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Prologue



Prologue

Why does data privacy matter and what can one do?

▶ What one wants to reveal should be their choice

▶ However each and every mobile app collects your data

▶ From all the collected data one can track any individual

▶ Every survey, every test, every hypothesis needs data

▶ Data collection or release has to be privatized

▶ My participation in a survey should not reveal my identity

2/56



Prologue

With great accuracy comes great loss of privacy

▶ As an algorithm becomes more and more accurate we compromise data privacy

▶ Data privacy is increasingly hard

▶ Information about an individual is available from multiple sources

▶ Example - apps which reveal caller ids

▶ Plain anonymization doesn’t ensure complete protection
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Prologue

Algorithm output can reveal information about individual data
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Differential privacy: Ensuring the privacy of individuals in datasets



Differential privacy: Ensuring the privacy of individuals in datasets

Differential privacy (DP)

Definition: (ϵ, δ)-DP
M is (ϵ, δ)-DP if for every measurable S ⊆ Y and D ⟩⟨X qD,

P{M(D) ∈ S} ≤ eϵP{M( qD) ∈ S}+ δ .

5/56



Differential privacy: Ensuring the privacy of individuals in datasets

Differential privacy (DP)

Definition: (ϵ, δ)-DP
M is (ϵ, δ)-DP if for every measurable S ⊆ Y and D ⟩⟨X qD,

P{M(D) ∈ S} ≤ eϵP{M( qD) ∈ S}+ δ .

5/56



Differential privacy: Ensuring the privacy of individuals in datasets

Additive noise mechanism

▶ Consider numeric vector query f : X → RK

• f acts on D ∈ X and provides the response f(D)

▶ Additive noise mechanism imparts DP by perturbing f(D) as M(D) = f(D) + t

▶ t = [t1 t2 · · · tK ]⊤ ∈ RK : noise (typically i.i.d.) sampled from known distribution

▶ Popular choices are Laplace1 and Gaussian2

1C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in
Proc. Theory Cryptogr. Conf. Springer, 2006, pp. 265–284

2B. Balle and Y.-X. Wang, “Improving the Gaussian mechanism for differential privacy: Analytical calibration
and optimal denoising,” in Proc. Int. Conf. Mach. Learn. PMLR, 2018, pp. 394–403
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Differential privacy: Ensuring the privacy of individuals in datasets

Additive noise mechanism (cont.,)
▶ Sensitivity determines amount of noise ∆p =

sup
D ⟩⟨X qD

∥∥f(D)− f( qD)
∥∥
p

▶ Deviation in query result: d = f(D)− f( qD)

▶ Privacy loss random variable3: ζd(T) = log gT(t)
gT(t+d)

• Additive under i.i.d. noise: ζd(t) =
K∑
i=1

ζdi
(ti)

• Centered privacy loss ζ̃d(t) = ζd
(
t− d

2

)
▶ Equivalent condition for (ϵ, δ)-DP4: sup

D ⟩⟨X qD
P{ζd(T) ≥ ϵ} − eϵP{ζ−d(T) ≤ −ϵ} ≤ δ

3C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential privacy,” in Proc. IEEE Annu. Symp.
Found. Comput. Sci. IEEE, 2010, pp. 51–60

4B. Balle and Y.-X. Wang, “Improving the Gaussian mechanism for differential privacy: Analytical calibration
and optimal denoising,” in Proc. Int. Conf. Mach. Learn. PMLR, 2018, pp. 394–403
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Proposed mechanism : Flipped Huber

What have we lost by introducing DP?

▶ By adding noise to the output query or by randomizing it I have lost
information

▶ No free lunch: To get more privacy you have to sacrifice more utility or
accuracy

▶ What is the minimum noise I should add to get desired DP with least loss of
utility

▶ The noise added is a function of ϵ, δ and ∆p
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Proposed mechanism : Flipped Huber

Is there an optimal additive mechanism?
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Proposed mechanism : Flipped Huber

Two tale(il)s, one story

▶ Heavy-tailed noise is undesirable
• Tail of T → affects accuracy

▶ P{ζd(T ) ≥ ϵ} ≤ δ ⇒ (ϵ, δ)-DP
• Tail of ζd(T ) → affects privacy

-2 -1 1 2

-4

-2

2

4

Characteristics of tails of both T and ζd(t) determine privacy-accuracy trade-off
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Proposed mechanism : Flipped Huber

What about popular existing distributions?

▶ Laplace noise:
• Optimal ϵ-DP mechanism in high privacy regime

– Bounded ζd(T )

• Outputs are more informative of the true response
• Excessive noise for large K and results in outliers

▶ Gaussian noise:
• Light tailed noise
• Privacy loss is also Gaussian → light tailed ζd(T )

– Composes well
• Outputs are less informative of the true response
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Proposed mechanism : Flipped Huber

Can grafting Laplace and Gaussian help?

▶ Noise density design to have the best of
both Laplace and Gaussian
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Proposed mechanism : Flipped Huber

Can grafting Laplace and Gaussian help?

▶ Noise density design to have the best of
both Laplace and Gaussian

▶ Hybridize the densities → splice
Laplace centre and Gaussian tails
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Proposed mechanism : Flipped Huber

Are there other grafted densities?

▶ Huber’s distribution : Gaussian in the centre and Laplacian in the tails

gH(t) = (1− τ)×

{
ϕ(t) , |t| ≤ α

e−α
(
|t|−α

2

)
, |t| > α

, τ =
(
1 + α

2(ϕ(α)−αQ(α))

)−1

▶ Least Fisher information among symmetric distributions5 of the form
(1− τ)ϕ(t) + τh(t)

▶ We want actually the most favorable distribution which can satisfy the DP
requirement

5P. J. Huber and E. M. Ronchetti, Robust statistics. John Wiley & Sons, 2009
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Proposed mechanism : Flipped Huber

Are there other grafted densities? (cont.,)
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Proposed mechanism : Flipped Huber

Flipped Huber distribution

▶ Flipped Huber loss function: ρα(t) =

{
α|t| , |t| ≤ α

(t2 + α2)/2 , |t| > α

• Symmetric and convex

Definition: Flipped Huber Distribution
The flipped Huber distribution FH(α, γ2) is specified by the density function,

gFH(t;α, γ2) =
1

κ
exp

(
−ρα(t)

γ2

)
,

where κ = γωe−α2/2γ2 and ω = 2
[√

2πQ
(

α
γ

)
+ 2γ

α
sinh

(
α2

2γ2

)]
.
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Proposed mechanism : Flipped Huber

Flipped Huber distribution (cont.,)
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FH(α, γ2) for various choices of α and γ
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Proposed mechanism : Flipped Huber

Properties of flipped Huber

▶ Variance: σ2
FH = γ2

[
1− 1

ω

(
2γ
α

)3( α2

2γ2 cosh
(

α2

2γ2

)
− sinh

(
α2

2γ2

))]

▶ Fisher Information: IFH = 1
γ2

[
1 + 4γ

αω

(
α2

2γ2 e
α2/2γ2− sinh

(
α2

2γ2

))]
▶ σ2

FH ≤ γ2 and IFH ≥ 1
γ2
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Proposed mechanism : Flipped Huber

Properties of flipped Huber (cont.,)

▶ Normalized Fisher information: ĨT = IT × σ2T

0 2 4 6 8 10

1

2

ĨT for T ∼ FH(α, γ2) compared
with that of T ∼ H(α, γ2),

T ∼ N (0, σ2) and T ∼ L(0, β)
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Proposed mechanism : Flipped Huber

Properties of flipped Huber (cont.,)

Lemma: Sub-Gaussianity of Flipped Huber
FH(α, γ2) is sub-Gaussian with proxy variance γ2 , i.e., FH(α, γ2) ∈ SG(γ2).

Proof: Prove by showing Orlicz condition, E
[
exp

(
sT 2

2γ2

)]
≤ 1√

1−s
∀ s ∈ [0, 1).

When T ∼ FH(α, γ2), E
[
exp

(
sT 2

2γ2

)]
= 1√

1−s
Cα,γ(s), where

Cα,γ(s) =
√
2π
ω

[√
1
s −1 exp

(
−
(
1
s −1

)
α2

2γ2

)(
erfi

(
1√
2s

α
γ

)
− erfi

(
(1−s)√

2s
α
γ

))
+2Q

(√
1−s α

γ

)]
.

Cα,γ(s) is a decreasing function in s ∈ [0, 1) and lim
s→0+

Cα,γ(s) = 1 ⇒ Cα,γ(s) ≤ 1.
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Analysis for one dimension

Privacy guarantee in one dimension

The one-dimensional flipped Huber mechanism guarantees (ϵ, δ)-DP ⇐⇒ δ
(1)
FH(ϵ) ≤ δ , where

δ
(1)
FH(ϵ) =



(
1−

√
2π
ω

)
+

√
2π
ω

[
Q
(
γϵ
∆

− ∆
2γ

)
− eϵQ

(
γϵ
∆

+ ∆
2γ

)]
, 0 ≤ ϵ <

(∆−2α)∆

2γ2

1
2
(1−eϵ) + γ

αω
eα

2/2γ2
(
1+eϵ−2 exp

(
ϵ
2
− α∆

2γ2

))
, 0 ≤ ϵ <

((2α−∆)∧∆)α

γ2

1
2
+ γ

αω
eα

2/2γ2
[
1−exp

(
α
γ2

(
− α+

√
2(γ2ϵ+α∆)−∆

))]
− eϵ

√
2π
ω

Q

(√
2(γ2ϵ+α∆)−α

γ

)
,

(2α∨∆)2−2α∆

2γ2 ≤ ϵ <
([∆−α]+)

2
+2α∆

2γ2

1
2
− γ

αω
eα

2/2γ2
[
1−exp

(
α
γ2

(
− α−

√
2(γ2ϵ−α∆)+∆

))]
− eϵ

√
2π
ω

Q

(√
2(γ2ϵ−α∆)+α

γ

)
,

([∆−α]+)
2
+2α∆

2γ2 ≤ ϵ <
(∆+2α)∆

2γ2

√
2π
ω

[
Q
(
γϵ
∆

− ∆
2γ

)
− eϵQ

(
γϵ
∆

+ ∆
2γ

)]
, ϵ≥ (∆+2α)∆

2γ2
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Analysis for one dimension

Proof sketch

δ
(1)
FH(ϵ) =

∫
R

[
gFH(t)− eϵgFH(t+ d)

]
+
dt ≤ δ

d = f(D)− f( qD) ∆ = sup
D ⟩⟨X qD

|d|

δ
(1)
FH(ϵ) = GFH

(
ζ−1
∆ (ϵ)

)
− eϵGFH

(
ζ−1
∆ (ϵ) + ∆

)

▶ Piecewise density → piecewise ζd(t)
▶ 3 different functional forms of ζd(t)

9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11

-1

-0.5

0

0.5

1

1.5

Depending on value of ϵ, we may get different values of ζ−1
∆ (ϵ) for each of the 3 cases
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Analysis for one dimension

Proof sketch (cont.,)

Range of ϵ Non-empty
only when

t1 = ζ−1
∆ (ϵ) t2 = ζ−1

∆ (ϵ) + ∆
Intervals

t1 t2

(i)
[
0,

(∆ − 2α)∆

2γ2

)
α < ∆

2

γ2ϵ

∆
−

∆

2

γ2ϵ

∆
+

∆

2
(−∞,−α) (α,∞)

(ii)
[
0,

((2α − ∆) ∧ ∆)α

γ2

)
α > ∆

2

γ2ϵ

2α
−

∆

2

γ2ϵ

2α
+

∆

2
(−α, 0) (0, α)

(iii)
[
(2α ∨ ∆)2 − 2α∆

2γ2
,

(
[∆ − α]+

)2+ 2α∆

2γ2

)
α < ∆

√
2(γ2ϵ + α∆) − α − ∆

√
2(γ2ϵ + α∆) − α [−α, 0) [α,∞)

(iv)
[(

[∆ − α]+
)2+ 2α∆

2γ2
,
(∆ + 2α)∆

2γ2

)
−

√
2(γ2ϵ − α∆) + α + ∆

√
2(γ2ϵ − α∆) + α [0, α) [α,∞)

(v)
[
(∆ + 2α)∆

2γ2
,∞

)
−

γ2ϵ

∆
−

∆

2

γ2ϵ

∆
+

∆

2
[α,∞) [α,∞)

▶ ϵ ≥ ([∆−α]+)2+2α∆
2γ2 → no ambiguity, otherwise determine ζ−1

∆ (ϵ) based on α and ∆
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Empirical results for single dimension

Performance in single dimension

1 2 3 4 5

10
-1

10
0

10
1

10
2

Variances of flipped Huber, Gaussian,
truncated Laplace6 and OSGT7 noises

when δ = 10−6 and ∆ = 1

6Q. Geng, W. Ding, R. Guo, and S. Kumar, “Tight analysis of privacy and utility tradeoff in approximate
differential privacy,” in Proc. Int. Conf. Artif. Intell. Statist. PMLR, 2020, pp. 89–99

7P. Sadeghi and M. Korki, “Offset-symmetric Gaussians for differential privacy,” IEEE Trans. Inf. Forensics
Security, vol. 17, pp. 2394–2409, 2022
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Empirical results for single dimension

How to choose the parameters of flipped Huber?

▶ (α, γ) that results in lowest variance while satisfying DP can be selected
through grid search

▶ Illustrative values (δ = 10−6):

ϵ α γ

0.5 20.48 6.4

2 6.48 1.8

4 4 1
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Empirical results for single dimension

Performance in single dimension (cont.,)
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Ratio of the variance (in dB) of flipped Huber noise to that of (a) Laplace and (b) staircase8 noises

8Q. Geng and P. Viswanath, “The optimal noise-adding mechanism in differential privacy,” IEEE Trans. Inf.
Theory, vol. 62, no. 2, pp. 925–951, 2016

25/56



Empirical results for single dimension

Noise densities for ϵ = 2, δ = 10−6
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Empirical results for single dimension

The story so far

▶ Approximate DP guaranteed by the flipped Huber mechanism

▶ Outperforms both Gaussian and OSGT mechanism by a significant margin

▶ However Laplace is clearly superior and gives pure DP

▶ Staircase is the optimal pure DP noise mechanism in single and two dimensions

▶ So why flipped Huber?
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Flipped Huber strikes back in higher dimensions

DP in higher dimensions

▶ Machine learning applications are typically high-dimensional
• Linear regression9: few 10’s
• Principal component analysis10: few 100’s or 1000’s
• Deep learning11: several millions

▶ Need for efficient DP mechanisms without killing the utility

9Y.-X. Wang, “Revisiting differentially private linear regression: optimal and adaptive prediction &
estimation in unbounded domain,” in Uncertainty in Artif. Intell., 2018

10C. Dwork, K. Talwar, A. Thakurta, and L. Zhang, “Analyze Gauss: optimal bounds for privacy-preserving
principal component analysis,” in Proc. Annu. ACM Symp. Theory of Comput., 2014, pp. 11–20

11M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with
differential privacy,” in Proc. ACM SIGSAC Conf. Computer and Communications security, 2016, pp. 308–318
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Flipped Huber strikes back in higher dimensions

Performance in K = 20 dimensions for δ = 10−6

Variance of noise added by various mechanisms

ϵ 0.2 0.4 1 2.2 5

Flipped Huber
(sufficient) 7237.09 1971.36 359.57 87.09 19.49

Gaussian 11209.84 2979.23 520.26 117.77 25.95

Laplace 2 ·104 5000 800 165.29 32

Staircase
(independent) 19999.92 4999.92 799.92 165.21 31.92
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Flipped Huber strikes back in higher dimensions

Noise densities in K = 20 dimensions for ϵ = 5, δ = 10−6
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Flipped Huber strikes back in higher dimensions

The problem with DP in higher dimensions
▶ Privacy loss distribution is difficult to characterize (except for Gaussian)

• Difficult even for i.i.d. noise (convolution)

▶ Numerical integration - computationally prohibitive even for small dimensions
▶ Composition approach - not tight
▶ Optimal noise distribution for arbitrary dimension is not known yet

• All optimal distributions in literature are for single-dimensional queries
• High dimensional functional optimization - difficult

▶ Staircase is the optimal noise for ϵ-DP (under ℓ1-error) in two dimensions12
• PDF is not characterized in K dimensions
• Use i.i.d. samples from one-dimensional staircase distribution

12Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, “The staircase mechanism in differential privacy,” IEEE J. Sel.
Topics Signal Process., vol. 9, no. 7, pp. 1176–1184, 2015 31/56
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Flipped Huber strikes back in higher dimensions

Privacy guarantee in K dimensions

▶ K-dimensional query: Add i.i.d. FH(α, γ2) to each coordinate
▶ Necessary and sufficient condition → intractable

• Hybrid, piecewise nature of FH(α, γ2)

• Complex expression for ζd(T)

Theorem: Sufficient Condition for (ϵ, δ)-DP in K Dimension
The K-dimensional flipped Huber mechanism guarantees (ϵ, δ)-DP if
R∆(α) = α2 − ([α−∆]+)

2 ≤ (2γ2ϵ−∆2
2)/K and

Q
(

γϵ
∆2

− ∆2
2γ

− KR∆(α)

2γ∆2

)
− eϵQ

(
γϵ
∆2

+
∆2
2γ

+
KR∆(α)

2γ∆2
+

θ∆1
γ∆2

)
≤ δ,

where θ = γQ−1
(
1
ω

√
π
2

).
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Flipped Huber strikes back in higher dimensions

Proof sketch

▶ T d
= −T and ζ−d(T) = ζd(−T)

d
= ζd(T)

P{ζd(T) ≥ ϵ} − eϵP{ζd(T) ≤ −ϵ} ≤ δ
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Flipped Huber strikes back in higher dimensions

Proof Sketch

▶ T d
= −T and ζ−d(T) = ζd(−T)

d
= ζd(T)

P{ζd(T) ≥ ϵ} − eϵP{ζd(T) ≤ −ϵ} ≤ δ

▶ ζd(T) ≤ ζ
(u)

d (t) = t⊤d
γ2 +

∥d∥22
2γ2 +

KR∆(α)

2γ2

P{ζ(u)

d (T) ≥ ϵ} − eϵP{ζ(u)

d (T) ≤ −ϵ} ≤ δ
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Flipped Huber strikes back in higher dimensions

Proof sketch (cont.,)

▶ Upper bound the upper tail probability of privacy loss: Sub-Gaussianity

Lemma: Upper Bound on the Upper Tail Probability
Let T1, T2, . . . , TK be i.i.d. flipped Huber RVs, Ti ∼ FH(α, γ2) and T = [T1 T2 · · · TK ]⊤. If
R∆(α) = α2 − ([α−∆]+)

2 ≤ (2γ2ϵ−∆2
2)/K , then

P{ζ(u)

d (T) ≥ ϵ} ≤ Q
(

γϵ
∆2

− ∆2
2γ

− KR∆(α)

2γ∆2

)
.
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Flipped Huber strikes back in higher dimensions

Proof sketch (cont.,)

▶ Lower bound the lower tail probability of privacy loss: Stochastic ordering
• X ≤st Y if GX(a) ≤ GY (a) ∀ a ∈ R

Lemma: Stochastic Upper Bound for FH(α, γ2)

FH(α, γ2) ≤st N (θ, γ2), where θ = γQ−1
(
1
ω

√
π
2

).
Lemma: Lower Bound on the Lower Tail Probability
Let T1, T2, . . . , TK be i.i.d. flipped Huber random variables, Ti ∼ FH(α, γ2) and
T = [T1 T2 · · · TK ]⊤. We have

P{ζ(u)

d (T) ≤ −ϵ} ≥ Q
(

γϵ
∆2

+
∆2
2γ

+
KR∆(α)

2γ∆2
+

θ∆1
γ∆2

)
,

where θ = γQ−1
(
1
ω

√
π
2
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Flipped Huber strikes back in higher dimensions

Performance in K dimensions
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Applications



▶ Any estimation/detection/ML can be privatized

▶ What about iterative algorithms?
• Composition and guarantees for the same required

▶ What about neural networks?
• Gradient clipping typically required
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Applications

Composition

▶ Consider a set of DP mechanisms Ml(·), l = 1, 2, . . . , L

▶ D 7→
(
M1(D), . . . ,ML(D)

) is also DP (with graceful degradation)
▶ Non-adaptive composition: without side links → Multi-dimensional query
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Applications

Zero concentrated differential privacy (zCDP)

Definition: (ξ, η)-zCDP13
The randomized mechanism M : X → Y is said to satisfy (ξ, η)-zCDP if

D
(R)
Λ (µ∥ qµ) ≤ ξ + Λη ∀Λ ∈ (1,∞) and D ⟩⟨X qD ,

where D
(R)
Λ (µ∥ qµ) is the Λ-Rényi divergence between the distributions of M(D) and M( qD).

▶ zCDP → bound on the MGF of ζd(T ): E
[
exp

(
sζd(T )

)]
≤ es(ξ+(s+1)η) ∀s > 0

▶ L-fold (adaptive) composition of (ξ
l
, η

l
)-zCDP mechanisms →

(
L∑

l=1

ξ
l
,

L∑
l=1

η
l

)
-zCDP

▶ zCDP offers tightest characterization for Gaussian

13M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications, extensions, and lower bounds,”
in Proc. Int. Conf. Theory of Cryptogr. Part I. Springer, 2016, pp. 635–658
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Applications

zCDP of flipped Huber

Theorem: zCDP of FH(α, γ2)

The one-dimensional flipped Huber mechanism guarantees
(
R∆(α)

2γ2 ,
∆2

2γ2

)
-zCDP, where

R∆(α) = α2 − ([α−∆]+)
2.

▶ K-dimensional flipped Huber mechanism →
(
KR∆(α)

2γ2 ,
∆2

2

2γ2

)
-zCDP

Proof: ζd(T ) ≤st ζ
(u)

d (T )

Mζd(T )(s) = E
[
esζd(T )

]
≤ E

[
esζ

(u)
d (T )

]
= exp

(
s
R|d|(α)

2γ2 + s
d2

2γ2

)
× E

[
exp

(
sd
γ2T

) ]
≤ exp

(
s
R|d|(α)

2γ2 + s(s+ 1)
d2

2γ2

)
≤ exp

(
s
R∆(α)
2γ2 + s(s+ 1)

∆2

2γ2

)
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Applications

Coordinate descent (CD)
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Applications

Differentially private coordinate descent (DP-CD)14

▶ Perturb gradient updates of CD
▶ Empirical Risk Minimization (ERM):

min
θ∈RK

1

n

N∑
n=1

J(θ;Dn) + ψ(θ) ,

▶ θ ∈ RK − model parameter
▶ D = (D1, D2, . . . , DN ) ∈ X − dataset of N samples; Dn = (xn, yn)
▶ J : RK ×X → R − convex and smooth loss function
▶ ψ : RK → R − convex and separable regularizing function, ψ(θ) =

K∑
i=1

ψi(θi)

14P. Mangold, A. Bellet, J. Salmon, and M. Tommasi, “Differentially private coordinate descent for composite
empirical risk minimization,” in Proc. Int. Conf. Mach. Learn. PMLR, 2022, pp. 14 948–14978
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Applications

DP-CD (cont.,)
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Applications

DP-CD results

ϵ = 1 δ = 1
N2

Dataset Regularization
and parameter

Gaussian Flipped Huber
NMSE Test error NMSE Test error

Logistic
regression

Houses (ℓ2, 0.1) 0.6371 · 10−3 0.0391 0.6165 · 10−3 0.0389

Wine quality (ℓ2, 2 ·10−4) 0.2250 0.0614 0.1421 0.0513

Pumpkin seeds (ℓ2, 0.1) 0.0255 0.1224 0.0189 0.1152

Heart (ℓ2, 0.1) 0.2384 0.1741 0.1989 0.1556

Linear
regression

California (ℓ1, 0.01) 0.0479 0.4532 0.0465 0.4298

Boston housing (ℓ1, 0.01) 0.3579 0.3743 0.3406 0.3253

Airfoil (ℓ1, 0.01) 0.0206 0.5161 0.0190 0.4558

Diabetes (ℓ1, 0.1) 0.2515 0.5741 0.1489 0.4384
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Applications

DP-CD results (cont.,)

Logistic Regression

Dataset N K

Houses 16512 8

Wine quality 5198 11

Pumpkin seeds 2000 12

Heart 216 13

Linear Regression

Dataset N K

California 16512 8

Boston housing 405 13

Airfoil 1202 5

Diabetes 354 10

45/56



Summary



Summary

The pros of flipped Huber
▶ Laplace: can lead to large amount of noise for large K and results in outliers
▶ Gaussian: light tailed, but renders least Fisher information
▶ Flipped Huber: Hybrid noise mechanism with density having lighter tails and

sharper center
▶ More accurate for given privacy constraints compared to other mechanisms

• Seems to significantly outperform in higher dimensions
• Shows good results in real datasets e.g. private ERM

▶ Theoretically characterized
• Necessary and sufficient conditions in one dimension
• a sufficient condition in K dimension for (ϵ, δ)-DP
• Composition using zCDP with application to CD
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Summary

The cons of flipped Huber

▶ Requires several measures of sensitivities
• Unknown Sensitivities can be loosely bounded
• Cleverly handled by smart clipping in DP-CD

▶ In very high levels of composition, performs similar to Gaussian
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Summary

Could flipped Huber be even better than stated?

▶ The sufficient condition in K dimension involves several bounds
• Bounds loose for small ϵ
• Bounds loose with increasing K

▶ zCDP is tight for Gaussian
• Our composition results may be loose compared to composition results for
Gaussian

• We may be adding more noise than required
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Summary

Some applications of DP in wireless systems

▶ Uplink channel estimation in cell-free MIMO15

• Matrix completion for estimating channel with lesser number of pilots
• Use DP Low rank matrix completion to protect user locations

▶ Wireless federated learning local DP (curator-free model)16

• Superposition of gradients over non-orthogonal channel → more privacy

15J. Xu, X. Wang, P. Zhu, and X. You, “Privacy-preserving channel estimation in cell-free hybrid massive
MIMO systems,” IEEE Trans. Wireless Commun., vol. 20, no. 6, pp. 3815–3830, 2021

16M. Seif, R. Tandon, and M. Li, “Wireless federated learning with local differential privacy,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), 2020, pp. 2604–2609
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Summary

Some applications of DP in wireless systems (cont.,)

▶ Radio positioning and sensing17
• DP through channel randomization and beam steering

▶ Energy harvesting through IRS18
• Exponential mechanism for preserving location

▶ Edge computing over wireless big data19
• Output perturbation and objective perturbation with Laplace noise

17V.-L. Nguyen, R.-H. Hwang, B.-C. Cheng, Y.-D. Lin, and T. Q. Duong, “Understanding privacy risks of
high-accuracy radio positioning and sensing in wireless networks,” IEEE Commun. Mag., 2023

18Q. Pan, J. Wu, X. Zheng, W. Yang, and J. Li, “Differential privacy and irs empowered intelligent energy
harvesting for 6g internet of things,” IEEE Internet Things J., vol. 9, no. 22, pp. 22 109–22122, 2021

19M. Du, K. Wang, Z. Xia, and Y. Zhang, “Differential privacy preserving of training model in wireless big data
with edge computing,” IEEE Trans. Big Data, vol. 6, no. 2, pp. 283–295, 2018
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Summary

Some applications of DP in wireless systems (cont.,)
▶ Split learning for integrated terrestrial and non-terrestrial networks20

• Data owner and label owner train different parts of the deep learning model
▶ Cognitive radio networks21

• DP in spectrum sensing, spectrum analysis, spectrum sharing
▶ Cyber physical systems22 - time-series and statistical data

• DP in smart grid, transportation, healthcare and IIoT
20M. Wu, G. Cheng, P. Li, R. Yu, Y. Wu, M. Pan, and R. Lu, “Split learning with differential privacy for

integrated terrestrial and non-terrestrial networks,” IEEE Wireless Commun., 2023
21M. U. Hassan, M. H. Rehmani, M. Rehan, and J. Chen, “Differential privacy in cognitive radio networks: a

comprehensive survey,” Cogn. Comput., vol. 14, no. 2, pp. 475–510, 2022
22M. U. Hassan, M. H. Rehmani, and J. Chen, “Differential privacy techniques for cyber physical systems: A

survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 746–789, 2020
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Epilogue

Improving accuracy with i.n.i.d. noise

▶ i.i.d. noise: noise parameters depend on overall sensitivity measure

▶ Sensitivity of i-th coordinate of query response − λi

▶ Whenever there is disparity in {λi}Ki=1, performance can be improved

▶ Add non-identical (but still independent) noise samples23 across coordinates

▶ Gaussian and Laplace - lesser noise for more dispersed {λi}Ki=1

23G. Muthukrishnan and S. Kalyani, “Differential privacy with higher utility by exploiting coordinate-wise
disparity: Laplace mechanism can beat Gaussian in high dimensions,” arXiv:2302.03511, 2024
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Epilogue

Results
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Epilogue

Results (cont.,)
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Epilogue

Results (cont.,)
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Improved DP-CD

California dataset:
ℓ1-regularized linear regression

Electricity dataset:
ℓ2-regularized logistic regression
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Thank You!



Noise mechanisms in literature
▶ Laplace mechanism24: noise sampled from density 1

2β exp
(
− |x|

β

)
• ϵ-DP for β ≥ ∆1

ϵ

▶ Gaussian mechanism25: noise sampled from density 1√
2πσ2

exp
(
− x2

2σ2

)
• (ϵ, δ)-DP for σ ≥ σ0 , where Q

(
σ0ϵ
∆2

− ∆2

2σ0

)
− eϵQ

(
σ0ϵ
∆2

+
∆2

2σ0

)
= δ

▶ OSGT mechanism26: noise sampled from density 1

2Q(ϑ
ϱ)
ϕ(|t| ;−ϑ, ϱ2)

24C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in
Proc. Theory Cryptogr. Conf. Springer, 2006, pp. 265–284

25B. Balle and Y.-X. Wang, “Improving the Gaussian mechanism for differential privacy: Analytical calibration
and optimal denoising,” in Proc. Int. Conf. Mach. Learn. PMLR, 2018, pp. 394–403

26P. Sadeghi and M. Korki, “Offset-symmetric Gaussians for differential privacy,” IEEE Trans. Inf. Forensics
Security, vol. 17, pp. 2394–2409, 2022



Noise mechanisms in literature (cont.,)

▶ Subbotin or generalized Gaussian mechanism27: noise density p
1− 1

p

2 ξ Γ
(

1
p

) exp(− |x|p
pξp

)
▶ Discrete Gaussian mechanism28

▶ K-norm mechanism29: noise density for ϵ-DP → 1

Γ(K+1)λ
(

∆
ϵ K

) exp(− ϵ
∆‖x‖K

)
• Difficult to characterize sensitivity space and construct K

27F. Liu, “Generalized Gaussian mechanism for differential privacy,” IEEE Trans. Knowledge and Data Engg.,
vol. 31, no. 4, pp. 747–756, 2018

28C. L. Canonne, G. Kamath, and T. Steinke, “The discrete Gaussian for differential privacy,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 33. PMLR, 2020, pp. 15 676–15688

29J. Awan and A. Slavković, “Structure and sensitivity in differential privacy: Comparing K-norm
mechanisms,” J. Amer. Stat. Assoc., vol. 116, no. 534, pp. 935–954, 2021



Optimal DP noise mechanisms
▶ Staircase mechanism: optimal ϵ-DP mechanism for one-dimensional queries30

• Laplace is optimal ϵ-DP mechanism for small ϵ
▶ Staircase is the optimal noise for ϵ-DP (under ℓ1-error) in two dimensions31
▶ Truncated Laplace: optimal (ϵ, δ)-DP mechanism for one-dimensional queries32

• Optimal in high privacy regime (ϵ, δ) → (0, 0)

• Bounded support → supp (M(D)
)
\ supp (M( qD)

) is non empty
– Can perfectly distinguish D and qD with probability up to δ

30Q. Geng and P. Viswanath, “The optimal noise-adding mechanism in differential privacy,” IEEE Trans. Inf.
Theory, vol. 62, no. 2, pp. 925–951, 2016

31Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, “The staircase mechanism in differential privacy,” IEEE J. Sel.
Topics Signal Process., vol. 9, no. 7, pp. 1176–1184, 2015

32Q. Geng, W. Ding, R. Guo, and S. Kumar, “Tight analysis of privacy and utility tradeoff in approximate
differential privacy,” in Proc. Int. Conf. Artif. Intell. Statist. PMLR, 2020, pp. 89–99
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