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Introduction

• Exploration vs. Exploitation 
• Fundamental trade-off in decision making 

• Exploitation: Choose best action given current knowledge
• Exploration: Gather more knowledge

• Example: Go to favorite restaurant vs try a new one, online advertisement

• Multi-armed bandit problem
• Choose arms sequentially from a set of arms 

• Each arm produces reward: statistics of reward distribution unknown
• Maximize total reward (minimize total regret)
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Introduction

Stochastic 
MAB

I.I.D Markovian

Rested MAB

 Restless MAB

[Lai et al, 1985]
[Thompson, 1933]
[Anantharam et al, 

1987]
UCB [Auer et al, 

2002]
KL-UCB [Garivier et 

al, 2011]

State of arms not 
played : Frozen
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Introduction

High reward in current 
play-> low reward in next 
play (high probability)

Future movie selection 
depends on customer’s 
past response

Outcome of an 
intervention depends on 
those of past interventions
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Related Work

• [Anantharam et al 1987] 
• Index policy: matches lower bound 

• [Moulos 2020] 
• Multiple play: Extension of KL-UCB using sample mean

• [Tekin et al. 2010] 
• UCB based policy: sample mean reward

• Logarithmic regret: constants not optimal

Single-parameter 
family of transition 

matrix
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Our Contributions

• Extension of KL-UCB for Markovian bandits 
• Sample transition probability based KL-UCB
• Outperforms [Tekin et al, 2010] for Markovian rewards
• Bad for i.i.d rewards (special case of Markovian bandits)

• Identify rewards: Markovian/i.i.d 
• TV distance based test using estimates of transition probability
• Switch from sample transition probability to sample mean based KL-UCB 

• Upper bound on regret
• Invertibility of KL divergence: Does not hold in multi-parameter setting
• Collection of single parameter problems
• Appropriate condition on TV distance satisfied infinitely often 
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Our Contributions

• No parameterization on transition probability matrix 

• Only assumption: Irreducibility of Markov chain

• Lower regret than [Tekin et al 2010]
• Sample mean : Not a unique representation for truly Markovian arms

• KL-UCB: Tighter confidence bound than UCB
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Problem Formulation & Preliminaries

• Reward from arm 𝑖 in state 𝑠 = 𝑟 𝑠, 𝑖 = 𝑠

• Mean reward from arm 𝑖 is 𝜇𝑖 = σ𝑠=0
1 𝑠𝜋𝑖(𝑠) = 𝜋𝑖 1 =

𝑝01
𝑖

𝑝10
𝑖 +𝑝01

𝑖

•  𝜇∗ = max
𝑖

 𝜇𝑖 = 𝜇1, Δ𝑖 = 𝜇1 − 𝜇𝑖 (suboptimality gap)

0 1

𝑝01
𝑖

𝑝10
𝑖

𝜋𝑖(0) 𝜋𝑖(1)

Arm 𝑖
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Problem Formulation & Preliminaries

• Regret of policy α till time 𝑛 = 𝑅𝛼 𝑛

= 𝑛𝜇1 − 𝐸𝛼[෍

𝑡=1

𝑛

𝑟(𝑠 𝛼 𝑡 , 𝛼 𝑡 )]

    i.e., regret of policy α till time 𝑛 = Difference of mean rewards under 
optimal policy and policy α  
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Bandit Algorithms

• Never explore (Greedy)
• Choose arm with greatest mean estimate
• May lock into sub-optimal arm: Linear regret

• Forever explore (𝜖-greedy)
• Explore with probability 𝜖, exploit with remaining probability
• Linear regret

• 𝜖𝑡-greedy
• Exploration probability decays with time
• Sublinear (logarithmic) regret: Requires knowledge of mean reward

• Design mechanism with sublinear regret without reward knowledge

Arghyadip Roy | IIT Guwahati



Bandit Algorithms

• [Lai et al 1985] Lower bound on regret is logarithmic in time 
asymptotically: at least 𝑂(log 𝑛) suboptimal pulls

• Algorithm is order-optimal if regret= 𝑂(log 𝑛) 

• 𝜖-greedy: Exploration w/o any preference for nearly greedy/arm with 
uncertain estimate

• Add upper confidence to estimated mean: overestimate true mean with 
high probability

• Large 𝑇𝑖 𝑡 : small upper confidence

• Select arm which maximizes upper confidence bound
• Explore uncertain arms, exploit arms with high estimates
• As 𝑡 → ∞, select optimal arm

Arghyadip Roy | IIT Guwahati



KL-UCB-SM Algorithm [Garivier et al, 2011]

• Rewards from arm 𝑖: Bernoulli(𝜇𝑖)

• Usage of KL distance as upper confidence bound

• 𝐷(𝑎| 𝑏 = 𝑎 log
𝑎

𝑏
+ (1 − 𝑎) log

1−𝑎

1−𝑏

    Assume 𝑊1, 𝑊2, … , 𝑊𝑛 is a sequence of Bernoulli R.V. with mean 𝜇. Then,
𝑃 Ƹ𝜇 ≤ 𝜇 − 𝜖 ≤ exp(−𝑛𝐷(𝜇 − 𝜖||𝜇))

• Using Chernoff’s bound and appropriate confidence interval, we get 

• Choose 𝐴𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑖

𝑠𝑢𝑝 ෤𝜇 ∈ Ƹ𝜇𝑖 𝑡 − 1 , 1 : 𝐷 Ƹ𝜇𝑖 𝑡 − 1 , ෤𝜇 ≤
𝑙𝑜𝑔 𝑓 𝑡

𝑇𝑖 𝑡−1
 

     where 𝑓 𝑡 = 1 + 𝑡 𝑙𝑜𝑔2(𝑡)

• Failure of confidence interval goes to zero slightly faster than 
1

𝑡
: Logarithmic regret

• Asymptotically optimal for i.i.d rewards 

Chernoff’s 
Bound
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KL-UCB-MC Algorithm

• Two parameters instead of one parameter as in i.i.d. arms

• Simultaneous confidence bounds on Ƹ𝑝01
𝑖 and Ƹ𝑝10

𝑖 : Analysis difficult

• Use confidence bound on estimate of one parameter at a time

• Use raw estimate of the other parameter

0 1

𝑝01
𝑖

𝑝10
𝑖

𝜋𝑖(0) 𝜋𝑖(1)

𝜇𝑖 =
𝑝01

𝑖

𝑝10
𝑖 + 𝑝01

𝑖
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KL-UCB-MC Algorithm

• Index of arm 𝑖 
• Use upper confidence bound on Ƹ𝑝01

𝑖 and Ƹ𝑝10
𝑖  in state 0

𝑈𝑖 = 𝑠𝑢𝑝
෤𝑝

෤𝑝 + Ƹ𝑝10
𝑖 𝑡 − 1

: 𝐷 Ƹ𝑝01
𝑖 𝑡 − 1 , ෤𝑝 ≤

𝑙𝑜𝑔 𝑓 𝑡

𝑇𝑖 𝑡 − 1

• Use lower confidence bound on Ƹ𝑝10
𝑖 and Ƹ𝑝01

𝑖  in state 1

𝑈𝑖 = 𝑠𝑢𝑝
Ƹ𝑝01
𝑖 𝑡 − 1

Ƹ𝑝01
𝑖 𝑡 − 1 + ෤𝑞

: 𝐷 Ƹ𝑝10
𝑖 𝑡 − 1 , ෤𝑞 ≤

𝑙𝑜𝑔 𝑓 𝑡

𝑇𝑖 𝑡 − 1

• Choose 𝐴𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑖

𝑈𝑖
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KL-UCB-MC Algorithm

Truly Markovian rewards
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KL-UCB-MC Algorithm

i.i.d rewardsArghyadip Roy | IIT Guwahati



TV-KL-UCB Algorithm

• i.i.d. rewards: Special case of  Markovian rewards (𝑝01
𝑖 + 𝑝10

𝑖 = 1)

• KL-UCB-SM [Garivier et al, 2011] known to be optimal for i.i.d rewards

• KL-UCB-MC performs bad for i.i.d rewards

• Design of test for detecting i.i.d/ Markovian arm online 
• Switch from KL-UCB-MC to KL-UCB-SM if i.i.d. reward

• Truly Markovian arm: Can be described uniquely by 𝑝01
𝑖  and 𝑝10

𝑖

• i.i.d arm: can be described uniquely by 𝜇𝑖

• Appropriate condition satisfied infinitely often

• Regret due to incorrect variant vanishes asymptotically
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TV-KL-UCB Algorithm

• TV distance: Depicts similarity between two probability distributions 
(Similar to KL distance)

• Two discrete prob. dist. 𝐴 = 𝑎1, … , 𝑎𝑘  and B = 𝑏1, … , 𝑏𝑘

𝑇𝑉(𝐴| 𝐵 =
1

2
෍

𝑖=1

𝑘

|𝑎𝑖 − 𝑏𝑖|

• TV distance chosen for analytical convenience

• Test for detecting i.i.d/ Markovian arm:
• i.i.d arms: 𝑝01

𝑖 + 𝑝10
𝑖 = 1

• TV distance between 𝑝01
𝑖  and 1 − 𝑝10

𝑖

• Condition for testing: 𝑇𝑉( Ƹ𝑝01(𝑡)| 1 − Ƹ𝑝10 𝑡 <
1

𝑡
1
4
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TV-KL-UCB Algorithm

KL-UCB-MC: 
Markovian arms

KL-UCB-SM: 
i.i.d. arms

Arghyadip Roy | IIT Guwahati



Regret Upper Bound 

Estimates of 
Transition 

probabilities 
close to true 

values

TV distance 
condition 

satisfied i.o. 
after a large 

time 𝜏

Confidence bounds 
for estimates of 

transition 
probabilities of 

optimal arm close to 
true values

Index of sub-optimal arm is not 
often greater than index of 
optimal arm

Fractions of 
visits to states 

close to 
stationary 

probabilities

𝜏 = C1 log n + C2,

Where C1 = 𝑓(𝑝01
𝑖 , 𝑝10

𝑖 , 𝑝01
1 , 𝑝10

1 ),

C2 = 𝑔(𝑝01
𝑖 , 𝑝10

𝑖 , 𝑝01
1 , 𝑝10

1 )
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Regret Upper Bound 

Theorem 1: Asymptotic regret is bounded by 
(Truly Markovian optimal and sub-optimal arms):

 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛→∞

𝑅𝑛

𝑙𝑜𝑔 𝑛
≤ σ𝑖≠1[

2

𝐷(𝑝01
𝑖 ||

𝑝01
1 𝑝10

𝑖

𝑝10
1 )

1 𝑝01
1 𝑝10

𝑖 < 𝑝10
1 +

2

𝐷(𝑝10
𝑖 ||

𝑝10
1 𝑝01

𝑖

𝑝01
1 )

]

• Similarly, upper bound for other three combinations can be derived.

• Upper bound matches the lower bound when all arms are i.i.d.

𝑙𝑖𝑚𝑖𝑛𝑓
𝑛→∞

𝑅𝑛

𝑙𝑜𝑔 𝑛
≥ ෍

𝑖≠1

1

𝜋𝑖 0 𝐷(𝑝01
𝑖 | 𝑝01

1 + 𝜋𝑖 1 𝐷(𝑝10
𝑖 | 𝑝10

1 Lower bound
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Regret Upper Bound 

Theorem 2: Let the eigenvalue gap of arm 𝑖 be 𝜎𝑖 . Asymptotic upper    
bound smaller than UCB-SM [Tekin et al, 2010]

1. Truly Markovian suboptimal arms: if 𝑚𝑖𝑛
𝑖

𝜎𝑖 ≥
1

1440
.

2. i.i.d. suboptimal arms: Always  

Arghyadip Roy | IIT Guwahati



Experimental Evaluation

• UCB-SM: [Tekin et al, 
2010]

• KL-UCB-SM: KL-UCB 
version of [Tekin et 
al, 2010]

• KL-UCB-SM2: Single 
play version of 
[Moulos, 2020]
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Experimental Evaluation

Upper bound on regret smaller 
than UCB-SM even when 
condition on Theorem 2 not 
satisfied
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Conclusions

• TV-KL-UCB detects arm reward Markovian/i.i.d using TV distance 
based test

• Arm 𝑖 can be represented uniquely using 𝑝01
𝑖 and 𝑝10

𝑖  

• If arm i.i.d., unique representation using 𝜇𝑖

• Switch from sample transition probability KL-UCB to sample mean KL-UCB

• Regret upper bound matches lower bound when arm reward i.i.d

• Significant improvement over state-of-the-art bandit algorithms
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Future Work

• Use of other metric such as KL distance for testing Markovian/i.i.d
• Easy to obtain upper bound involving additive separability of estimates with 

TV/Hellinger distance

• Difficult in case of KL distance

• Design of asymptotically optimal algorithm for truly Markovian arms

Roy, Arghyadip, Sanjay Shakkottai, and R. Srikant. "Adaptive KL-UCB based Bandit 
Algorithms for Markovian and iid Settings." Vol 69, Issue 4, IEEE Transactions on 
Automatic Control, pp-2637-2644, 2024.
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Other Research Activities

Task Scheduling 
Policy for IoT 
based Mobile 

Edge 
Computing  

Multi-armed 
Bandit 

Algorithms for 
Beam Tracking in 
mm-wave MIMO

UAV placement 
in next-

generation 
wireless 
systems

M. Moharrami, Y. Murthy, A. Roy and R. Srikant, "A Policy Gradient Algorithm for the Risk-Sensitive Exponential Cost MDP," Accepted in Mathematics of Operations 

Research, 2024

S. Badireddi, R. Banerjee, P. Shah, A. Roy,“ Exploiting Bias in Reinforcement Learning for Task Allocation in a Mobile Edge Computing System," IEEE International 

Conference on Signal Processing and Communications (SPCOM) ,2024

A. Kumar, A. Roy and R. Bhattacharjee, “ Actively Adaptive Multi-armed Bandit Based Beam Tracking for mmWave MIMO Systems," IEEE Wireless Communications and 

Networking Conference (WCNC), 2024

A. Roy and N. Biswas,“ GoPro: A Low Complexity Task Allocation Algorithm for a Mobile Edge Computing System,” IEEE National Conference on Communications (NCC) 

2022

Federated 
Learning for IoT 

systems
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