Flipped Huber: A new additive noise mechanism for differential privacy

Sheetal Kalyani

Joint work with Gokularam M

Department of Electrical Engineering

Why does data privacy matter and what can one do?

- What one wants to reveal should be their choice
- However each and every mobile app collects your data
- ▶ From all the collected data one can track any individual
- Every survey, every test, every hypothesis needs data
- Data collection or release has to be privatized
- My participation in a survey should not reveal my identity

With great accuracy comes great loss of privacy

- ▶ As an algorithm becomes more and more accurate we compromise data privacy
- Data privacy is increasingly hard
- ▶ Information about an individual is available from multiple sources
- Example apps which reveal caller ids
- Plain anonymization doesn't ensure complete protection

Differential privacy (DP)

Differential privacy (DP)

Definition: (ϵ, δ) -DP

$$\begin{split} \mathcal{M} \text{ is } (\epsilon, \delta)\text{-DP if for every measurable } \mathcal{S} \subseteq \mathcal{Y} \text{ and } \mathcal{D} \succsim_{\mathscr{X}} \check{\mathcal{D}}, \\ \mathbb{P}\{\mathcal{M}(\mathcal{D}) \in \mathcal{S}\} \leq e^{\epsilon} \mathbb{P}\{\mathcal{M}(\check{\mathcal{D}}) \in \mathcal{S}\} + \delta. \end{split}$$

Additive noise mechanism

- Consider numeric vector query $f : \mathcal{X} \to \mathbb{R}^K$
 - f acts on $\mathcal{D} \in \mathcal{X}$ and provides the response $f(\mathcal{D})$
- Additive noise mechanism imparts DP by perturbing f(D) as $\mathcal{M}(D) = f(D) + \mathbf{t}$
- ▶ $\mathbf{t} = [t_1 \ t_2 \ \cdots \ t_K]^\top \in \mathbb{R}^K$: noise (typically i.i.d.) sampled from known distribution
- ▶ Popular choices are Laplace¹ and Gaussian²

¹C. Dwork, F. McSherry, K. Nissim, and A. Smith, "Calibrating noise to sensitivity in private data analysis," in *Proc. Theory Cryptogr. Conf.* Springer, 2006, pp. 265–284

²B. Balle and Y.-X. Wang, "Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising," in *Proc. Int. Conf. Mach. Learn.* PMLR, 2018, pp. 394–403

Additive noise mechanism (cont.,)

Sensitivity determines amount of noise $\Delta_p = \sup_{\mathcal{D} \succeq_{\sim} \check{\mathcal{D}}} \left\| f(\mathcal{D}) - f(\check{\mathcal{D}}) \right\|_p$

• Deviation in query result: $\mathbf{d} = f(\mathcal{D}) - f(\check{\mathcal{D}})$

³C. Dwork, G. N. Rothblum, and S. Vadhan, "Boosting and differential privacy," in *Proc. IEEE Annu. Symp. Found. Comput. Sci.* IEEE, 2010, pp. 51–60

⁴B. Balle and Y.-X. Wang, "Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising," in *Proc. Int. Conf. Mach. Learn.* PMLR, 2018, pp. 394–403

Additive noise mechanism (cont.,)

- Sensitivity determines amount of noise $\Delta_p = \sup_{\mathcal{D} \succeq_{\mathcal{V}} \check{\mathcal{D}}} \|f(\mathcal{D}) f(\check{\mathcal{D}})\|_p$
- Deviation in query result: $\mathbf{d} = f(\mathcal{D}) f(\check{\mathcal{D}})$
- ► Privacy loss random variable³: $\zeta_{\mathbf{d}}(\mathbf{T}) = \log \frac{g_{\mathbf{T}}(\mathbf{t})}{g_{\mathbf{T}}(\mathbf{t}+\mathbf{d})}$
 - Additive under i.i.d. noise: $\zeta_{\mathbf{d}}(\mathbf{t}) = \sum_{i=1}^{K} \zeta_{d_i}(t_i)$
 - Centered privacy loss $\widetilde{\zeta}_d(t) = \zeta_d(t \frac{d}{2})$

³C. Dwork, G. N. Rothblum, and S. Vadhan, "Boosting and differential privacy," in *Proc. IEEE Annu. Symp. Found. Comput. Sci.* IEEE, 2010, pp. 51–60

⁴B. Balle and Y.-X. Wang, "Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising," in *Proc. Int. Conf. Mach. Learn.* PMLR, 2018, pp. 394–403

Additive noise mechanism (cont.,)

- Sensitivity determines amount of noise $\Delta_p = \sup_{\mathcal{D} \succeq_{\mathcal{V}} \check{\mathcal{D}}} \left\| f(\mathcal{D}) f(\check{\mathcal{D}}) \right\|_p$
- Deviation in query result: $\mathbf{d} = f(\mathcal{D}) f(\check{\mathcal{D}})$
- ► Privacy loss random variable³: $\zeta_{\mathbf{d}}(\mathbf{T}) = \log \frac{g_{\mathbf{T}}(\mathbf{t})}{g_{\mathbf{T}}(\mathbf{t}+\mathbf{d})}$
 - Additive under i.i.d. noise: $\zeta_{\mathbf{d}}(\mathbf{t}) = \sum_{i=1}^{K} \zeta_{d_i}(t_i)$
 - Centered privacy loss $\widetilde{\zeta}_d(t) = \zeta_d(t \frac{d}{2})$
- ► Equivalent condition for (ϵ, δ) -DP⁴: $\sup_{D \asymp_{\nu} \check{D}} \mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \geq \epsilon\} e^{\epsilon} \mathbb{P}\{\zeta_{-\mathbf{d}}(\mathbf{T}) \leq -\epsilon\} \leq \delta$

³C. Dwork, G. N. Rothblum, and S. Vadhan, "Boosting and differential privacy," in *Proc. IEEE Annu. Symp. Found. Comput. Sci.* IEEE, 2010, pp. 51–60

⁴B. Balle and Y.-X. Wang, "Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising," in *Proc. Int. Conf. Mach. Learn.* PMLR, 2018, pp. 394–403

What have we lost by introducing DP?

- By adding noise to the output query or by randomizing it I have lost information
- No free lunch: To get more privacy you have to sacrifice more utility or accuracy
- What is the minimum noise I should add to get desired DP with least loss of utility
- The noise added is a function of ϵ , δ and Δ_p

Is there an optimal additive mechanism?

Two tale(il)s, one story

- Heavy-tailed noise is undesirable
 - Tail of $T \rightarrow$ affects accuracy
- $\blacktriangleright \mathbb{P}\{\zeta_d(T) \ge \epsilon\} \le \delta \implies (\epsilon, \delta) \text{-DP}$
 - Tail of $\zeta_d(T) \rightarrow$ affects privacy

Characteristics of tails of both T and $\zeta_d(t)$ determine privacy-accuracy trade-off

What about popular existing distributions?

Laplace noise:

- Optimal ϵ -DP mechanism in high privacy regime
 - Bounded $\zeta_d(T)$
- Outputs are *more informative* of the true response
- Excessive noise for large K and results in outliers

What about popular existing distributions?

Laplace noise:

- Optimal ϵ -DP mechanism in high privacy regime
 - Bounded $\zeta_d(T)$
- Outputs are more informative of the true response
- Excessive noise for large K and results in outliers

Gaussian noise:

- Light tailed noise
- Privacy loss is also Gaussian \rightarrow light tailed $\zeta_d(T)$
 - Composes well
- Outputs are less informative of the true response

Can grafting Laplace and Gaussian help?

Noise density design to have the best of both Laplace and Gaussian

Can grafting Laplace and Gaussian help?

Noise density design to have the best of both Laplace and Gaussian

Can grafting Laplace and Gaussian help?

- Noise density design to have the best of both Laplace and Gaussian
- ► Hybridize the densities → splice Laplace centre and Gaussian tails

Are there other grafted densities?

Huber's distribution : Gaussian in the centre and Laplacian in the tails

$$g_{\mathcal{H}}(t) = (1-\tau) \times \begin{cases} \phi(t), & |t| \le \alpha \\ e^{-\alpha \left(|t| - \frac{\alpha}{2}\right)}, & |t| > \alpha \end{cases}, \qquad \tau = \left(1 + \frac{\alpha}{2(\phi(\alpha) - \alpha Q(\alpha))}\right)^{-1}$$

- ► Least Fisher information among symmetric distributions⁵ of the form $(1 \tau)\phi(t) + \tau h(t)$
- We want actually the most favorable distribution which can satisfy the DP requirement

⁵P. J. Huber and E. M. Ronchetti, *Robust statistics*. John Wiley & Sons, 2009

Are there other grafted densities? (cont.,)

Flipped Huber distribution

Flipped Huber loss function:
$$\rho_{\alpha}(t) = \begin{cases} \alpha |t|, & |t| \leq \alpha \\ (t^2 + \alpha^2)/2, & |t| > \alpha \end{cases}$$

• Symmetric and convex

Flipped Huber distribution

Flipped Huber loss function:
$$\rho_{\alpha}(t) = \begin{cases} \alpha |t|, & |t| \leq \alpha \\ (t^2 + \alpha^2)/2, & |t| > \alpha \end{cases}$$

• Symmetric and convex

Definition: Flipped Huber Distribution

The flipped Huber distribution $\mathcal{FH}(\alpha,\gamma^2)$ is specified by the density function,

$$g_{\mathcal{FH}}(t;\alpha,\gamma^2) = \frac{1}{\kappa} \exp\left(-\frac{\rho_{\alpha}(t)}{\gamma^2}\right),$$

where $\kappa = \gamma \omega e^{-\alpha^2/2\gamma^2}$ and $\omega = 2 \left[\sqrt{2\pi} Q\left(\frac{\alpha}{\gamma}\right) + \frac{2\gamma}{\alpha} \sinh\left(\frac{\alpha^2}{2\gamma^2}\right) \right]$.

Flipped Huber distribution (cont.,)

 $\mathcal{FH}(\alpha,\gamma^2)$ for various choices of α and γ

Properties of flipped Huber

► Variance:
$$\sigma_{\mathcal{FH}}^2 = \gamma^2 \left[1 - \frac{1}{\omega} \left(\frac{2\gamma}{\alpha} \right)^3 \left(\frac{\alpha^2}{2\gamma^2} \cosh\left(\frac{\alpha^2}{2\gamma^2} \right) - \sinh\left(\frac{\alpha^2}{2\gamma^2} \right) \right) \right]$$

► Fisher Information:
$$\mathcal{I}_{\mathcal{FH}} = \frac{1}{\gamma^2} \left[1 + \frac{4\gamma}{\alpha\omega} \left(\frac{\alpha^2}{2\gamma^2} e^{\alpha^2/2\gamma^2} - \sinh\left(\frac{\alpha^2}{2\gamma^2}\right) \right) \right]$$

•
$$\sigma_{\mathcal{FH}}^2 \leq \gamma^2$$
 and $\mathcal{I}_{\mathcal{FH}} \geq \frac{1}{\gamma^2}$

Properties of flipped Huber (cont.,)

▶ Normalized Fisher information: $\tilde{\mathcal{I}}_T = \mathcal{I}_T \times \sigma_T^2$

Properties of flipped Huber (cont.,)

▶ Normalized Fisher information: $\widetilde{\mathcal{I}}_T = \mathcal{I}_T \times \sigma_T^2$

Properties of flipped Huber (cont.,)

Lemma: Sub-Gaussianity of Flipped Huber

 $\mathcal{FH}(\alpha,\gamma^2)$ is sub-Gaussian with proxy variance γ^2 , i.e., $\mathcal{FH}(\alpha,\gamma^2) \in \mathcal{SG}(\gamma^2)$.

Properties of flipped Huber (cont.,)

Lemma: Sub-Gaussianity of Flipped Huber

 $\mathcal{FH}(\alpha,\gamma^2) \text{ is sub-Gaussian with proxy variance } \gamma^2 \text{, i.e., } \quad \mathcal{FH}(\alpha,\gamma^2) \in \mathcal{SG}(\gamma^2).$

Proof: Prove by showing Orlicz condition, $\mathbb{E}\left[\exp\left(\frac{sT^2}{2\gamma^2}\right)\right] \leq \frac{1}{\sqrt{1-s}} \quad \forall s \in [0,1).$ When $T \sim \mathcal{FH}(\alpha, \gamma^2)$, $\mathbb{E}\left[\exp\left(\frac{sT^2}{2\gamma^2}\right)\right] = \frac{1}{\sqrt{1-s}} \mathcal{C}_{\alpha,\gamma}(s)$, where $\mathcal{C}_{\alpha,\gamma}(s) = \frac{\sqrt{2\pi}}{\omega} \left[\sqrt{\frac{1}{s}-1} \exp\left(-\left(\frac{1}{s}-1\right)\frac{\alpha^2}{2\gamma^2}\right) \left(\operatorname{erfi}\left(\frac{1}{\sqrt{2s}}\frac{\alpha}{\gamma}\right) - \operatorname{erfi}\left(\frac{(1-s)}{\sqrt{2s}}\frac{\alpha}{\gamma}\right)\right) + 2Q\left(\sqrt{1-s}\frac{\alpha}{\gamma}\right)\right].$ $\mathcal{C}_{\alpha,\gamma}(s)$ is a decreasing function in $s \in [0,1)$ and $\lim_{s \to 0^+} \mathcal{C}_{\alpha,\gamma}(s) = 1 \Rightarrow \mathcal{C}_{\alpha,\gamma}(s) \leq 1.$
Privacy guarantee in one dimension

The one-dimensional flipped Huber mechanism guarantees (ϵ, δ) -DP $\iff \delta^{(1)}_{\mathcal{FH}}(\epsilon) \leq \delta$, where

$$\begin{pmatrix} \left(1 - \frac{\sqrt{2\pi}}{\omega}\right) + \frac{\sqrt{2\pi}}{\omega} \Big[Q\Big(\frac{\gamma\epsilon}{\Delta} - \frac{\Delta}{2\gamma}\Big) - e^{\epsilon}Q\Big(\frac{\gamma\epsilon}{\Delta} + \frac{\Delta}{2\gamma}\Big) \Big], & 0 \le \epsilon < \frac{(\Delta - 2\alpha)\Delta}{2\gamma^2} \\ \frac{1}{2}(1 - e^{\epsilon}) + \frac{\gamma}{\alpha\omega} e^{\alpha^2/2\gamma^2} \Big(1 + e^{\epsilon} - 2\exp\Big(\frac{\epsilon}{2} - \frac{\alpha\Delta}{2\gamma^2}\Big)\Big), & 0 \le \epsilon < \frac{((2\alpha - \Delta) \wedge \Delta)\alpha}{\gamma^2} \\ \frac{1}{2} + \frac{\gamma}{\alpha\omega} e^{\alpha^2/2\gamma^2} \Big[1 - \exp\Big(\frac{\alpha}{\gamma^2}(-\alpha + \sqrt{2(\gamma^2\epsilon + \alpha\Delta)} - \Delta)\Big) \Big] - e^{\epsilon}\frac{\sqrt{2\pi}}{\omega}Q\Big(\frac{\sqrt{2(\gamma^2\epsilon + \alpha\Delta)} - \alpha}{\gamma}\Big), \\ \frac{(2\alpha \vee \Delta)^2 - 2\alpha\Delta}{2\gamma^2} \le \epsilon < \frac{([\Delta - \alpha]_+)^2 + 2\alpha\Delta}{2\gamma^2} \\ \frac{1}{2} - \frac{\gamma}{\alpha\omega} e^{\alpha^2/2\gamma^2} \Big[1 - \exp\Big(\frac{\alpha}{\gamma^2}(-\alpha - \sqrt{2(\gamma^2\epsilon - \alpha\Delta)} + \Delta)\Big) \Big] - e^{\epsilon}\frac{\sqrt{2\pi}}{\omega}Q\Big(\frac{\sqrt{2(\gamma^2\epsilon - \alpha\Delta)} + \alpha}{\gamma}\Big), \\ \frac{([\Delta - \alpha]_+)^2 + 2\alpha\Delta}{2\gamma^2} \le \epsilon < \frac{(\Delta + 2\alpha)\Delta}{2\gamma^2} \\ \frac{\sqrt{2\pi}}{\omega} \Big[Q\Big(\frac{\gamma\epsilon}{\Delta} - \frac{\Delta}{2\gamma}\Big) - e^{\epsilon}Q\Big(\frac{\gamma\epsilon}{\Delta} + \frac{\Delta}{2\gamma}\Big) \Big], & \epsilon \ge \frac{(\Delta + 2\alpha)\Delta}{2\gamma^2} \end{pmatrix}$$

$$\delta_{\mathcal{F}\mathcal{H}}^{(1)}(\epsilon) = \int_{\mathbb{R}} \left[g_{\mathcal{F}\mathcal{H}}(t) - e^{\epsilon} g_{\mathcal{F}\mathcal{H}}(t+d) \right]_{+} \mathrm{d}t \le \delta$$

$$d = f(\mathcal{D}) - f(\check{\mathcal{D}}) \qquad \Delta = \sup_{\mathcal{D} \succeq_{\mathcal{X}} \check{\mathcal{D}}} |d|$$

$$\delta_{\mathcal{FH}}^{(1)}(\epsilon) = \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon)\right) - e^{\epsilon} \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon) + \Delta\right)$$

$$\delta_{\mathcal{F}\mathcal{H}}^{(1)}(\epsilon) = \int_{\mathbb{R}} \big[g_{\mathcal{F}\mathcal{H}}(t) - e^{\epsilon} g_{\mathcal{F}\mathcal{H}}(t+d) \big]_{+} \, \mathrm{d}t \leq \delta$$

$$d = f(\mathcal{D}) - f(\check{\mathcal{D}}) \qquad \Delta = \sup_{\mathcal{D} \Join_{\mathcal{X}} \check{\mathcal{D}}} |d|$$

$$\delta_{\mathcal{FH}}^{(1)}(\epsilon) = \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon)\right) - e^{\epsilon} \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon) + \Delta\right)$$

- Piecewise density \rightarrow piecewise $\zeta_d(t)$
- ▶ 3 different functional forms of $\zeta_d(t)$

$$\delta_{\mathcal{F}\mathcal{H}}^{(1)}(\epsilon) = \int_{\mathbb{R}} \left[g_{\mathcal{F}\mathcal{H}}(t) - e^{\epsilon} g_{\mathcal{F}\mathcal{H}}(t+d) \right]_{+} \mathrm{d}t \leq \delta$$

$$d = f(\mathcal{D}) - f(\check{\mathcal{D}}) \qquad \Delta = \ \sup_{\mathcal{D} \Join_{\mathcal{X}} \check{\mathcal{D}}} \ |d|$$

$$\delta_{\mathcal{FH}}^{(1)}(\epsilon) = \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon)\right) - e^{\epsilon} \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon) + \Delta\right)$$

- Piecewise density \rightarrow piecewise $\zeta_d(t)$
- ▶ 3 different functional forms of $\zeta_d(t)$

$$\delta_{\mathcal{F}\mathcal{H}}^{(1)}(\epsilon) = \int_{\mathbb{R}} \left[g_{\mathcal{F}\mathcal{H}}(t) - e^{\epsilon} g_{\mathcal{F}\mathcal{H}}(t+d) \right]_{+} \mathrm{d}t \leq \delta$$

$$d = f(\mathcal{D}) - f(\check{\mathcal{D}}) \qquad \Delta = \ \sup_{\mathcal{D} \Join_{\mathcal{X}} \check{\mathcal{D}}} \ |d|$$

$$\delta_{\mathcal{FH}}^{(1)}(\epsilon) = \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon)\right) - e^{\epsilon} \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon) + \Delta\right)$$

- Piecewise density \rightarrow piecewise $\zeta_d(t)$
- ▶ 3 different functional forms of $\zeta_d(t)$

$$\delta_{\mathcal{FH}}^{(1)}(\epsilon) = \int_{\mathbb{R}} \left[g_{\mathcal{FH}}(t) - e^{\epsilon} g_{\mathcal{FH}}(t+d) \right]_{+} \mathrm{d}t \leq \delta$$

$$d = f(\mathcal{D}) - f(\check{\mathcal{D}}) \qquad \Delta = \sup_{\mathcal{D} \Join_{\mathcal{X}} \check{\mathcal{D}}} |d|$$

$$\delta_{\mathcal{FH}}^{(1)}(\epsilon) = \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon)\right) - e^{\epsilon} \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon) + \Delta\right)$$

- Piecewise density \rightarrow piecewise $\zeta_d(t)$
- ▶ 3 different functional forms of $\zeta_d(t)$

Proof sketch

$$\delta_{\mathcal{FH}}^{(1)}(\epsilon) = \int_{\mathbb{R}} \left[g_{\mathcal{FH}}(t) - e^{\epsilon} g_{\mathcal{FH}}(t+d) \right]_{+} \mathrm{d}t \leq \delta$$

$$d = f(\mathcal{D}) - f(\check{\mathcal{D}}) \qquad \Delta = \sup_{\mathcal{D} \Join_{\mathcal{X}} \check{\mathcal{D}}} |d|$$

$$\delta_{\mathcal{FH}}^{(1)}(\epsilon) = \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon)\right) - e^{\epsilon} \overline{G}_{\mathcal{FH}}\left(\zeta_{\Delta}^{-1}(\epsilon) + \Delta\right)$$

- Piecewise density \rightarrow piecewise $\zeta_d(t)$
- ▶ 3 different functional forms of $\zeta_d(t)$

Depending on value of ϵ , we may get different values of $\zeta_{\Delta}^{-1}(\epsilon)$ for each of the 3 cases

Proof sketch (cont.,)

	Range of ϵ	Non-empty only when	$t_1 = \zeta_\Delta^{-1}(\epsilon)$	$t_2 = \zeta_\Delta^{-1}(\epsilon) + \Delta$	Inter	vals
_					1	2
(i)	$\left[0,\frac{(\Delta-2\alpha)\Delta}{2\gamma^2}\right)$	$\alpha < \frac{\Delta}{2}$	$rac{\gamma^2\epsilon}{\Delta}-rac{\Delta}{2}$	$\frac{\gamma^2\epsilon}{\Delta} + \frac{\Delta}{2}$	$(-\infty, -\alpha)$	(α,∞)
(ii)	$\left[0,\frac{((2\alpha-\Delta)\wedge\Delta)\alpha}{\gamma^2}\right)$	$\alpha > \frac{\Delta}{2}$	$\frac{\gamma^2\epsilon}{2\alpha} - \frac{\Delta}{2}$	$\frac{\gamma^2\epsilon}{2\alpha} + \frac{\Delta}{2}$	(-lpha,0)	(0, lpha)
(iii)	$\left[\frac{(2\alpha\vee\Delta)^2-2\alpha\Delta}{2\gamma^2},\frac{([\Delta-\alpha]_+)^2+2\alpha\Delta}{2\gamma^2}\right)$	$\alpha < \Delta$	$\sqrt{2(\gamma^2\epsilon + \alpha\Delta)} - \alpha - \Delta$	$\sqrt{2(\gamma^2\epsilon + \alpha\Delta)} - \alpha$	[-lpha,0)	$[lpha,\infty)$
(iv)	$\left[\frac{\left([\Delta-\alpha]_{+}\right)^{2}+2\alpha\Delta}{2\gamma^{2}},\frac{(\Delta+2\alpha)\Delta}{2\gamma^{2}}\right)$	_	$\sqrt{2(\gamma^2\epsilon - \alpha\Delta)} + \alpha + \Delta$	$\sqrt{2(\gamma^2\epsilon - \alpha\Delta)} + \alpha$	[0, lpha)	$[lpha,\infty)$
(v)	$\left[\frac{(\Delta+2\alpha)\Delta}{2\gamma^2},\infty\right)$	_	$\frac{\gamma^2\epsilon}{\Delta} - \frac{\Delta}{2}$	$\frac{\gamma^2\epsilon}{\Delta} + \frac{\Delta}{2}$	$[lpha,\infty)$	$[lpha,\infty)$

 $\blacktriangleright \ \epsilon \geq \frac{([\Delta - \alpha]_+)^2 + 2\alpha\Delta}{2\gamma^2} \rightarrow \text{no ambiguity, otherwise determine } \zeta_{\Delta}^{-1}(\epsilon) \text{ based on } \alpha \text{ and } \Delta$

Empirical results for single dimension

Performance in single dimension

Variances of flipped Huber, Gaussian, truncated Laplace⁶ and OSGT⁷ noises when $\delta = 10^{-6}$ and $\Delta = 1$

⁶Q. Geng, W. Ding, R. Guo, and S. Kumar, "Tight analysis of privacy and utility tradeoff in approximate differential privacy," in *Proc. Int. Conf. Artif. Intell. Statist.* PMLR, 2020, pp. 89–99

⁷P. Sadeghi and M. Korki, "Offset-symmetric Gaussians for differential privacy," *IEEE Trans. Inf. Forensics Security*, vol. 17, pp. 2394–2409, 2022

How to choose the parameters of flipped Huber?

 \blacktriangleright (α,γ) that results in lowest variance while satisfying DP can be selected through grid search

• Illustrative values ($\delta = 10^{-6}$):

ϵ	α	γ	
0.5	20.48	6.4	
2	6.48	1.8	
4	4	1	

Empirical results for single dimension

Performance in single dimension (cont.,)

Ratio of the variance (in dB) of flipped Huber noise to that of (a) Laplace and (b) staircase⁸ noises

⁸Q. Geng and P. Viswanath, "The optimal noise-adding mechanism in differential privacy," *IEEE Trans. Inf. Theory*, vol. 62, no. 2, pp. 925–951, 2016

Empirical results for single dimension

Noise densities for $\epsilon = 2$, $\delta = 10^{-6}$

The story so far

- ▶ Approximate DP guaranteed by the flipped Huber mechanism
- Outperforms both Gaussian and OSGT mechanism by a significant margin
- ▶ However Laplace is clearly superior and gives pure DP
- ▶ Staircase is the optimal pure DP noise mechanism in single and two dimensions
- So why flipped Huber?

Flipped Huber strikes back in higher dimensions

DP in higher dimensions

Machine learning applications are typically high-dimensional

- Linear regression⁹: few 10's
- Principal component analysis¹⁰: few 100's or 1000's
- Deep learning¹¹: several millions

▶ Need for efficient DP mechanisms without killing the utility

⁹Y.-X. Wang, "Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain," in *Uncertainty in Artif. Intell.*, 2018

¹⁰C. Dwork, K. Talwar, A. Thakurta, and L. Zhang, "Analyze Gauss: optimal bounds for privacy-preserving principal component analysis," in *Proc. Annu. ACM Symp. Theory of Comput.*, 2014, pp. 11–20

¹¹M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, "Deep learning with differential privacy," in *Proc. ACM SIGSAC Conf. Computer and Communications security*, 2016, pp. 308–318

Performance in K = 20 dimensions for $\delta = 10^{-6}$

Variance of noise added by various mechanisms

ϵ	0.2	0.4	1	2.2	5
Flipped Huber (sufficient)	7237.09	1971.36	359.57	87.09	19.49
Gaussian	11209.84	2979.23	520.26	117.77	25.95
Laplace	$2 \cdot 10^4$	5000	800	165.29	32
Staircase (independent)	19999.92	4999.92	799.92	165.21	31.92

Flipped Huber strikes back in higher dimensions

Noise densities in K = 20 dimensions for $\epsilon = 5$, $\delta = 10^{-6}$

- Privacy loss distribution is difficult to characterize (except for Gaussian)
 - Difficult even for i.i.d. noise (convolution)

¹²Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, "The staircase mechanism in differential privacy," *IEEE J. Sel. Topics Signal Process.*, vol. 9, no. 7, pp. 1176–1184, 2015

- Privacy loss distribution is difficult to characterize (except for Gaussian)
 - Difficult even for i.i.d. noise (convolution)
- Numerical integration computationally prohibitive even for small dimensions

 ¹²Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, "The staircase mechanism in differential privacy," *IEEE J. Sel. Topics Signal Process.*, vol. 9, no. 7, pp. 1176–1184, 2015

- Privacy loss distribution is difficult to characterize (except for Gaussian)
 - Difficult even for i.i.d. noise (convolution)
- Numerical integration computationally prohibitive even for small dimensions
- Composition approach not tight

 ¹²Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, "The staircase mechanism in differential privacy," *IEEE J. Sel. Topics Signal Process.*, vol. 9, no. 7, pp. 1176–1184, 2015

- Privacy loss distribution is difficult to characterize (except for Gaussian)
 - Difficult even for i.i.d. noise (convolution)
- Numerical integration computationally prohibitive even for small dimensions
- Composition approach not tight
- Optimal noise distribution for arbitrary dimension is not known yet
 - All optimal distributions in literature are for single-dimensional queries
 - High dimensional functional optimization difficult

¹²Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, "The staircase mechanism in differential privacy," *IEEE J. Sel. Topics Signal Process.*, vol. 9, no. 7, pp. 1176–1184, 2015

- Privacy loss distribution is difficult to characterize (except for Gaussian)
 - Difficult even for i.i.d. noise (convolution)
- Numerical integration computationally prohibitive even for small dimensions
- Composition approach not tight
- Optimal noise distribution for arbitrary dimension is not known yet
 - All optimal distributions in literature are for single-dimensional queries
 - High dimensional functional optimization difficult
- Staircase is the optimal noise for ϵ -DP (under ℓ_1 -error) in two dimensions¹²
 - PDF is not characterized in K dimensions
 - Use i.i.d. samples from one-dimensional staircase distribution

¹²Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, "The staircase mechanism in differential privacy," *IEEE J. Sel. Topics Signal Process.*, vol. 9, no. 7, pp. 1176–1184, 2015

Privacy guarantee in *K* dimensions

- $\blacktriangleright\,$ K-dimensional query: Add i.i.d. $\mathcal{FH}(\alpha,\gamma^2)$ to each coordinate
- \blacktriangleright Necessary and sufficient condition \rightarrow intractable
 - Hybrid, piecewise nature of $\mathcal{FH}(\alpha,\gamma^2)$
 - Complex expression for $\zeta_d(\mathbf{T})$

Privacy guarantee in K dimensions

- ► *K*-dimensional query: Add i.i.d. $\mathcal{FH}(\alpha, \gamma^2)$ to each coordinate
- Necessary and sufficient condition \rightarrow intractable
 - Hybrid, piecewise nature of $\mathcal{FH}(\alpha,\gamma^2)$
 - Complex expression for $\zeta_d(\mathbf{T})$

Theorem: Sufficient Condition for (ϵ, δ) -DP in K Dimension

The *K*-dimensional flipped Huber mechanism guarantees (ϵ, δ) -DP if $\mathcal{R}_{\Delta}(\alpha) = \alpha^2 - ([\alpha - \Delta]_+)^2 \leq (2\gamma^2\epsilon - \Delta_2^2)/K$ and

$$Q\!\left(\!\frac{\gamma\epsilon}{\Delta_2} - \frac{\Delta_2}{2\gamma} - \frac{K\mathcal{R}_\Delta\!(\alpha)}{2\gamma\Delta_2}\!\right) - e^\epsilon Q\!\left(\!\frac{\gamma\epsilon}{\Delta_2} + \frac{\Delta_2}{2\gamma} + \frac{K\mathcal{R}_\Delta\!(\alpha)}{2\gamma\Delta_2} + \frac{\theta\Delta_1}{\gamma\Delta_2}\!\right) \!\leq \! \delta,$$

where $\theta = \gamma Q^{-1} \left(\frac{1}{\omega} \sqrt{\frac{\pi}{2}} \right)$.

►
$$\mathbf{T} \stackrel{d}{=} -\mathbf{T}$$
 and $\zeta_{-\mathbf{d}}(\mathbf{T}) = \zeta_{\mathbf{d}}(-\mathbf{T}) \stackrel{d}{=} \zeta_{\mathbf{d}}(\mathbf{T})$

$$\mathbb{P}\{\boldsymbol{\zeta}_{\mathbf{d}}(\mathbf{T}) \geq \epsilon\} - e^{\epsilon} \, \mathbb{P}\{\boldsymbol{\zeta}_{\mathbf{d}}(\mathbf{T}) \leq -\epsilon\} \leq \delta$$

Flipped Huber strikes back in higher dimensions

►
$$\mathbf{T} \stackrel{d}{=} -\mathbf{T}$$
 and $\zeta_{-\mathbf{d}}(\mathbf{T}) = \zeta_{\mathbf{d}}(-\mathbf{T}) \stackrel{d}{=} \zeta_{\mathbf{d}}(\mathbf{T})$
 $\mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \ge \epsilon\} - e^{\epsilon} \mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \le -\epsilon\} \le \delta$

►
$$\mathbf{T} \stackrel{d}{=} -\mathbf{T}$$
 and $\zeta_{-\mathbf{d}}(\mathbf{T}) = \zeta_{\mathbf{d}}(-\mathbf{T}) \stackrel{d}{=} \zeta_{\mathbf{d}}(\mathbf{T})$
 $\mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \ge \epsilon\} - e^{\epsilon} \mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \le -\epsilon\} \le \delta$

$$\mathbf{F} \mathbf{T} \stackrel{d}{=} -\mathbf{T} \text{ and } \zeta_{-\mathbf{d}}(\mathbf{T}) = \zeta_{\mathbf{d}}(-\mathbf{T}) \stackrel{d}{=} \zeta_{\mathbf{d}}(\mathbf{T})$$

$$\mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \ge \epsilon\} - e^{\epsilon} \mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \le -\epsilon\} \le \delta$$

$$-4 -2 \qquad 0 \qquad 2 \qquad 4 \qquad t$$

$$-4 -2 \qquad 0 \qquad 2 \qquad 4 \qquad t$$

$$-4 -2 \qquad 0 \qquad 2 \qquad 4 \qquad t$$

$$-4 \qquad -2 \qquad 0 \qquad 2 \qquad 4 \qquad t$$

$$-4 \qquad -2 \qquad 0 \qquad 2 \qquad 4 \qquad t$$

$$\mathbf{T} \stackrel{\mathrm{d}}{=} -\mathbf{T} \text{ and } \zeta_{-\mathbf{d}}(\mathbf{T}) = \zeta_{\mathbf{d}}(-\mathbf{T}) \stackrel{\mathrm{d}}{=} \zeta_{\mathbf{d}}(\mathbf{T})$$

$$\mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \ge \epsilon\} - e^{\epsilon} \mathbb{P}\{\zeta_{\mathbf{d}}(\mathbf{T}) \le -\epsilon\} \le \delta$$

$$\mathbf{\zeta}_{\mathbf{d}}(\mathbf{T}) \le \zeta_{\mathbf{d}}^{(u)}(\mathbf{t}) = \frac{\mathbf{t}^{\top}\mathbf{d}}{\gamma^{2}} + \frac{\|\mathbf{d}\|_{2}^{2}}{2\gamma^{2}} + \frac{K\mathcal{R}_{\Delta}(\alpha)}{2\gamma^{2}}$$

$$\mathbb{P}\{\zeta_{\mathbf{d}}^{(u)}(\mathbf{T}) \ge \epsilon\} - e^{\epsilon} \mathbb{P}\{\zeta_{\mathbf{d}}^{(u)}(\mathbf{T}) \le -\epsilon\} \le \delta$$

$$\mathbb{P}\{\zeta_{\mathbf{d}}^{(u)}(\mathbf{T}) \ge \epsilon\} - e^{\epsilon} \mathbb{P}\{\zeta_{\mathbf{d}}^{(u)}(\mathbf{T}) \le -\epsilon\} \le \delta$$

$$\mathbb{P}\{\zeta_{\mathbf{d}}^{(u)}(\mathbf{T}) \ge \epsilon\} - e^{\epsilon} \mathbb{P}\{\zeta_{\mathbf{d}}^{(u)}(\mathbf{T}) \le -\epsilon\} \le \delta$$

Flipped Huber strikes back in higher dimensions

Proof sketch (cont.,)

▶ Upper bound the upper tail probability of privacy loss: Sub-Gaussianity

Upper bound the upper tail probability of privacy loss: Sub-Gaussianity

Lemma: Upper Bound on the Upper Tail Probability

Let T_1, T_2, \ldots, T_K be i.i.d. flipped Huber RVs, $T_i \sim \mathcal{FH}(\alpha, \gamma^2)$ and $\mathbf{T} = [T_1 \ T_2 \ \cdots \ T_K]^\top$. If $\mathcal{R}_{\Delta}(\alpha) = \alpha^2 - ([\alpha - \Delta]_+)^2 \leq (2\gamma^2 \epsilon - \Delta_2^2)/K$, then $\mathbb{P}\{\zeta_{\mathbf{d}}^{(u)}(\mathbf{T}) \geq \epsilon\} \leq Q\left(\frac{\gamma\epsilon}{\Delta_2} - \frac{\Delta_2}{2\gamma} - \frac{K\mathcal{R}_{\Delta}(\alpha)}{2\gamma\Delta_2}\right).$

▶ Lower bound the lower tail probability of privacy loss: Stochastic ordering

•
$$X \leq_{st} Y$$
 if $\overline{G}_X(a) \leq \overline{G}_Y(a) \ \forall a \in \mathbb{R}$

► Lower bound the lower tail probability of privacy loss: Stochastic ordering

•
$$X \leq_{st} Y$$
 if $\overline{G}_X(a) \leq \overline{G}_Y(a) \ \forall a \in \mathbb{R}$

Lemma: Stochastic Upper Bound for $\mathcal{FH}(\alpha,\gamma^2)$

 $\mathcal{FH}(\alpha, \gamma^2) \leq_{st} \mathcal{N}(\theta, \gamma^2)$, where $\theta = \gamma Q^{-1}(\frac{1}{\omega}\sqrt{\frac{\pi}{2}})$.

Lower bound the lower tail probability of privacy loss: Stochastic ordering

•
$$X \leq_{st} Y$$
 if $\overline{G}_X(a) \leq \overline{G}_Y(a) \ \forall a \in \mathbb{R}$

Lemma: Stochastic Upper Bound for $\mathcal{FH}(\alpha, \gamma^2)$

 $\mathcal{FH}(\alpha,\gamma^2) \leq_{\mathsf{st}} \mathcal{N}(\theta,\gamma^2) \text{, where } \theta = \gamma Q^{-1} \big(\tfrac{1}{\omega} \sqrt{\tfrac{\pi}{2}} \big).$

Lemma: Lower Bound on the Lower Tail Probability

Let T_1, T_2, \ldots, T_K be i.i.d. flipped Huber random variables, $T_i \sim \mathcal{FH}(\alpha, \gamma^2)$ and $\mathbf{T} = [T_1 T_2 \cdots T_K]^\top$. We have

$$\mathbb{P}\{\zeta_{\mathbf{d}}^{(u)}(\mathbf{T}) \leq -\epsilon\} \geq Q\left(\frac{\gamma\epsilon}{\Delta_2} + \frac{\Delta_2}{2\gamma} + \frac{K\mathcal{R}_{\Delta}(\alpha)}{2\gamma\Delta_2} + \frac{\theta\Delta_1}{\gamma\Delta_2}\right),$$

where $\theta = \gamma Q^{-1} \left(\frac{1}{\omega} \sqrt{\frac{\pi}{2}} \right)$.
Performance in *K* dimensions

Any estimation/detection/ML can be privatized

- ▶ What about iterative algorithms?
 - Composition and guarantees for the same required
- What about neural networks?
 - Gradient clipping typically required

Composition

• Consider a set of DP mechanisms $\mathcal{M}_l(\cdot)$, l = 1, 2, ..., L

Composition

• Consider a set of DP mechanisms $\mathcal{M}_l(\cdot)$, l = 1, 2, ..., L

• $\mathcal{D} \mapsto (\mathcal{M}_1(\mathcal{D}), \dots, \mathcal{M}_L(\mathcal{D}))$ is also DP (with graceful degradation)

Composition

• Consider a set of DP mechanisms $\mathcal{M}_l(\cdot)$, $l = 1, 2, \ldots, L$

▶ $\mathcal{D} \mapsto (\mathcal{M}_1(\mathcal{D}), \dots, \mathcal{M}_L(\mathcal{D}))$ is also DP (with graceful degradation)

▶ Non-adaptive composition: without *side links* \rightarrow Multi-dimensional query

Zero concentrated differential privacy (zCDP)

Definition: (ξ, η) -zCDP¹³

The randomized mechanism $\mathcal{M} : \mathcal{X} \to \mathcal{Y}$ is said to satisfy (ξ, η) -zCDP if

where $\mathfrak{D}^{(\mathsf{R})}_{\Lambda}(\mu \| \check{\mu})$ is the Λ -Rényi divergence between the distributions of $\mathcal{M}(\mathcal{D})$ and $\mathcal{M}(\check{\mathcal{D}})$.

¹³M. Bun and T. Steinke, "Concentrated differential privacy: Simplifications, extensions, and lower bounds," in *Proc. Int. Conf. Theory of Cryptogr. Part I.* Springer, 2016, pp. 635–658

Zero concentrated differential privacy (zCDP)

Definition: (ξ, η) -zCDP¹³

The randomized mechanism $\mathcal{M} : \mathcal{X} \to \mathcal{Y}$ is said to satisfy (ξ, η) -zCDP if

where $\mathfrak{D}^{(\mathsf{R})}_{\Lambda}(\mu \| \check{\mu})$ is the Λ -Rényi divergence between the distributions of $\mathcal{M}(\mathcal{D})$ and $\mathcal{M}(\check{\mathcal{D}})$.

► zCDP
$$\rightarrow$$
 bound on the MGF of $\zeta_d(T)$: $\mathbb{E}\left[\exp\left(s\zeta_d(T)\right)\right] \leq e^{s(\xi+(s+1)\eta)} \quad \forall s > 0$

¹³M. Bun and T. Steinke, "Concentrated differential privacy: Simplifications, extensions, and lower bounds," in *Proc. Int. Conf. Theory of Cryptogr. Part I.* Springer, 2016, pp. 635–658

Zero concentrated differential privacy (zCDP)

Definition: (ξ, η) -zCDP¹³

The randomized mechanism $\mathcal{M} : \mathcal{X} \to \mathcal{Y}$ is said to satisfy (ξ, η) -zCDP if $\mathfrak{D}^{(\mathsf{R})}_{\Lambda}(\mu \| \check{\mu}) \leq \xi + \Lambda \eta \quad \forall \Lambda \in (1, \infty) \text{ and } \mathcal{D} \succeq_{\chi} \check{\mathcal{D}},$ where $\mathfrak{D}^{(\mathsf{R})}_{\Lambda}(\mu \| \check{\mu})$ is the Λ -Rényi divergence between the distributions of $\mathcal{M}(\mathcal{D})$ and $\mathcal{M}(\check{\mathcal{D}})$.

► zCDP
$$\rightarrow$$
 bound on the MGF of $\zeta_d(T)$: $\mathbb{E}\Big[\exp\Big(s\zeta_d(T)\Big)\Big] \le e^{s(\xi+(s+1)\eta)} \quad \forall s > 0$

► L-fold (adaptive) composition of (ξ_i, η_i) -zCDP mechanisms $\rightarrow \left(\sum_{l=1}^L \xi_l, \sum_{l=1}^L \eta_l\right)$ -zCDP

¹³M. Bun and T. Steinke, "Concentrated differential privacy: Simplifications, extensions, and lower bounds," in *Proc. Int. Conf. Theory of Cryptogr. Part I.* Springer, 2016, pp. 635–658

Zero concentrated differential privacy (zCDP)

Definition: (ξ, η) -zCDP¹³

The randomized mechanism $\mathcal{M} : \mathcal{X} \to \mathcal{Y}$ is said to satisfy (ξ, η) -zCDP if $\mathfrak{D}^{(\mathsf{R})}_{\Lambda}(\mu \| \check{\mu}) \leq \xi + \Lambda \eta \quad \forall \Lambda \in (1, \infty) \text{ and } \mathcal{D} \succeq_{\chi} \check{\mathcal{D}},$ where $\mathfrak{D}^{(\mathsf{R})}_{\Lambda}(\mu \| \check{\mu})$ is the Λ -Rényi divergence between the distributions of $\mathcal{M}(\mathcal{D})$ and $\mathcal{M}(\check{\mathcal{D}})$.

► zCDP
$$\rightarrow$$
 bound on the MGF of $\zeta_d(T)$: $\mathbb{E}\Big[\exp\Big(s\zeta_d(T)\Big)\Big] \le e^{s(\xi+(s+1)\eta)} \quad \forall s > 0$

► L-fold (adaptive) composition of (ξ_l, η_l) -zCDP mechanisms $\rightarrow \left(\sum_{l=1}^L \xi_l, \sum_{l=1}^L \eta_l\right)$ -zCDP

zCDP offers tightest characterization for Gaussian

¹³M. Bun and T. Steinke, "Concentrated differential privacy: Simplifications, extensions, and lower bounds," in *Proc. Int. Conf. Theory of Cryptogr. Part I.* Springer, 2016, pp. 635–658

zCDP of flipped Huber

Theorem: zCDP of $\mathcal{FH}(\alpha, \gamma^2)$

The one-dimensional flipped Huber mechanism guarantees $\left(\frac{\mathcal{R}_{\Delta}(\alpha)}{2\gamma^2}, \frac{\Delta^2}{2\gamma^2}\right)$ -zCDP, where $\mathcal{R}_{\Delta}(\alpha) = \alpha^2 - (\lceil \alpha - \Delta \rceil_+)^2$.

zCDP of flipped Huber

Theorem: zCDP of $\mathcal{FH}(\alpha, \gamma^2)$

The one-dimensional flipped Huber mechanism guarantees $\left(\frac{\mathcal{R}_{\Delta}(\alpha)}{2\gamma^2}, \frac{\Delta^2}{2\gamma^2}\right)$ -zCDP, where $\mathcal{R}_{\Delta}(\alpha) = \alpha^2 - ([\alpha - \Delta]_+)^2$.

• *K*-dimensional flipped Huber mechanism $\rightarrow \left(\frac{K\mathcal{R}_{\Delta}(\alpha)}{2\gamma^2}, \frac{\Delta_2^2}{2\gamma^2}\right)$ -zCDP

zCDP of flipped Huber

Theorem: zCDP of $\mathcal{FH}(\alpha, \gamma^2)$

The one-dimensional flipped Huber mechanism guarantees $\left(\frac{\mathcal{R}_{\Delta}(\alpha)}{2\gamma^2}, \frac{\Delta^2}{2\gamma^2}\right)$ -zCDP, where $\mathcal{R}_{\Delta}(\alpha) = \alpha^2 - ([\alpha - \Delta]_+)^2$.

• *K*-dimensional flipped Huber mechanism $\rightarrow \left(\frac{K\mathcal{R}_{\Delta}(\alpha)}{2\gamma^2}, \frac{\Delta_2^2}{2\gamma^2}\right)$ -zCDP

$$\begin{split} \mathbf{Proof:} \qquad & \zeta_d(T) \leq_{\mathsf{st}} \zeta_d^{(u)}(T) \\ & \mathbb{M}_{\zeta_d(T)}(s) = \mathbb{E}\Big[e^{s\zeta_d(T)}\Big] \leq \mathbb{E}\Big[e^{s\zeta_d^{(u)}(T)}\Big] \\ & = \exp\Big(s\frac{\mathcal{R}_{|d|}(\alpha)}{2\gamma^2} + s\frac{d^2}{2\gamma^2}\Big) \times \mathbb{E}\Big[\exp\Big(\frac{sd}{\gamma^2}T\Big)\Big] \\ & \leq \exp\Big(s\frac{\mathcal{R}_{|d|}(\alpha)}{2\gamma^2} + s(s+1)\frac{d^2}{2\gamma^2}\Big) \leq \exp\Big(s\frac{\mathcal{R}_{\Delta}(\alpha)}{2\gamma^2} + s(s+1)\frac{\Delta^2}{2\gamma^2}\Big) \end{split}$$

Coordinate descent (CD)

Differentially private coordinate descent (DP-CD)¹⁴

- Perturb gradient updates of CD
- Empirical Risk Minimization (ERM):

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^K} \ \frac{1}{n} \sum_{n=1}^N J(\boldsymbol{\theta}; \mathcal{D}_n) + \psi(\boldsymbol{\theta}),$$

▶ $\boldsymbol{\theta} \in \mathbb{R}^{K}$ − model parameter

$$\blacktriangleright \ \mathcal{D} = (\mathcal{D}_1, \, \mathcal{D}_2, \, \dots, \, \mathcal{D}_N) \in \mathcal{X} - \text{dataset of } N \text{ samples; } \mathcal{D}_n = (\mathbf{x}_n, y_n)$$

• $J : \mathbb{R}^K \times \mathcal{X} \to \mathbb{R}$ – convex and smooth loss function

• $\psi : \mathbb{R}^K \to \mathbb{R}$ – convex and separable regularizing function, $\psi(\theta) = \sum_{i=1}^K \psi_i(\theta_i)$

¹⁴P. Mangold, A. Bellet, J. Salmon, and M. Tommasi, "Differentially private coordinate descent for composite empirical risk minimization," in *Proc. Int. Conf. Mach. Learn.* PMLR, 2022, pp. 14948–14978

DP-CD results

$$\epsilon = 1$$
 $\delta = \frac{1}{N^2}$

	Dataset	Regularization and parameter	Gaussian		Flipped Huber	
	Dataset		NMSE	Test error	NMSE	Test error
Logistic regression	Houses	$(\ell_2, 0.1)$	$0.6371\cdot10^{-3}$	0.0391	$0.6165\cdot10^{-3}$	0.0389
	Wine quality	$(\ell_2, 2 \!\cdot\! 10^{-4})$	0.2250	0.0614	0.1421	0.0513
	Pumpkin seeds	$(\ell_2, 0.1)$	0.0255	0.1224	0.0189	0.1152
	Heart	$(\ell_2, 0.1)$	0.2384	0.1741	0.1989	0.1556
Linear regression	California	$(\ell_1, 0.01)$	0.0479	0.4532	0.0465	0.4298
	Boston housing	$(\ell_1, 0.01)$	0.3579	0.3743	0.3406	0.3253
	Airfoil	$(\ell_1, 0.01)$	0.0206	0.5161	0.0190	0.4558
	Diabetes	$(\ell_1, 0.1)$	0.2515	0.5741	0.1489	0.4384

DP-CD results (cont.,)

Logistic Regression

Linear Regression

Dataset	N	K
Houses	16512	8
Wine quality	5198	11
Pumpkin seeds	2000	12
Heart	216	13

Dataset	N	K
California	16512	8
Boston housing	405	13
Airfoil	1202	5
Diabetes	354	10

The pros of flipped Huber

- ▶ Laplace: can lead to large amount of noise for large *K* and results in outliers
- Gaussian: light tailed, but renders least Fisher information
- Flipped Huber: Hybrid noise mechanism with density having lighter tails and sharper center
- ► More accurate for given privacy constraints compared to other mechanisms
 - Seems to significantly outperform in higher dimensions
 - Shows good results in real datasets e.g. private ERM
- Theoretically characterized
 - Necessary and sufficient conditions in one dimension
 - a sufficient condition in K dimension for (ϵ, δ) -DP
 - Composition using zCDP with application to CD

The cons of flipped Huber

Requires several measures of sensitivities

- Unknown Sensitivities can be loosely bounded
- Cleverly handled by smart clipping in DP-CD
- ▶ In very high levels of composition, performs similar to Gaussian

Could flipped Huber be even better than stated?

- ► The sufficient condition in K dimension involves several bounds
 - Bounds loose for small ϵ
 - Bounds loose with increasing K
- zCDP is tight for Gaussian
 - Our composition results may be loose compared to composition results for Gaussian
 - We may be adding more noise than required

Some applications of DP in wireless systems

- Uplink channel estimation in cell-free MIMO¹⁵
 - Matrix completion for estimating channel with lesser number of pilots
 - Use DP Low rank matrix completion to protect user locations
- ▶ Wireless federated learning local DP (curator-free model)¹⁶
 - Superposition of gradients over non-orthogonal channel \rightarrow more privacy

¹⁵J. Xu, X. Wang, P. Zhu, and X. You, "Privacy-preserving channel estimation in cell-free hybrid massive MIMO systems," *IEEE Trans. Wireless Commun.*, vol. 20, no. 6, pp. 3815–3830, 2021

¹⁶M. Seif, R. Tandon, and M. Li, "Wireless federated learning with local differential privacy," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, 2020, pp. 2604–2609

Some applications of DP in wireless systems (cont.,)

- Radio positioning and sensing¹⁷
 - DP through channel randomization and beam steering
- Energy harvesting through IRS¹⁸
 - Exponential mechanism for preserving location
- Edge computing over wireless big data¹⁹
 - Output perturbation and objective perturbation with Laplace noise

¹⁷V.-L. Nguyen, R.-H. Hwang, B.-C. Cheng, Y.-D. Lin, and T. Q. Duong, "Understanding privacy risks of high-accuracy radio positioning and sensing in wireless networks," *IEEE Commun. Mag.*, 2023

¹⁸Q. Pan, J. Wu, X. Zheng, W. Yang, and J. Li, "Differential privacy and irs empowered intelligent energy harvesting for 6g internet of things," *IEEE Internet Things J.*, vol. 9, no. 22, pp. 22109–22122, 2021

¹⁹M. Du, K. Wang, Z. Xia, and Y. Zhang, "Differential privacy preserving of training model in wireless big data with edge computing," *IEEE Trans. Big Data*, vol. 6, no. 2, pp. 283–295, 2018

Some applications of DP in wireless systems (cont.,)

Split learning for integrated terrestrial and non-terrestrial networks²⁰

- Data owner and label owner train different parts of the deep learning model
- Cognitive radio networks²¹
 - DP in spectrum sensing, spectrum analysis, spectrum sharing
- Cyber physical systems²² time-series and statistical data
 - DP in smart grid, transportation, healthcare and IIoT

²⁰M. Wu, G. Cheng, P. Li, R. Yu, Y. Wu, M. Pan, and R. Lu, "Split learning with differential privacy for integrated terrestrial and non-terrestrial networks," *IEEE Wireless Commun.*, 2023

²¹M. U. Hassan, M. H. Rehmani, M. Rehan, and J. Chen, "Differential privacy in cognitive radio networks: a comprehensive survey," *Cogn. Comput.*, vol. 14, no. 2, pp. 475–510, 2022

²²M. U. Hassan, M. H. Rehmani, and J. Chen, "Differential privacy techniques for cyber physical systems: A survey," *IEEE Commun. Surveys Tuts.*, vol. 22, no. 1, pp. 746–789, 2020

▶ i.i.d. noise: noise parameters depend on overall sensitivity measure

²³G. Muthukrishnan and S. Kalyani, "Differential privacy with higher utility by exploiting coordinate-wise disparity: Laplace mechanism can beat Gaussian in high dimensions," *arXiv:2302.03511*, 2024

- ▶ i.i.d. noise: noise parameters depend on overall sensitivity measure
- Sensitivity of *i*-th coordinate of query response $-\lambda_i$

²³G. Muthukrishnan and S. Kalyani, "Differential privacy with higher utility by exploiting coordinate-wise disparity: Laplace mechanism can beat Gaussian in high dimensions," *arXiv:2302.03511*, 2024

- ▶ i.i.d. noise: noise parameters depend on overall sensitivity measure
- Sensitivity of *i*-th coordinate of query response $-\lambda_i$
- Whenever there is disparity in $\{\lambda_i\}_{i=1}^K$, performance can be improved

²³G. Muthukrishnan and S. Kalyani, "Differential privacy with higher utility by exploiting coordinate-wise disparity: Laplace mechanism can beat Gaussian in high dimensions," *arXiv:2302.03511*, 2024

- ▶ i.i.d. noise: noise parameters depend on overall sensitivity measure
- Sensitivity of *i*-th coordinate of query response $-\lambda_i$
- Whenever there is disparity in $\{\lambda_i\}_{i=1}^K$, performance can be improved
- Add non-identical (but still independent) noise samples²³ across coordinates

²³G. Muthukrishnan and S. Kalyani, "Differential privacy with higher utility by exploiting coordinate-wise disparity: Laplace mechanism can beat Gaussian in high dimensions," *arXiv:2302.03511*, 2024

- ▶ i.i.d. noise: noise parameters depend on overall sensitivity measure
- Sensitivity of *i*-th coordinate of query response $-\lambda_i$
- Whenever there is disparity in $\{\lambda_i\}_{i=1}^K$, performance can be improved
- Add non-identical (but still independent) noise samples²³ across coordinates
- Gaussian and Laplace lesser noise for more dispersed $\{\lambda_i\}_{i=1}^K$

²³G. Muthukrishnan and S. Kalyani, "Differential privacy with higher utility by exploiting coordinate-wise disparity: Laplace mechanism can beat Gaussian in high dimensions," *arXiv:2302.03511*, 2024

Epilogue

Results

Results (cont.,)

Results (cont.,)

Comparison of $(0.5,10^{-6})\mbox{-}{\rm DP}$ Gaussian and $(0.5,0)\mbox{-}{\rm DP}$ Laplace

Epilogue

Improved DP-CD

- C. Dwork, F. McSherry, K. Nissim, and A. Smith, "Calibrating noise to sensitivity in private data analysis," in *Proc. Theory Cryptogr. Conf.* Springer, 2006, pp. 265–284.
- B. Balle and Y.-X. Wang, "Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising," in *Proc. Int. Conf. Mach. Learn.* PMLR, 2018, pp. 394–403.
- [3] C. Dwork, G. N. Rothblum, and S. Vadhan, "Boosting and differential privacy," in *Proc. IEEE Annu. Symp. Found. Comput. Sci.* IEEE, 2010, pp. 51–60.
- [4] P. J. Huber and E. M. Ronchetti, *Robust statistics*. John Wiley & Sons, 2009.
- [5] Q. Geng, W. Ding, R. Guo, and S. Kumar, "Tight analysis of privacy and utility tradeoff in approximate differential privacy," in *Proc. Int. Conf. Artif. Intell. Statist.* PMLR, 2020, pp. 89–99.

- [6] P. Sadeghi and M. Korki, "Offset-symmetric Gaussians for differential privacy," *IEEE Trans. Inf. Forensics Security*, vol. 17, pp. 2394–2409, 2022.
- [7] Q. Geng and P. Viswanath, "The optimal noise-adding mechanism in differential privacy," *IEEE Trans. Inf. Theory*, vol. 62, no. 2, pp. 925–951, 2016.
- [8] Y.-X. Wang, "Revisiting differentially private linear regression: optimal and adaptive prediction & estimation in unbounded domain," in *Uncertainty in Artif. Intell.*, 2018.
- [9] C. Dwork, K. Talwar, A. Thakurta, and L. Zhang, "Analyze Gauss: optimal bounds for privacy-preserving principal component analysis," in *Proc. Annu. ACM Symp. Theory of Comput.*, 2014, pp. 11–20.
- [10] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, "Deep learning with differential privacy," in *Proc. ACM SIGSAC Conf. Computer and Communications security*, 2016, pp. 308–318.

- [11] Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, "The staircase mechanism in differential privacy," *IEEE J. Sel. Topics Signal Process.*, vol. 9, no. 7, pp. 1176–1184, 2015.
- [12] M. Bun and T. Steinke, "Concentrated differential privacy: Simplifications, extensions, and lower bounds," in *Proc. Int. Conf. Theory of Cryptogr. Part I.* Springer, 2016, pp. 635–658.
- [13] P. Mangold, A. Bellet, J. Salmon, and M. Tommasi, "Differentially private coordinate descent for composite empirical risk minimization," in *Proc. Int. Conf. Mach. Learn.* PMLR, 2022, pp. 14948–14978.
- [14] J. Xu, X. Wang, P. Zhu, and X. You, "Privacy-preserving channel estimation in cell-free hybrid massive MIMO systems," *IEEE Trans. Wireless Commun.*, vol. 20, no. 6, pp. 3815–3830, 2021.
- [15] M. Seif, R. Tandon, and M. Li, "Wireless federated learning with local differential privacy," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, 2020, pp. 2604–2609.

- [16] V.-L. Nguyen, R.-H. Hwang, B.-C. Cheng, Y.-D. Lin, and T. Q. Duong, "Understanding privacy risks of high-accuracy radio positioning and sensing in wireless networks," *IEEE Commun. Mag.*, 2023.
- [17] Q. Pan, J. Wu, X. Zheng, W. Yang, and J. Li, "Differential privacy and irs empowered intelligent energy harvesting for 6g internet of things," *IEEE Internet Things J.*, vol. 9, no. 22, pp. 22109–22122, 2021.
- [18] M. Du, K. Wang, Z. Xia, and Y. Zhang, "Differential privacy preserving of training model in wireless big data with edge computing," *IEEE Trans. Big Data*, vol. 6, no. 2, pp. 283–295, 2018.
- [19] M. Wu, G. Cheng, P. Li, R. Yu, Y. Wu, M. Pan, and R. Lu, "Split learning with differential privacy for integrated terrestrial and non-terrestrial networks," *IEEE Wireless Commun.*, 2023.
- [20] M. U. Hassan, M. H. Rehmani, M. Rehan, and J. Chen, "Differential privacy in cognitive radio networks: a comprehensive survey," *Cogn. Comput.*, vol. 14, no. 2, pp. 475–510, 2022.

- [21] M. U. Hassan, M. H. Rehmani, and J. Chen, "Differential privacy techniques for cyber physical systems: A survey," *IEEE Commun. Surveys Tuts.*, vol. 22, no. 1, pp. 746–789, 2020.
- [22] G. Muthukrishnan and S. Kalyani, "Differential privacy with higher utility by exploiting coordinate-wise disparity: Laplace mechanism can beat Gaussian in high dimensions," *arXiv:2302.03511*, 2024.
- [23] F. Liu, "Generalized Gaussian mechanism for differential privacy," *IEEE Trans. Knowledge and Data Engg.*, vol. 31, no. 4, pp. 747–756, 2018.
- [24] C. L. Canonne, G. Kamath, and T. Steinke, "The discrete Gaussian for differential privacy," in *Proc. Adv. Neural Inf. Process. Syst.*, vol. 33. PMLR, 2020, pp. 15676–15688.
- [25] J. Awan and A. Slavković, "Structure and sensitivity in differential privacy: Comparing *K*-norm mechanisms," *J. Amer. Stat. Assoc.*, vol. 116, no. 534, pp. 935–954, 2021.

Thank You!

Noise mechanisms in literature

• Laplace mechanism²⁴: noise sampled from density $\frac{1}{2\beta} \exp\left(-\frac{|x|}{\beta}\right)$

•
$$\epsilon$$
-DP for $\beta \geq \frac{\Delta_1}{\epsilon}$

• Gaussian mechanism²⁵: noise sampled from density $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$

•
$$(\epsilon, \delta)$$
-DP for $\sigma \ge \sigma_0$, where $Q\left(\frac{\sigma_0\epsilon}{\Delta_2} - \frac{\Delta_2}{2\sigma_0}\right) - e^{\epsilon}Q\left(\frac{\sigma_0\epsilon}{\Delta_2} + \frac{\Delta_2}{2\sigma_0}\right) = \delta$

► OSGT mechanism²⁶: noise sampled from density $\frac{1}{2Q(\frac{\vartheta}{\rho})}\phi(|t|;-\vartheta, \rho^2)$

²⁴C. Dwork, F. McSherry, K. Nissim, and A. Smith, "Calibrating noise to sensitivity in private data analysis," in *Proc. Theory Cryptogr. Conf.* Springer, 2006, pp. 265–284

²⁵B. Balle and Y.-X. Wang, "Improving the Gaussian mechanism for differential privacy: Analytical calibration and optimal denoising," in *Proc. Int. Conf. Mach. Learn.* PMLR, 2018, pp. 394–403

²⁶P. Sadeghi and M. Korki, "Offset-symmetric Gaussians for differential privacy," *IEEE Trans. Inf. Forensics Security*, vol. 17, pp. 2394–2409, 2022

Noise mechanisms in literature (cont.,)

Subbotin or generalized Gaussian mechanism²⁷: noise density $\frac{p^{1-\frac{1}{p}}}{2\xi\Gamma(\frac{1}{p})}\exp\left(-\frac{|x|^p}{p\xi^p}\right)$

- Discrete Gaussian mechanism²⁸
- *K*-norm mechanism²⁹: noise density for ϵ -DP $\rightarrow \frac{1}{\Gamma(K+1)\lambda\left(\frac{\Delta}{\Delta}\mathcal{K}\right)} \exp\left(-\frac{\epsilon}{\Delta}\|\mathbf{x}\|_{\mathcal{K}}\right)$
 - Difficult to characterize sensitivity space and construct \mathcal{K}

²⁹J. Awan and A. Slavković, "Structure and sensitivity in differential privacy: Comparing *K*-norm mechanisms," *J. Amer. Stat. Assoc.*, vol. 116, no. 534, pp. 935–954, 2021

²⁷ F. Liu, "Generalized Gaussian mechanism for differential privacy," *IEEE Trans. Knowledge and Data Engg.*, vol. 31, no. 4, pp. 747–756, 2018

²⁸C. L. Canonne, G. Kamath, and T. Steinke, "The discrete Gaussian for differential privacy," in *Proc. Adv. Neural Inf. Process. Syst.*, vol. 33. PMLR, 2020, pp. 15676–15688

Optimal DP noise mechanisms

Staircase mechanism: optimal ϵ -DP mechanism for one-dimensional queries³⁰

- Laplace is optimal ϵ -DP mechanism for small ϵ
- Staircase is the optimal noise for ϵ -DP (under ℓ_1 -error) in two dimensions³¹
- Truncated Laplace: optimal (ϵ, δ) -DP mechanism for one-dimensional queries³²
 - Optimal in high privacy regime $(\epsilon, \delta) \rightarrow (0, 0)$
 - Bounded support \to supp $\left(\mathcal{M}(\mathcal{D})\right) \setminus$ supp $\left(\mathcal{M}(\check{\mathcal{D}})\right)$ is non empty

– Can perfectly distinguish ${\cal D}$ and $\check{{\cal D}}$ with probability up to δ

³¹Q. Geng, P. Kairouz, S. Oh, and P. Viswanath, "The staircase mechanism in differential privacy," *IEEE J. Sel. Topics Signal Process.*, vol. 9, no. 7, pp. 1176–1184, 2015

³²Q. Geng, W. Ding, R. Guo, and S. Kumar, "Tight analysis of privacy and utility tradeoff in approximate differential privacy," in *Proc. Int. Conf. Artif. Intell. Statist.* PMLR, 2020, pp. 89–99

³⁰Q. Geng and P. Viswanath, "The optimal noise-adding mechanism in differential privacy," *IEEE Trans. Inf. Theory*, vol. 62, no. 2, pp. 925–951, 2016