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Introduction

* Exploration vs. Exploitation

* Fundamental trade-off in decision making
* Exploitation: Choose best action given current knowledge
* Exploration: Gather more knowledge

* Example: Go to favorite restaurant vs try a new one, online advertisement

* Multi-armed bandit problem

* Choose arms sequentially from a set of arms
e Each arm produces reward: statistics of reward distribution unknown
* Maximize total reward (minimize total regret)
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Introduction
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[Lai et al, 1985]
[Thompson, 1933]
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2002]
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al, 2011]
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Introduction

IMDbTv

Watch Hollywood hits and TV favorites

Free on IMDb and Fire TV devices

IATATAN

High reward in current Future movie selection Outcome of an
play-> low reward in next depends on customer’s intervention depends on
play (high probability) past response those of past interventions
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Related Work

 [Anantharam et al 1987]
* Index policy: matches lower bound

* [Moulos 2020]

* Multiple play: Extension of KL-UCB using sample mean

Single-parameter

e [Tekin et al. 2010] family of transition

* UCB based policy: sample mean reward matrix
* Logarithmic regret: constants not optimal

Arghyadip Roy | IIT Guwahati



Our Contributions

* Extension of KL-UCB for Markovian bandits
* Sample transition probability based KL-UCB
e QOutperforms [Tekin et al, 2010] for Markovian rewards
e Bad fori.i.d rewards (special case of Markovian bandits)

* |dentify rewards: Markovian/i.i.d
* TV distance based test using estimates of transition probability
e Switch from sample transition probability to sample mean based KL-UCB

* Upper bound on regret
* Invertibility of KL divergence: Does not hold in multi-parameter setting
* Collection of single parameter problems
* Appropriate condition on TV distance satisfied infinitely often
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Our Contributions

* No parameterization on transition probability matrix
* Only assumption: Irreducibility of Markov chain

* Lower regret than [Tekin et al 2010]

 Sample mean : Not a unique representation for truly Markovian arms
e KL-UCB: Tighter confidence bound than UCB
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Problem Formulation & Preliminaries

D1
NN Y
2 (1)
* Reward from arm i in state s = r(s,i) = s
« Mean reward from arm i is y; = Yoo sm;(s) = m;(1) = pipf;i
10 01

* W =maxy; = U, A; = pq — p; (suboptimality gap)
l
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Problem Formulation & Preliminaries

* Regret of policy a till timen = ga (n)

=nu, — E, [2 r(s(a(t)), a(®)]

t=1
i.e., regret of policy a till time n = Difference of mean rewards under
optimal policy and policy a
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Bandit Algorithms

* Never explore (Greedy)
* Choose arm with greatest mean estimate
* May lock into sub-optimal arm: Linear regret

* Forever explore (e-greedy)
* Explore with probability €, exploit with remaining probability
* Linear regret
* ¢.-greedy
* Exploration probability decays with time
 Sublinear (logarithmic) regret: Requires knowledge of mean reward

* Design mechanism with sublinear regret without reward knowledge
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Bandit Algorithms

 [Lai et al 1985] Lower bound on regret is logarithmic in time
asymptotically: at least O (logn) suboptimal pulls

* Algorithm is order-optimal if regret= O (logn)

» e-greedy: Exploration w/o any preference for nearly greedy/arm with
uncertain estimate

* Add upper confidence to estimated mean: overestimate true mean with
high probability

* Large T;(t): small upper confidence

* Select arm which maximizes upper confidence bound
* Explore uncertain arms, exploit arms with high estimates
* Ast — oo, select optimal arm
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KL-UCB-SM Algorithm [Garivier et al, 2011]

Rewards from arm i: Bernoulli(y;)
Usage of KL distance as upper confidence bound

D(allb) = alogs + (1 — a)log—

Assume W, W,, ..., W, is a sequence of Bernoulli R.V. with mean . Then,

_
- _ B d
P(d < p—¢€) < exp(—nD(u — €||1)) il

Using Chernoff’s bound and appropriate confidence interval, we get
* Choose A; = arg max sup {ﬁ € [ﬁi(t — 1), 1]: D(ﬁi(t — 1),ﬂ) < l;)i‘?t{(lt))}
where f(t) = 1 + t log?(t)
Failure of confidence interval goes to zero slightly faster than %: Logarithmic regret

Asymptotically optimal fori.i.d rewards
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KL-UCB-MC Algorithm

i
Po1

u = P(i)1
l pio + p(l)l

pi
ﬂi((‘))\ = (1)

 Two parameters instead of one parameter asini.i.d. arms

» Simultaneous confidence bounds on p};and p!,: Analysis difficult
* Use confidence bound on estimate of one parameter at a time
e Use raw estimate of the other parameter
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KL-UCB-MC Algorithm

* Index of arm i
* Use upper confidence bound on p},and pi, in state 0

: 5 i oy Log £(8)
Ui _Sup{ﬁ+ﬁ1'0(t_1).D(p01(t 1)1p) STl(t_l)}

* Use lower confidence bound on pioand pby in state 1

Po1(t — 1) N .
U, = su : :D(pia(t—1),g) <
i p{ﬁm(t— D + g (p10( ) CI)

log ()
T;(t—1)

* Choose A; = arg max U;
l
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KL-UCB-MC Algorithm

Regret
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KL-UCB-MC Algorithm

Regret

Trial
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TV-KL-UCB Algorithm

* i.i.d. rewards: Special case of Markovian rewards (p}; + pt, = 1)
e KL-UCB-SM [Garivier et al, 2011] known to be optimal for i.i.d rewards
e KL-UCB-MC performs bad for i.i.d rewards

* Design of test for detecting i.i.d/ Markovian arm online
e Switch from KL-UCB-MC to KL-UCB-SM if i.i.d. reward
* Truly Markovian arm: Can be described uniquely by p(i)1 and Pio
* i.i.d arm: can be described uniquely by u;
* Appropriate condition satisfied infinitely often
* Regret due to incorrect variant vanishes asymptotically
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TV-KL-UCB Algorithm

* TV distance: Depicts similarity between two probability distributions
(Similar to KL distance)

* Two discrete prob. dist. 4 = (a4, ..., %ck) and B = (by, ..., by)
1
TV(AIB) =5 ) la;— by
=1

* TV distance chosen for analytical convenience

* Test for detectingi.i.d/ Markovian arm:
* i.i.darms: pgy + pip =1 |
* TV distance between p§, and 1 — pi,

* Condition for testing: TV(ﬁOl(t)Hl — ﬁlo(t)) < il
t4
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TV-KL-UCB Algorithm

Algorithm 1 Total Variation KL-UCB Algorithm (TV-KL-UCB)

1: Input K (number of arms).
2: Choose each arm once.
3: while TRUE do

4 i (15— 1) +plt-1) -1 > m (procedure

STP_PHASE) then KL-UCB-MC:
5: if (state of arm i = 0) then Markovian arms
P i _ log f(t)
U; = sup{ —— D t—1|lp) £ ———=}. (1)
oo D@l = DI < 72755
6: else
Py (t —1) i ~ log f(t)
U; = sup{— — = D(pio(t —1D]]g) < —————}. (2)
Gt 1y 43 ° P@lolt = DI < 75750
7: end if
8: else (procedure SM_PHASE) \

o o o . log f(t)
Us = sup{ji € [a*(t — 1), 1] : D(A*(t — 1)||/2) < To(t — 1}}' ©) KL-UCB-SM:

% endif i.i.d. arms
10: Choose A; = arg max Uj;.

11: end while
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Regret Upper Bound

Fractions of
visits to states
close to
stationary
probabilities

Estimates of TV distance
Transition condition
probabilities satisfied i.o.

close to true after a large
values timet

Where C; = f (P61, Pio, Po1, Pio)s
C2 = g(Po1, Pio» Po1s Plo)

T =C;logn+ C,,

Index of sub-optimal arm is not
often greater than index of
optimal arm
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Regret Upper Bound

Theorem 1: Asymptotic regret is bounded by
(Truly Markovian optimal and sub-optimal arms):
2 .
1{po1pio < Plo) +

1 i 1 i
i P0o1P10 i 1P1oPo1
Dyl DPioll—17)
10 Po1

2

]

R

limsup —— < ). .4]
= iz

nooo logmn L

 Similarly, upper bound for other three combinations can be derived.
* Upper bound matches the lower bound when all arms are i.i.d.

1
liminf = Z : 1 7 1
noow logn ;(0)D (py4|1pg1) + T (1D (p1ollpio)

i#1

Lower bound
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Regret Upper Bound

Theorem 2: Let the eigenvalue gap of arm i be a;. Asymptotic upper
bound smaller than UCB-SM [Tekin et al, 2010]

: : . 1
1. Truly Markovian suboptimal arms: if min o; = a0
l

2. i.i.d.suboptimal arms: Always
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Experimental Evaluation
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UCB-SM: [Tekin et al,
2010]

KL-UCB-SM: KL-UCB
version of [Tekin et
al, 2010]
KL-UCB-SM2: Single
play version of
[Moulos, 2020]




Experimental Evaluation
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Upper bound on regret smaller
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Conclusions

e TV-KL-UCB detects arm reward Markovian/i.i.d using TV distance
based test

 Arm i can be represented uniquely using p(i,land p{o
e If arm i.i.d., unique representation using u;
e Switch from sample transition probability KL-UCB to sample mean KL-UCB

* Regret upper bound matches lower bound when arm reward i.i.d
e Significant improvement over state-of-the-art bandit algorithms



Future Work

* Use of other metric such as KL distance for testing Markovian/i.i.d

* Easy to obtain upper bound involving additive separability of estimates with
TV/Hellinger distance

e Difficult in case of KL distance

* Design of asymptotically optimal algorithm for truly Markovian arms

Roy, Arghyadip, Sanjay Shakkottai, and R. Srikant. "Adaptive KL-UCB based Bandit
Algorithms for Markovian and iid Settings." Vol 69, Issue 4, IEEE Transactions on
Automatic Control, pp-2637-2644, 2024,
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Other Research Activities

Task Scheduling Multi-armed
Policy for loT Bandit

based Mobile Algorithm,? for.
Edge Beam Tracking in

mm-wave MIMO

Computing

UAV placement
in next-

generation
wireless
systems

Federated
Learning for loT
systems

M. Moharrami, Y. Murthy, A. Roy and R. Srikant, "A Policy Gradient Algorithm for the Risk-Sensitive Exponential Cost MDP," Accepted in Mathematics of Operations

Research, 2024

S. Badireddi, R. Banerjee, P. Shah, A. Roy,” Exploiting Bias in Reinforcement Learning for Task Allocation in a Mobile Edge Computing System,"” IEEE International
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