classification
- \bullet \mathcal{D}_{test} is a obtained from implemented classifier f and \mathcal{D}_{train}
- Game Theory interpretation: Two players, System and User(s) play following Stackelberg game
	- \triangleright System learns a classifier f from training data \mathcal{D}_{train}

- Classical vs strategic classification: $\mathcal{D}_{train} \neq \mathcal{D}_{test}$ in strategic classification
- \bullet \mathcal{D}_{test} is a obtained from implemented classifier f and \mathcal{D}_{train}
- Game Theory interpretation: Two players, System and User(s) play following Stackelberg game
	- ▶ System learns a classifier f from training data D_{train}
	- \triangleright System makes f public

- Classical vs strategic classification: $\mathcal{D}_{train} \neq \mathcal{D}_{test}$ in strategic classification
- \bullet \mathcal{D}_{test} is a obtained from implemented classifier f and \mathcal{D}_{train}
- Game Theory interpretation: Two players, System and User(s) play following Stackelberg game
	- \triangleright System learns a classifier f from training data \mathcal{D}_{train}
	- \triangleright System makes f public
	- \triangleright User, on observing f, misreport (at cost) her features to obtain the desired outcome from f

Goal: To minimize risk under strategic data distribution shift (strategic error).

Strategies and Utilities:

Users want favourable outcome; Users utility is 1 if classified positively and 0 otherwise.

Strategies and Utilities:

- Users want favourable outcome; Users utility is 1 if classified positively and 0 otherwise.
- System wants to predict true label accurately;
- \bullet Users optimal response to f

$$
\Delta_f(x) \in \arg\min_{x' \in \mathcal{X}} \Big(\underbrace{f(x')}_{\text{classifier}} - \underbrace{c(x, x')}_{\text{cost}} \Big)
$$

Strategies and Utilities:

- Users want favourable outcome; Users utility is 1 if classified positively and 0 otherwise.
- System wants to predict true label accurately;
- \bullet Users optimal response to f

$$
\Delta_f(x) \in \arg\min_{x' \in \mathcal{X}} \Big(\underbrace{f(x')}_{\text{classlier}} - \underbrace{c(x, x')}_{\text{cost}} \Big)
$$

- $c(x, x')$: cost of reporting x as x'.

Strategies and Utilities:

- Users want favourable outcome; Users utility is 1 if classified positively and 0 otherwise.
- System wants to predict true label accurately;
- \bullet Users optimal response to f

$$
\Delta_f(x) \in \arg\min_{x' \in \mathcal{X}} \Big(\underbrace{f(x')}_{\text{classifier}} - \underbrace{c(x, x')}_{\text{cost}} \Big)
$$

- $c(x, x')$: cost of reporting x as x'.
- cost is non-negative, truthful reports incur zero cost

Strategies and Utilities:

- Users want favourable outcome; Users utility is 1 if classified positively and 0 otherwise.
- System wants to predict true label accurately;
- \bullet Users optimal response to f

$$
\Delta_f(x) \in \arg\min_{x' \in \mathcal{X}} \Big(\underbrace{f(x')}_{\text{classlier}} - \underbrace{c(x, x')}_{\text{cost}} \Big)
$$

- $c(x, x')$: cost of reporting x as x'.
- cost is non-negative, truthful reports incur zero cost
- System's payoff: $\mathbb{P}_{x \in \mathcal{D}}(y = f(\Delta_f(x)))$. Throughout this talk we will consider strategic error.

$$
f^* \in \arg\min_{f \in \mathcal{F}} \mathbb{P}_{x \in \mathcal{D}}(y \neq f(\Delta_f(x)))
$$

Systems goal: Find f^* that adjusts to distribution shift in test data.

Definition (Separable costs)

A cost function $c(x, y)$ is called separable if it can be written as

$$
c(x, y) = \max(0, c_2(y) - c_1(x))
$$
 (1)

 $c_1, c_2 : \mathcal{X} \to \mathbb{R}$ and, $c_2(X) \subseteq c_1(X)$.

Separable Cost: Example

Example

$$
c(x,y)=\langle \alpha, y-x\rangle_+.
$$

Figure: Let f be an optimal classifier. Then since moving perpendicular to α is cost-free for agent, Systems payoff from f' is equivalent that from f .

General Setting

Definition (Cost threshold classifier)

$$
c_i[t](x) = \begin{cases} +1 & c_i(x) \geq t \\ -1 & \text{otherwise} \end{cases}
$$

Definition (Rademacher Complexity)

Let F be a function class and $m > 0$ be a number of i.i.d. samples from D. Define σ_i as i.i.d. Rademacher random variables then

$$
\mathcal{R}_m(\mathcal{F}) = \mathbb{E}_{x_1, x_2, \cdots, x_m \sim \mathcal{D}} \mathbb{E}_{\sigma_1, \sigma_2, \cdots, \sigma_n} \big[\sup \big\{ \frac{1}{m} \sum_{i=1}^m \sigma_i f(x_i) : f \in \mathcal{F} \big\} \big] \qquad (2)
$$

Algorithm for SC

Algorithm 1 Strategic ERM **Require:** Data: $(x_i, y_i)_{i \in [m]}$, $c(x, y) = max(0, c_2(y) - c_1(x))$. 1: for $i = 1$ to m do 2: $t_i := c_1(x_i)$ 3: $s_i =$ $\int \max(c_2(X \cap [t_i, t_i + 2]) \quad c_2(X) \cap [t_i, t_i + 2] \neq \emptyset$ ∞ otherwise 4: set $s_{m+1} = \infty$ 5: end for

-
- 6: Compute:

$$
\widehat{\text{ERR}}(s_i) = \frac{1}{m} \sum_{j=1}^{m} \mathbb{1} \{ h(x_j) \neq c_1[s_i - 2](x_j) \}.
$$
 (3)

7: Find $i^*, 1 \le i^* \le m+1$ that minimizes $\widehat{ERR}(s_i)$. 8: return $f := c_2[s_i^*]$

Theorem

Let H be a concept class, D be a distribution and c be a separable cost function. Further, let m denote the number of samples and suppose

$$
\mathcal{R}_m(\mathcal{H}) + 2\sqrt{\frac{\log(m+1)}{m}} + \sqrt{\frac{\log(2/\delta)}{8m}} \leq \frac{\varepsilon}{8}.
$$
 (4)

Then with probability atleast $1 - \delta$,

$$
\mathbb{P}_{x\in\mathcal{D}}(h(x)=f(\Delta(x)))\geq \mathrm{OPT}_h(\mathcal{D},c)-\varepsilon.
$$

 \bullet Agent(s) may not have complete access to f;

²Ghalme et al. Strategic Classification in the Dark, ICML 2021.

- \bullet Agent(s) may not have complete access to f;
- **2** Agents may have access to decisions by f ; Example: OpenShufa

 2 Ghalme et al. Strategic Classification in the Dark, ICML 2021.

- \bullet Agent(s) may not have complete access to f;
- **2** Agents may have access to decisions by f ; Example: OpenShufa

Definition (Strategic error in the dark)

$$
ERR(f,\hat{f}) = \mathbb{P}_{x \sim \mathcal{D}}(y \neq f(\Delta_{\hat{f}}(x))) \tag{5}
$$

²Ghalme et al. Strategic Classification in the Dark, ICML 2021.

- \bullet Agent(s) may not have complete access to f;
- **2** Agents may have access to decisions by f ; Example: OpenShufa

Definition (Strategic error in the dark)

$$
ERR(f,\hat{f}) = \mathbb{P}_{x \sim \mathcal{D}}(y \neq f(\Delta_{\hat{f}}(x))) \tag{5}
$$

Who is in the dark?

 2 Ghalme et al. Strategic Classification in the Dark, ICML 2021.

- \bullet Agent(s) may not have complete access to f;
- **2** Agents may have access to decisions by f ; Example: OpenShufa

Definition (Strategic error in the dark)

$$
ERR(f,\hat{f}) = \mathbb{P}_{x \sim \mathcal{D}}(y \neq f(\Delta_{\hat{f}}(x))) \tag{5}
$$

Who is in the dark? By making f public, System can anticipate agents' response better (and construct robust f). By keeping f private, System is also in the dark as uninformed (partially informed) users may lead to unpredictable response.

 2 Ghalme et al. Strategic Classification in the Dark, ICML 2021.

Price of Opacity

Definition (Price of Opacity (POP))

 $POP(f, f') := \text{ERR}(f, f') - \text{ERR}(f, f).$

Here f is the System's classifier and f' is the classifier Agents' classifier (Agent responds to f').

Definition (Price of Opacity (POP))

$$
POP(f, f') := \operatorname{ERR}(f, f') - \operatorname{ERR}(f, f).
$$

Here f is the System's classifier and f' is the classifier Agents' classifier (Agent responds to f').

Theorem (POP characterization)

If $\mathbb{P}_{x \sim \mathcal{D}}(x \in E) > 2 \text{ERR}(f^*, f^*) + 2\varepsilon$, then $POP > 0$, for a given $\varepsilon > 0$.

Results

Figure: Price of Opacity is positive and decreases with the training samples m used to construct f .

- SC assumption: Labels are immutable
- Performative Prediction: The distribution D changes (inclding true labels) to D_θ .

Definition (Performative Risk)

$$
PR(\theta) = \mathbb{R}_{Z \sim \mathcal{D}(\theta)} \ell(Z; \theta)
$$

Definition (Performative Risk)

$$
PR(\theta) = \mathbb{R}_{Z \sim \mathcal{D}(\theta)} \ell(Z; \theta)
$$

Definition (Iterative Version)

$$
\theta_{t+1} = \arg\min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_t)} \ell(Z; \theta)
$$

Definition (Performative Risk)

$$
PR(\theta) = \mathbb{R}_{Z \sim \mathcal{D}(\theta)} \ell(Z; \theta)
$$

Definition (Iterative Version)

$$
\theta_{t+1} = \arg\min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_t)} \ell(Z; \theta)
$$

Definition (Performative Stability)

A model $f_{\theta_{ps}}$ is called performatively stable if

$$
\theta_{PS} = \arg\min_{\theta} \mathbb{E}_{Z \sim \mathcal{D}(\theta_{PS})} \ell(z; \theta)
$$
 (6)

Theorem (Informal)

If the loss is smooth, strongly convex, and the mapping $\mathcal{D}(.)$ is sufficiently Lipschitz, then repeated risk minimization converges to performative stability at a linear rate.

Theorem (Informal)

If the loss is smooth, strongly convex, and the mapping $\mathcal{D}(\cdot)$ is sufficiently Lipschitz, then repeated risk minimization converges to performative stability at a linear rate.

Theorem (Informal)

If the loss is Lipschitz and strongly convex, and the map $\mathcal{D}()$ is Lipschitz, all stable points and performative optima lie in a small neighbourhood around each other.

Traditional ML algorithms perform poorly in a strategic setting

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions
- Many questions: Heterogeneous Users, Social Burden, Information disparity, Herd Behavior....

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions
- Many questions: Heterogeneous Users, Social Burden, Information disparity, Herd Behavior....
- Beyond SC: Ranking, clustering, Online learning...

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions
- Many questions: Heterogeneous Users, Social Burden, Information disparity, Herd Behavior....
- Beyond SC: Ranking, clustering, Online learning...
- System Manipulation: strategic representation, User targetting, Persuasion ...

- Traditional ML algorithms perform poorly in a strategic setting
- The other extreme; overfit to strategic nature
- Strategic classifiers are learnable under reasonable assumptions on cost functions
- Many questions: Heterogeneous Users, Social Burden, Information disparity, Herd Behavior....
- Beyond SC: Ranking, clustering, Online learning...
- System Manipulation: strategic representation, User targetting, Persuasion ...

Thank you!

