Efficient Repair of Reed-Solomon Codes and Tamo-Barg Codes

Lalitha Vadlamani IIIT Hyderabad

CNI Seminar Series, IISc November 26, 2024

Distributed Storage System with Erasure Coding

- The blocks obtained after encoding placed in different nodes
- Encoding is done by dividing 64MB blocks into symbols of size 8 bits each
- Node is considered a failure domain
- Each encoded block is placed in a different failure domain (in this case different node)
- Permanent Failures: Data is lost because of hardware failure
- Temporary Failures: Power Outage, Software Upgrade. Data is temporarily unavailable but needs efficient recovery if there is a request for such data

- $[14, 10]$ MDS code storage overhead $1.4x$
- Can recover data by connecting to any 10 nodes
- Used in Facebook for "cold" storage

• 98% of failures are single node failures

Image Courtesy: K. V. Rashmi, et al. "A solution to the network challenges of data recovery in erasure-coded distributed storage systems: A study on the Facebook warehouse cluster." HotStorage 2013.

For a given storage overhead,

- Maximize the reliability wrt worst case failures. Ensured by
	- "k out of n" property
	- Maximizing d_{\min}
- Minimize the repair bandwidth in case of single node failures (Regenerating Codes)
- Minimize the number of nodes contacted in case of single node failures (Locally Repairable Codes)

Repairing Reed-Solomon Codes

- Let $m = [m_0, \ldots m_{k-1}]$ be message vector over finite field \mathbb{F}_q
- Form the message polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i$
- Pick $\alpha_i \in \mathbb{F}_q$, $1 \le i \le n$ all distinct
- Codeword corresponding to m is $c = [f(\alpha_1), \ldots, f(\alpha_n)]$
- This code can tolerate $n k$ erasures $(k 1)$ degree polynomial can be uniquely determined by evaluations at k points)
- Minimum distance of RS code is $n k + 1$

Naive Repair of Reed-Solomon Codes

• If a node $f(\alpha^*)$ is erased, k of the remaining $n-1$ nodes are downloaded to obtain $f(x)$ and subsequently $f(\alpha^*)$.

- Code symbols from the finite field treated as vectors over a subfield
- Helper nodes send symbols from the subfield by performing vector linear operations
- In [SPDC14], improvements from (5,3) and (6,4) RS codes were shown

[SPDC14] Shanmugam, K., Papailiopoulos, D.S., Dimakis, A.G. and Caire, G., "A repair framework for scalar MDS codes," IEEE Journal on Selected Areas in Communications, May 2014.

Dual of a Reed-Solomon code is a Generalized Reed-Solomon code (GRS) code

- GRS Code: For some non-zero elements $v_1, v_2, \ldots, v_n \in \mathbb{F}_q$ and message polynomial $f(x) = \sum_{i=0}^{k-1} m_i x^i$, the codeword corresponding to <u>m</u> is $\underline{c} = [v_1 f(\alpha_1), \ldots, v_n f(\alpha_n)].$
- For an $[n, k]$ Reed-Solomon code, the dual code is an $[n, n k]$ GRS code with $d_{\text{min}} = k + 1$.

Let $\mathbb{F} = \mathbb{F}_{q'}$ and $\mathbb{B} = \mathbb{F}_{q}$. The trace polynomial is defined as,

$$
\mathsf{Tr}_{\mathbb{F}/\mathbb{B}}\left(\alpha\right)=\alpha+\alpha^{q}+\alpha^{q^{2}}+\cdots+\alpha^{q^{l-1}}
$$

- Trace of an element takes values from a field $\mathbb F$ and maps it to a subfield $\mathbb B$.
- Trace is a **B-linear**

$$
\mathsf{Tr}_{\mathbb{F}/\mathbb{B}}\left(b_{1}\alpha+b_{2}\beta\right)=b_{1}\mathsf{Tr}_{\mathbb{F}/\mathbb{B}}\left(\alpha\right)+b_{2}\mathsf{Tr}_{\mathbb{F}/\mathbb{B}}\left(\beta\right),
$$

 $\alpha, \beta \in \mathbb{F}$ and $b_1, b_2 \in \mathbb{B}$.

• Every $\mathbb B$ -linear function is $Tr(\gamma \alpha)$, $\alpha \in \mathbb F$, γ fixed element in $\mathbb F$.

 \bullet An erased node $f(\alpha^*)$ can be recovered from the equation

$$
f(\alpha^*) = \sum_{j=1}^I \text{Tr}_{\mathbb{F}/\mathbb{B}}(u_j f(\alpha^*)) v_j
$$

where $u_1, u_2, \ldots u_l$ is a basis of $\mathbb F$ over $\mathbb B$ and $v_1, v_2, \ldots v_l$ is the dual-basis.

- Say $A = {\alpha_1, \alpha_2, \ldots, \alpha_n}$. $f(x)$ is the message polynomial of RS code and $g(x)$ is the message polynomial of its dual code, $\sum_{\alpha \in A} f(\alpha) g(\alpha) = 0.$
- Applying trace,

$$
\mathsf{Tr}_{\mathbb{F}/\mathbb{B}}(g_j(\alpha^*)f(\alpha^*)) = \sum_{\alpha \in A \setminus \{\alpha^*\}} \mathsf{Tr}_{\mathbb{F}/\mathbb{B}}(g_j(\alpha)f(\alpha))
$$

Guruswami-Wootters Scheme [GW17]

• Choice of g_j : If $f(\alpha^*)$ has been erased, choose $\forall j \in [l]$

$$
g_j(x) = \frac{\mathsf{Tr}_{\mathbb{F}/\mathbb{B}}\left(u_j\left(x-\alpha^*\right)\right)}{x-\alpha^*},
$$

where $u_1, u_2, \ldots u_l$ forms a basis of $\mathbb F$ over $\mathbb B$.

• $g_j(\alpha^*) = u_j$ and

$$
\mathsf{Tr}_{\mathbb{F}/\mathbb{B}}\left(u_jf(\alpha^*)\right) = -\sum_{\alpha \in A \setminus \{\alpha^*\}} \mathsf{Tr}_{\mathbb{F}/\mathbb{B}}(u_j(\alpha - \alpha^*)) \mathsf{Tr}_{\mathbb{F}/\mathbb{B}}\left(\frac{f(\alpha)}{\alpha - \alpha^*}\right).
$$

• Dimension of span given by

$$
\dim_{\mathbb{B}}() = \begin{cases} l & \alpha = \alpha^* \\ 1 & \alpha \neq \alpha^* \end{cases}
$$

Guruswami-Wootters Scheme [GW17]

- The *l* traces required for the repair can be obtained by downloading 1 symbol from each of the remaining $n - 1$ nodes.
- The repair bandwidth of this framework is $(n 1) \log_2 q$ bits.

[GW17] Guruswami, V. and Wootters, M., "Repairing Reed-Solomon codes," IEEE Transactions on Information Theory, Sept. 2017.

- $n \leq q^l$
- \bullet All the l polynomials can act as check polynomials if $n-k\geq q^{l-1}$.
- \bullet Repair bandwidth is optimal if $n=q^l$ and $n-k=q^{l-1}$

Dau-Milenkovic Scheme [DM17]

• Linearized Polynomial: A monic polynomial of the form

$$
L(x) = \sum_{i=0}^d \ell_i x^{q^i},
$$

where $\ell_i \in \mathbb{F}$. Trace is an example and so is $L_W(x)$ below.

• Choice of g_j : If $f(\alpha^*)$ has been erased, choose $\forall j \in [l]$

$$
g_j(x)=\frac{L_W(u_j(x-\alpha^*))}{x-\alpha^*},
$$

where W is a subspace of dimension s over \mathbb{B} . $L_W(x) = \prod_{w \in W} (x - w)$.

• Dimension of span given by

$$
\dim_{\mathbb{B}}() = \begin{cases} l & \alpha = \alpha^* \\ \leq l - s & \alpha \neq \alpha^* \end{cases}
$$

[DM17] H. Dau and O. Milenkovic, "Optimal Repair Schemes for Some Families of Full-Length Reed-Solomon Codes," in 2017 IEEE International Symposium on Information Theory.

- $n \leq q^l$
- All the l polynomials can act as check polynomials if $n k \geq q^s$
- Repair bandwidth is optimal if $n=q^l$ and $n-k=q^s$

Repairing Locally Recoverable Codes

Setting:

- Linear code C with parameters $[n, k, d_{\min}]$
- Code symbol c_i has locality r

• Consider a code in systematic form. The code is said to have **information** locality r if all the message symbols in the code have locality r

• For $[n, k, d_{\text{min}}]$ code with information locality r

$$
d_{\min} \leq \frac{n-k+1}{\text{Singleton bound}} -
$$

k r − 1 | {z } Term due to locality constraint

[GHSY12] Gopalan, P., Huang, C., Simitci, H. and Yekhanin, S., "On the locality of codeword symbols," IEEE Transactions on Information theory, 2012.

- ith symbol in an (n, k, d) code is said to have (r, ρ) locality if there exists a punctured subcode \mathbb{C}_i with support containing *i*,
	- whose length is at most $r + \rho 1$
	- whose minimum distance is atleast ρ
- A code in which all the symbols have (r, ρ) locality is said to be an (n, k, r, ρ) LRC.

Tamo-Barg Codes [TB14]

- $g(x)$ is of degree $r + \rho 1$.
- $\bullet\,$ Encoding polynomial is $f(x)=\sum_{i,j}a_{ij}x^{i}g(x)^{j}$
- A_1, A_2, \ldots, A_m form a partition such that $g(\alpha_j) = c_i \quad \forall \alpha_j \in A_i, \ \ i.e., \ \ j \in [(i-1)(r+\rho-1)+1, i(r+\rho-1)].$
- g can be picked to be polynomial of additive or multiplicative cosets of a subgroup

[TB14] Itzhak Tamo and Alexander Barg, "A family of optimal locally recoverable codes, TIT, Jul 2014. ²²

- The construction yields an (n, k, r, ρ) LRC with m disjoint $RS_{\mathbb{F}}(r + \rho 1, \rho)$ local codes.
- Objective: Minimise repair bandwidth required to repair a single erasure.
- Two schemes in which the evaluation points are chosen differently.
	- In one scheme, the evaluation points are picked from cosets of additive subgroup.
	- In the other scheme, the evaluation points are picked as elements of prime degree over a field.

Tamo-Barg Codes based on Additive Cosets

- Let $B = {\alpha_1, \alpha_2, \ldots, \alpha_{r+\rho-1}} = \mathbb{F}_{q^a}$ and ${\beta_1 + B, \beta_2 + B, \ldots, \beta_m + B}$ are additive cosets of B in \mathbb{F}_{q^l} where $a \mid l$ and $m \leq q^{l-a}$.
- Let $A_i = {\alpha_1 + \beta_i, \alpha_2 + \beta_i, \dots, \alpha_{r+\rho-1} + \beta_i} \subset \mathbb{F}_{q^l}$ for all $i \in [m]$.
- Let W be an s dimensional \mathbb{F}_q subspace of \mathbb{F}_{q^a} .
- Define $g_{ij}(x) = \frac{L_W(u_j(x-(\alpha^*+\beta_i)))}{x-(\alpha^*+\beta_i)}$ $\frac{\mu_j(x-(\alpha^*+\beta_i)))}{x-(\alpha^*+\beta_i)}, \forall j\in [$ a] to repair $f(\alpha^*+\beta_i).$

Sasanka, U. S. S., and V. Lalitha, "Tamo-Barg Codes with Efficient Local Repair," ITW 2022

- We need *l* traces for the repair framework but $\{g_{ii}(x), j \in [a]\}\$ are only a polynomials.
- Let $\{\gamma_1, \gamma_2, \ldots \gamma_{\frac{1}{a}}\}$ be a basis of $\mathbb{F}_{q'}$ over \mathbb{F}_{q^a} .
- $\bullet\,$ The l polynomials are $\{\gamma_1 g_{ij}(x), \gamma_2 g_{ij}(x), \ldots \gamma_{\frac{l}{s}} g_{ij}(x)\}$ for some $i\in[m]$ and $\forall j \in [a].$
- The bandwidth required in this scheme is $\frac{1}{a}((r+\rho-1)-1)(a-s)$.

Revisiting Reed-Solomon Codes

• Cut-set Bound: For any $[n, k, l]$ MDS code where l is the sub-packetization, the repair bandwidth for a single erasure is given by

$$
b\geq \frac{dl}{d-k+1},
$$

where d, such that $k < d < n$, are number of helper nodes

- Bound above corresponds to the Minimum Storage Regeneration (MSR) point of storage-bandwidth tradeoff
- To achieve the cutset bound, require different sub-fields over which trace is computed for different failed nodes
- Let $s = d k + 1$. Let p_1, p_2, \ldots, p_n be the smallest distinct primes satisying $p_i \equiv 1 \mod s$ for all $i = 1, 2, \ldots, n$.
- Let \mathbb{F}_p be a field of prime order. Let $A = \alpha_1, \alpha_2, \ldots, \alpha_n$ be the evaluation set. Choose α_i to be an element of degree p_i over \mathbb{F}_p , i.e.,

$$
[\mathbb{F}_p(\alpha_i):\mathbb{F}_p]=p_i,
$$

where $\mathbb{F}_{p}(\alpha_i)$ denotes the field obtained by adjoining α_i to \mathbb{F}_{p} .

- Define $\mathbb{F} = \mathbb{F}_p(\alpha_1, \alpha_2, \dots, \alpha_n)$ and so $[\mathbb{F} : \mathbb{F}_p] = \prod_{i=1}^n p_i$.
- Define $\mathbb{K} = \mathbb{F}(\beta)$ where β is an element of degree s over \mathbb{F} .

Optimal RS Code Achieving Cut-set Bound [TYB19]

- RS code defined over the field K
- Sub-packetization $O(n^n)$

- Repair of a failed node corresponding α_i occurs over field $F_i = \mathbb{F}_p(\alpha_j : j \in [n]$ and $j \neq i)$ by using the trace $Tr_{\mathbb{K}/F_i}$.
- Check polynomials can be chosen and repair process is similar to the trace repair framework.

[TYB19] I. Tamo, M. Ye, and A. Barg, "The Repair Problem for Reed–Solomon Codes: Optimal Repair of Single and Multiple Erasures with Almost optimal node size," IEEE Trans. on Inf. Theory, May 2019. 29

- Goal: Design an (n, k, r, ρ) LRC which achieves the cut-set bound for single node repair within the local group.
- Since the local codes are RS codes, the MSR construction in [TYB19] can be used.
- Node failure can happen in any of the m RS codes. So all of them must be MSR codes.

Tamo-Barg Codes with Optimal Local Repair

 \bullet Extend [TYB19] so that the j^{th} element of each local group is chosen to be a distinct primitive element of the (same) extension field of degree p_i over the base field.

Elements of
\ndegree
$$
p_1
$$
 over **B** degree p_2 over **B** degree p_{r+p-1} over **B**
\n
$$
A_1 = \{ \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{vmatrix} \}
$$
\n
$$
A_m = \begin{cases} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{cases}
$$
\n
$$
A_m = \begin{cases} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{cases}
$$

• Let $\mathbb{B} = \mathbb{F}_q$. Choose $\alpha_{ij} \ \forall i \in [m], j \in [r+\rho-1]$ such that $[\mathbb{F}_q(\alpha_{ij}) : \mathbb{F}_q] = p_j$.

Sasanka, U. S. S., and V. Lalitha, "Tamo-Barg Codes with Efficient Local Repair," ITW 2022

- Pick different generators for the same extension field
- The number of primitive elements in a finite field \mathbb{F}_p is given by $\phi(p-1)$, where $\phi(x)$ is the Euler's totient function.
- Constraint $m < min\{\phi(q^{p_1} 1), \phi(q^{p_2} 1), \ldots, \phi(q^{p_{r+\rho-1}} 1)\}.$

Tamo-Barg Codes with Optimal Local Repair

- Let $P = \prod_{i=1}^{n} p_i$. The code is defined on $\mathbb{F} = \mathbb{F}_{q^t}$, where $l = sP$. The repair for the erased node corresponding to α_{ij} is done over the field \mathbb{F}_j .
- Each of the local RS codes is an MSR code and the repair bandwidth of the LRC code is $\frac{dl}{d-k+1}$.

• $n' = r + \rho - 1$ and $k' = r$ are the length and dimension of the local RS code.

Thanks!