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Distributed Storage System with Erasure Coding
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e The blocks obtained after encoding placed in different nodes
e Encoding is done by dividing 64MB blocks into symbols of size 8 bits each



Failures in DSS

e Node is considered a failure domain

e Each encoded block is placed in a different failure domain (in this case
different node)

e Permanent Failures: Data is lost because of hardware failure

e Temporary Failures: Power Outage, Software Upgrade. Data is temporarily
unavailable but needs efficient recovery if there is a request for such data



MDS Codes in DSS
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e Can recover data by connecting to any 10 nodes

e Used in Facebook for “cold” storage



Single Node Failures in DSS

e 98% of failures are single node failures
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Image Courtesy: K. V. Rashmi, et al. " A solution to the network challenges of data recovery in erasure-coded
distributed storage systems: A study on the Facebook warehouse cluster.” HotStorage 2013.



Metrics of Interest in Repair

For a given storage overhead,

e Maximize the reliability wrt worst case failures. Ensured by

e "k out of n” property
e Maximizing dmin

e Minimize the repair bandwidth in case of single node failures (Regenerating
Codes)

e Minimize the number of nodes contacted in case of single node failures
(Locally Repairable Codes)



Repairing Reed-Solomon Codes



Reed-Solomon Codes

o Let m=[my,... mx_1] be message vector over finite field Fg
e Form the message polynomial f(x) = Z 0 m;x'

e Pick aj € Fq,1 </ < n all distinct

e Codeword corresponding to m is ¢ = [f(a1),. .., f(an)]

e This code can tolerate n — k erasures (k — 1 degree polynomial can be
uniquely determined by evaluations at k points)

e Minimum distance of RS code is n — k +1



Naive Repair of Reed-Solomon Codes
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e If a node f(a*) is erased, k of the remaining n — 1 nodes are downloaded to
obtain f(x) and subsequently f(a*).



For Better Repair Bandwidth [SPDC14]

e Code symbols from the finite field treated as vectors over a subfield

e Helper nodes send symbols from the subfield by performing vector linear
operations

e In [SPDC14], improvements from (5,3) and (6,4) RS codes were shown

[SPDC14] Shanmugam, K., Papailiopoulos, D.S., Dimakis, A.G. and Caire, G., “A repair framework for scalar

MDS codes,” IEEE Journal on Selected Areas in Communications, May 2014.



Dual codes of Reed-Solomon Codes

Dual of a Reed-Solomon code is a Generalized Reed-Solomon code (GRS) code

e GRS Code: For some non-zero elements vy, vs, ..., v, € Fgy and message
polynomial f(x) = Zf:ol m;x', the codeword corresponding to m is
c=[wf(a1),...,vaf ()]

e For an [n, k] Reed-Solomon code, the dual code is an [n,n — k] GRS code
with dpmin = k + 1.
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Trace of a field element

Let F =, and B = [F,. The trace polynomial is defined as,

-1

Trep (@) =a+a¥+a¥ +-- +af

e Trace of an element takes values from a field F and maps it to a subfield B.
e Trace is a B-linear
Trg/g (bra + bo8) = by Trg/g () 4+ b2 Trg/ (B)
a,B €F and by, by, € B.

e Every B-linear function is Tr(ya),a € F, 7 fixed element in F.
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Trace Repair Framework [GW17]

o An erased node f(a*) can be recovered from the equation

i
fla®) = Y Tropm(ufa®))y

where uy, up, ... u; is a basis of IF over B and vy, v, ... v is the dual-basis.

e Say A={ay,,...,a,}. f(x) is the message polynomial of RS code and
g(x) is the message polynomial of its dual code, >, f(a)g(a) = 0.

e Applying trace,

Tre/p(gi(a)f(a™)) = = Y Treyn(gi(a)f(«)
a €A\ {a*}

12



Guruswami-Wootters Scheme [GW17]

o Choice of gj: If f(a*) has been erased, choose Vj € [/]

_ Trg/p (uj (x — a*))

X —a*

gi(x) :

where uy, Uy, ... u; forms a basis of IF over B.

o gi(a*) = uj and

Tre/s (4f (o)) = = > Tre/p(uj(a — o)) Triyz ( & ) :

a—ar
a€ A\ {a*}

e Dimension of span given by

I a=ao*

dimg(< £1(a), £2(0), - .- gie) >) = {1 a # ax
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Guruswami-Wootters Scheme [GW17]

e The / traces required for the repair can be obtained by downloading 1 symbol
from each of the remaining n — 1 nodes.
e The repair bandwidth of this framework is (n — 1) log, g bits.

Tr(f(a). (@ —a)™h)
f(@)

e \L(\
)
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Calculating [ traces from f@)
the data downloaded :
fromn — 1 nodes. Tr(uw_f(a"))
W
1

Tr(f (ay). (@ = a) ™)

[GW17] Guruswami, V. and Wootters, M., “Repairing Reed-Solomon codes,” IEEE Transactions on Information

Theory, Sept. 2017.
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Constraints on Parameters

en<q
e All the / polynomials can act as check polynomials if n — k > ¢'~1 .

e Repair bandwidth is optimal if n =g’ and n — k = ¢/~!
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Dau-Milenkovic Scheme [DM17]

e Linearized Polynomial: A monic polynomial of the form

d
L(x) = Zé;xq/,
i=0
where ¢; € F. Trace is an example and so is Lyy(x) below.
o Choice of gj: If f(a*) has been erased, choose Vj € [/]
_ Lw (g (x = a"))
§(x)=—— —o
where W is a subspace of dimension s over B. Lw(x) =[], cp (x — w).
e Dimension of span given by

/ — *
dimp(< g1(a), &2(a), ... gi(@) >) = {< I—s Z - Z*

[DM17] H. Dau and O. Milenkovic, “Optimal Repair Schemes for Some Families of Full-Length Reed-Solomon

Codes,” in 2017 IEEE International Symposium on Information Theory.

16



Constraints on Parameters

en<q
e All the / polynomials can act as check polynomials if n — k > g°

e Repair bandwidth is optimal if n= g/ and n — k = ¢°
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Repairing Locally Recoverable Codes
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Locality Parameter [GHYS12]

Setting:
e Linear code C with parameters [n, k, dmin]

e Code symbol ¢; has locality r
C1 C; Cn
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e Consider a code in systematic form. The code is said to have information

locality r if all the message symbols in the code have locality r
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Storage vs Locality Tradeoff [GHYS1

e For [n, k, dmin] code with information locality r

s aies — ([5])
SN—— r
————

Singleton bound
Term due to locality constraint

[GHSY12] Gopalan, P., Huang, C., Simitci, H. and Yekhanin, S., “On the locality of codeword symbols,” IEEE

Transactions on Information theory, 2012.
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(r,p) locality

e jth symbol in an (n, k, d) code is said to have (r, p) locality if there exists a
punctured subcode C; with support containing 7,

e whose length is at most r +p — 1
e whose minimum distance is atleast p

e A code in which all the symbols have (r, p) locality is said to be an (n, k, r, p)
LRC.
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Tamo-Barg Codes [TB14]

Arip+2 Arip+3 Am-1)(r+p-1+1 Am(r+p-1)

A2(r+p-1) I

r helper nodes

o g(x) is of degree r + p — 1.

Encoding polynomial is f(x) = >, ; a;jx'g(xy

o A1, Ay, ..., A, form a partition such that
g(aj) =¢ Voj €A, ie, jE [(I — 1)(r+p— 1) + Li(r—i—p — 1)]
e g can be picked to be polynomial of additive or multiplicative cosets of a

subgroup

[TB14] Itzhak Tamo and Alexander Barg, “A family of optimal locally recoverable codes, TIT, Jul 2014. 2



Tamo-Barg Codes with Local Repair

e The construction yields an (n, k, r, p) LRC with m disjoint RSg(r + p — 1, p)
local codes.

e Objective: Minimise repair bandwidth required to repair a single erasure.

e Two schemes in which the evaluation points are chosen differently.
e In one scheme, the evaluation points are picked from cosets of additive
subgroup.
e In the other scheme, the evaluation points are picked as elements of prime
degree over a field.
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Tamo-Barg Codes based on Additive Cosets

o |et B:{ahag,...,a,ﬂ,,l}zlﬁ‘qa and {ﬂl—‘rB,BQ—l—B,...,ﬂm-i-B} are

additive cosets of B in ]Fq/

where a | / and m < ¢/=2.

o Let A, = {Oél + Bi, a0 + Biy .. S Qryp—1+ B,} C Fq/ forall i € [m]
e Let W be an s dimensional F subspace of [Fg..

Lw (uj(x—(a" +8i))

o Define gji(x) = ) ) vje [a] to repair f(a* + 3;).

Sasanka, U. S. S., and V. Lalitha, “Tamo-Barg Codes with Efficient Local Repair,” ITW 2022
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Tamo-Barg Codes based on Additive Cosets

We need / traces for the repair framework but {gj(x),j € [a]} are only a
polynomials.

Let {71,72,...7:} be a basis of F, over Fg..

The [ polynomials are {y1g(x), 728ii(x), ... v:gj(x)} for some i € [m] and
Vj € [a].

The bandwidth required in this scheme is £((r 4+ p—1) — 1)(a —s).
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Revisiting Reed-Solomon Codes
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Cut-set Bound for Repair Bandwidth

e Cut-set Bound: For any [n, k, /] MDS code where [ is the sub-packetization,
the repair bandwidth for a single erasure is given by

dl

h> ——
~d—k+1’

where d, such that kK < d < n, are number of helper nodes

e Bound above corresponds to the Minimum Storage Regeneration (MSR) point
of storage-bandwidth tradeoff

e To achieve the cutset bound, require different sub-fields over which trace is
computed for different failed nodes
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Optimal RS Code Achieving Cut-set Bound [TYB19]

e let s=d— k—+1. Let p1,po,...,Ppn be the smallest distinct primes satisying
pi=1modsforalli=1,2,...,n.

o Let I, be a field of prime order. Let A= a1, @y, ..., be the evaluation set.
Choose a; to be an element of degree p; over IF,, i.e,,

[Fp(ai) : Fp] = pi,
where F,(a;) denotes the field obtained by adjoining «; to Fp.
e Define F =F,(a1,az,...,a,) and so [F: Fp] =[] pi.

e Define K = F(f) where /3 is an element of degree s over F.
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Optimal RS Code Achieving Cut-set Bound [TYB19]

®B,s)
F e RS code defined over
the field K
@vpy) flazp2)  (@wpn) e Sub-packetization
Fl FZ Fn O(nn)
@ R @n
F

e Repair of a failed node corresponding «; occurs over field
Fi =Fy(aj:j € [n] and j # i) by using the trace Trg F,.
e Check polynomials can be chosen and repair process is similar to the trace

repair framework.

[TYB19] I. Tamo, M. Ye, and A. Barg, “The Repair Problem for Reed—Solomon Codes: Optimal Repair of

Single and Multiple Erasures with Almost optimal node size,” IEEE Trans. on Inf. Theory, May 2019. 29



Tamo-Barg Codes with Optimal Local Repair

e Goal: Design an (n, k, r,p) LRC which achieves the cut-set bound for single
node repair within the local group.

e Since the local codes are RS codes, the MSR construction in [TYB19] can be
used.

e Node failure can happen in any of the m RS codes. So all of them must be
MSR codes.
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Tamo-Barg Codes with Optimal Local Repair

e Extend [TYB19] so that the jt™" element of each local group is chosen to be a
distinct primitive element of the (same) extension field of degree p; over the
base field.

Elements of Elements of Elements of
degree p, over B degree p, over B degree p;..,_; over B
R R .““‘T“‘:
Ay ={1a11 ) @iz, )0 Qrapena}
1
Lo :
4y = {:‘121 ) @2z B2rdpe1 )
1
oo i
1 [N} 1 1 !
1 [N 1 ] !
1 I 1 1 !
1 [N 1 ] !
1 [ 1 1 !
1 [N 1 ] :
A ={@min @m0y -0l Amreprn}

__________ L 1

o Let B =F,. Choose cvj Vi € [m], j € [r+ p—1] such that [Fq(cj) : Fq] = pj.

Sasanka, U. S. S., and V. Lalitha, “Tamo-Barg Codes with Efficient Local Repair,” ITW 2022
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Tamo-Barg Codes with Optimal Local Repair

e Pick different generators for the same extension field

e The number of primitive elements in a finite field I, is given by ¢(p — 1),
where ¢(x) is the Euler’s totient function.

e Constraint m < min{¢(g” — 1), ¢(qP> —1),...,¢(qP+— —1)}.
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Tamo-Barg Codes with Optimal Local Repair

(@i1,p1) (@12,72) (Xirsp-1,Prep-1)
]FJ ]Fz """ ]Fr+p—1

P
(4; \{(liz}'pz)

(Ai \{ai r+p—1}1_

p
A\ } =
( i \{all}' P ) pr+p—1

e Let P =], pi. The code is defined on F = Fgi, where | = sP. The repair
for the erased node corresponding to «; is done over the field [F;.

e Each of the local RS codes is an MSR code and the repair bandwidth of the
LRC code is d%k’ﬂ.
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Comparison of Our Schemes

Scheme

Repair bandwidth

Code length and
restrictions

Achieving Cut-set
Bound

n' —k’

Additive cosets | L(n'—1)(a—s) |n' = ¢°; ¢° < No
n—k,all
Optimal repair Hn'—1) CARSY Yes

e n' =r+p—1and k’ = r are the length and dimension of the local RS code.
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Thanks!
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