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Multi-Armed Bandits: A Sequential Experimental Design Framework

Learner

Noisy rewardExperiment planning / Action
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Arms / Experiments

Utility

Observation
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Multi-armed Bandits: Objectives

Means µ ≜ [µ1, · · · , µK ] unknown

Regret minimization (Exploration-Exploitation trade-off)

Minimize cumulative regret:

RT ≜ Tµa⋆ −
T∑
s=1

E[XAs ]

Best arm identification (Pure Exploration)

Identify the arm with the largest mean

a⋆ ≜ argmax
i∈[K ]

µi
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Bandit Settings and Applications
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Bandit Settings and Applications – Focus
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Risk-Sensitive Decision Making

Learner

Option A:
Expected Return: 12% annually

Risk (Volatility): 30% (high) 

Option B:
Expected Return: 8% annually

Risk (Volatility): 10% (low) 
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Probability Density Functions (PDFs) of Investment Options A and B

A A

B B

Option A: High Risk, High Return
Option B: Low Risk, Moderate Return
Mean of Option A
Mean of Option B

▶ Option A: Larger average reward (mean), larger risk (variance)!

▶ Option B: Smaller average reward (mean), smaller risk (variance)!
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Linking Risk-Sensitivity and Experimental Design

Human

Protocol A:

• Larger expected success
• Larger variation across replicates

Protocol B:

• Smaller expected success
• Smaller variation across replicates

How to gather data?

▶ Human-in-the-loop decision making is
sensitive to decision risks

▶ Example bandit applications: clinical trials /
investment portfolios

▶ Average reward is risk-neutral – not suitable

▶ Question: How to sequentially control risk?

▶ Use Risk-Sensitive Utilities: Functions of
arm distributions (not just the first moment)

▶ Examples: Variance, CVaR, Gini deviation,
Sharpe ratio, many others
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Risk Nomenclature

Distortion Riskmetric (Wang et. al. 2022)
<latexit sha1_base64="zf7QzMrlqqJD7hh+hmUcMk2Kdvc="></latexit>

U(P) :=

Z 1

0

h
⇣
P(X � x)

⌘
dx
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h : [0, 1] 7! [0, B]Ø

Ø Distortion function,  
<latexit sha1_base64="BBo6qCuVjUCRI4zuSbK9D4k7wYY=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2FXRHMRAl48RjAPSJYwO5lNhszOrjO9Qgj5CS8eFPHq73jzb5wke9DEgoaiqpvuriCRwqDrfju5tfWNza38dmFnd2//oHh41DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG5nfuuJayNi9YDjhPsRHSgRCkbRSu1h2T0nN8TtFUtuxZ2DrBIvIyXIUO8Vv7r9mKURV8gkNabjuQn6E6pRMMmnhW5qeELZiA54x1JFI278yfzeKTmzSp+EsbalkMzV3xMTGhkzjgLbGVEcmmVvJv7ndVIMq/5EqCRFrthiUZhKgjGZPU/6QnOGcmwJZVrYWwkbUk0Z2ogKNgRv+eVV0ryoeFcV7/6yVKtmceThBE6hDB5cQw3uoA4NYCDhGV7hzXl0Xpx352PRmnOymWP4A+fzB5+Qjlw=</latexit>

h(0) = 0

Risk measures Deviation measures

Ø Distortion function is monotone
Ø Distortion function is translation invariant
Ø Examples: VaR, CVaR, expected shortfall, 

quantile-based measures

Ø Distortion function is concave / convex
Ø Distortion function may not be monotone
Ø Examples: Gini deviation, mean-median 

deviation, inter-quantile range
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Risk-Sensitive Bandits: Existing Literature

Sporadic investigations on specific risk measures:

▶ Quantile-based measures:

▶ Szorenyi et. al. [2015] (regret minimization)

▶ David et. al. [2018] (best arm identification)

▶ Zhang et. al. [2021] (best arm identification)

▶ CVaR:

▶ Baudry et. al. [2018] (regret minimization)

▶ Agrawal et. al. [2021] (best arm identification)

Focus: Towards a unifying approach...

▶ Gopalan et. al. [2017] (regret minimization for distortion risk measures)
▶ Cassel et. al. [2018] (and [2023]) (empirical distribution performance measures (EDPMs))
▶ Chang and Tan [2022] (regret minimization for EDPMs)
▶ Prashanth and Bhat [2022] (regret minimization for EDPMs)
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Objective: Minimization versus Maximization

▶ Majority of investigations focus on minimizing risk

▶ Few investigations maximize risk measures

▶ maximizing risk ⇔ looking at gains instead of losses

▶ Examples: Baudry et. al. [2018] and Cassel et. al. [2018/2023] maximize CVaR

▶ Khurshid et. al. [2024] maximizes variance to eliminate high volatile arms

▶ Goal of this work: unconstrained maximization of distortion riskmetrics

▶ Application: high-volatile trading, traders seek riskiest policies for maximizing returns

▶ Maximizing entropy-based deviation measures well-known in finance
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A Unified Framework for Risk Measures (Cassel et. al. 2018 / 2023)

▶ Let a⋆ denote the risk-maximizing arm, i.e.,

a⋆ ≜ argmax
i∈[K ]

U
(
Fi

)
▶ Goal: Minimize the average regret

Rπ
ν(T ) ≜ U (Fa⋆)− Eπ

ν

[
U

(∑
i∈[K ]

τπ
T (i)

T
Fi

)]

▶ Assumptions:

▶ The utility is convex =⇒ solitary best arm

▶ The utility is stable in an abstract semi-normed space – CDF estimates admit exponential convergence
to the ground truth

▶ Utility is Lipschitz
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Assumptions and Gaps in the Literature...

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

U(p1) = 0.09

U(p2) = 0.21

U(0.5) = 0.25 ▶ Convexity does not hold for various riskmetrics!

▶ Concave + non-monotone distortion function =⇒
optimal mixtures!

▶ Counter-example: Gini deviation, K = 2 arms

U(αp1 + (1− α)p2) > max{U(p1),U(p2)}

Question: Can we construct regret-efficient algorithms for riskmetrics which have optimal mixtures?

Key Challenge: Estimation problem instead of detection problem – how to track mixtures?
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Revised Objective: Regret w.r.t. Infinite Horizon Oracle Policy

▶ Mixtures may be optimal as opposed to solitary arms

▶ Oracle Policy: Policy that attains the maximum utility over an infinite horizon, i.e.,

α⋆
ν ∈ arg sup

α∈∆K−1

U
( ∑

i∈[K ]

α(i) Fi

)

▶ Goal: Define regret w.r.t. the oracle policy

Rπ
ν(T ) ≜ U

∑
i∈[K ]

α⋆
ν(i)Fi

− Eπ
ν

[
U

(∑
i∈[K ]

τπ
T (i)

T
Fi

)]

▶ Assumption: Hölder continuous utility, Hölder exponent q
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Algorithm Design – Challenges

Attributes 
of 

canonical 
algorithms 

Challenges 
in the

risk-
sensitive 

setting

Identify sub-
optimal arms by 
sampling them at 
most 
times

<latexit sha1_base64="EhpoyQQnqKzFilxKFVRBGPWxQA8=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKRI8BL96MkJckS5idTJIh81hmZoWw5Cu8eFDEq5/jzb9xkuxBEwsaiqpuuruimDNjff/bW1vf2Nzazu3kd/f2Dw4LR8dNoxJNaIMornQ7woZyJmnDMstpO9YUi4jTVjS+nfmtJ6oNU7JuJzENBR5KNmAEWyc93pe6XA1R/aJXKPplfw60SoKMFCFDrVf46vYVSQSVlnBsTCfwYxumWFtGOJ3mu4mhMSZjPKQdRyUW1ITp/OApOndKHw2UdiUtmqu/J1IsjJmIyHUKbEdm2ZuJ/3mdxA5uwpTJOLFUksWiQcKRVWj2PeozTYnlE0cw0czdisgIa0ysyyjvQgiWX14lzctyUCkHD1fFaiWLIwencAYlCOAaqnAHNWgAAQHP8ApvnvZevHfvY9G65mUzJ/AH3ucPd3mPgA==</latexit>

O(log T )

Risk-neutral 
algorithms are 
generally 
parametric in 
nature

Risk-sensitive 
algorithms (Cassel 
et. al.) have 
strong 
assumptions 

Ø Doesn’t work for 
mixtures

Ø No ”sub-optimal”
arm

Ø Risk-sensitive setting
is non-parametric Ø “stable” utilities: 

exponential 
convergence of CDF 
estimates in an 
abstract semi-normed 
space may not hold!

Ø convex utilities: may 
not be true
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Algorithm Design Components

Estimate mixing coefficients 
in a regret-efficient way

Track the estimated 
mixtures in a regret-

efficient way

ØETC-based mechanism

ØUCB-based mechanism

ØUnder-sampling as an 
efficient method for 
tracking mixtures

16 / 35



17/35

Risk-Sensitive Explore Then Commit for Mixtures (RS-ETC-M)

Component 1: Estimating mixtures...

▶ Step 1 (Explore): Estimate CDFs, draw each arm ⌈N(ε)/K⌉ times (N(ε) is instance-dependent)

▶ Step 2 (Estimate): Using CDF estimates FE
t,i of each arm, estimate mixing coefficients through

discretization

αN(ε) ∈ argmax
α∈∆K−1

ε

U
( ∑

i∈[K ]

α(i)FE
t,i

)

▶ Why discretize?
1. Computational tractability – always computable provided we have plug-in estimates

2. Transforms the problem into a finite-armed bandit instance in terms of discrete mixing coefficients
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Risk-Sensitive Explore Then Commit for Mixtures (RS-ETC-M)

Component 2: Tracking the estimated mixtures...

▶ Step 2 (Commit): Sample arms in a way that best matches the allocation fractions to the
estimated mixing coefficient

▶ Define S ≜ [K − 1] as the first K − 1 arms

τE
T (i) ≜


max

{⌈
N(ε)
K

⌉
, ⌊T α̂N(ε)(i)⌋

}
, if i ∈ S

T −
∑
i∈S

τE
T (i), otherwise

Drawback

Assumes knowledge of instannce-dependent parameters (through N(ε))
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Risk-Sensitive Upper Confidence Bound for Mixture (RS-UCB-M)

Component 1: Estimating mixtures...

▶ Step 1 (Forced exploration): Form reliable estimates of arm CDFs, draw each arm ζT times

▶ Forced exploration is absent in canonical UCB

▶ Reason: sub-optimal arms should not be sampled over O(logT ) times

▶ In our setting, mixtures may necessitate a linear order of exploration for every arm!

� Open question

Can we design a regret-efficient algorithm that implicitly explores arms in a linear order?
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Risk-Sensitive Upper Confidence Bound for Mixture (RS-UCB-M)

▶ Step 2 (Estimating optimal mixtures): Using CDF estimates FU
t,i of each arm:

▶ Optimistic estimate: For any mixture α ∈ ∆K−1, define the upper confidence bound (UCB):

UCBt(α) ≜ U
( ∑

i∈[K ]

α(i)FU
t,i

)
︸ ︷︷ ︸
estimated utility

+L
∑
i∈[K ]

α(i) · diamq(i)

(
logT + 0.15

τUt (i)

) q
2

︸ ︷︷ ︸
upper confidence bound

▶ Estimate mixture through discretization:

αt ∈ argmax
α∈∆K−1

ε

UCBt(α)

20 / 35



21/35

Risk-Sensitive Upper Confidence Bound for Mixture (RS-UCB-M)

Component 2: Tracking the estimated mixtures...

▶ Step 3 (Tracking): Undersample according to the estimated mixing coefficients, i.e., for all
t > KTζ,

At+1 ≜ argmax
i∈[K ]

{Tαt(i)− τU
t (i)}

▶ No instance dependence

▶ Empirically performs better than randomly sampling according to the estimated mixtures
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Regret Analysis

Regret Decomposition

Regret = discretization error + CDF estimation error + sampling estimation error

1. Discretization error: Error due to discretization

2. CDF estimation error: Error in estimating arm CDFs from rewards

3. Sampling estimation error: Error in tracking estimated mixing coefficients

For analyzing the errors, we consider the space of distributions endowed with the 1-Wasserstein metric.

1. Exponential convergence of CDF estimates directly follows from DKW (bounded support)

2. Easily extensible to unbounded sub-Gaussian distributions (Prashanth and Bhatt [2022])
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Sublinear Regret ⇔ Convergence in Sampling Fractions

Key finding: UCB + under-sampling is a regret-efficient way of tracking mixtures. How?

Lemma (Convergence in mixing coefficient estimates)

After a finite time instant T (ε), at any time t > T (ε), the probability that the RS-UCB-M algorithm
selects a sub-optimal discrete mixing coefficient is upper-bounded as

P
(
∃ t ∈ [T (ε),T ] : αt ̸= ᾱ⋆

)
≤ T

((
1

T 2
+ 1

)K

− 1

)

After a finite time instant, UCB always picks the correct discrete optimal coefficient ᾱ⋆ with a high
probability.
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Sublinear Regret ⇔ Convergence in Sampling Fractions

Lemma (Tracking using under-sampling incurs sub-linear regret)

With high probability, we have ∣∣∣∣τt(i)t
− ᾱ⋆(i)

∣∣∣∣ <
K

T
for all t > T (ε)

▶ T (ε) inversely proportional to ε2/q

▶ Larger the discretization level, faster the convergence to the discrete optimal solution, larger the
discretization error
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Bounds on Error Components

▶ CDF estimation error: O
(
T−q/2(logT )q/2

)
– does not depend on the discretization level

▶ Sampling Error: O
(
T
((

1
T 2 + 1

)K − 1
)
+
(
K
T

)q)
– valid for T > T (ε) (a finite time instant)

▶ Final step: Optimize the discretization level (best possible ε)
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Performance Guarantees

Table: Regret bounds of ETC-type (RE
ν (T )) and UCB-type (RU

ν (T )) algorithms.

Risk-sensitive Utilities a RU
ν (T ) RE

ν (T )

Risk-neutral Mean Value O(
√

logT/T ) O(logT/T )

Dual Power O(
√

logT/T ) O(logT/T )

Quadratic O(
√

logT/T ) O(logT/T )

CVaR O(
√

logT/T ) O(logT/T )

PHT (s = 1/2) O((logT/T )1/4) O(
√

logT/T )

Wang’s Right-Tail Deviation O((logT/T )1/4) O(T−1/3(logT )1/4)

Gini Deviation O(
√

logT/T ) O(T−1/3√logT )

aIn the first five rows, solitary arms are optimal. In the last two rows, mixtures of arms are optimal.

▶ RS-ETC-M has better regret guarantees for solitary arms (known gap information)

▶ For mixtures, RS-UCB-M better for Gini deviation

▶ For canonical bandits, ETC and UCB have similar performance guarantees!
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Empirical Evaluations
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Figure. Regret of the algorithms for different parameters

▶ Utility: Gini deviation

▶ K = 2, ν = [0.4, 0.9]⊤, ζ = 0.1

▶ α⋆
ν = [0.8, 0.2]⊤
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Minimax Lower Bound – Canonical Bandits + Challenges

▶ Regret decomposition in canonical bandits:

R(T ) = E

∑
i ̸=a⋆

(
µa⋆ − µi

)
︸ ︷︷ ︸

gap

× τt(i)︸︷︷︸
#times chosen


▶ Create principal & alternate bandit instances

▶ Principal instance same as alternate instance except one sub-optimal arm of the principal instance

▶ Use change of measures to argue that no policy can have a “small” regret for both instances

Issue

Canonical regret decomposition does not work – no sub-optimal arms!
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Minimax Lower Bound (K=2)

How to decompose regret?

▶ Say, the utility is Gini deviation

▶ Pick a discretization level ε

▶ The discretization scheme is such that α⋆ lies at
the center of one of the discrete bins

▶ We have the following rgret decomposition:

Rπ
ν(T ) ≥ ∆min(ν, ε)︸ ︷︷ ︸

minimum gap

×Pπ
ν

(
α̂π
T /∈ B⋆

ν

)
︸ ︷︷ ︸
Probability of error

Wednesday,	September	25,	2024 7:34 PM
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Minimax Lower Bound (K=2)

▶ Construct the following bandit instances:

1. Principal instance ν:
(
Bern(p) , Bern(1− p)

)
2. Alternate instance ν1:

(
Bern(p + δ) , Bern(1− p)

)
3. Alternate instance ν2:

(
Bern(p) , Bern(1− p − δ)

)
▶ For any k ∈ {1, 2}, the minimax regret is lower-bounded by:

R⋆(T ) ≥ 1

2

(
Rπ

ν(T ) +Rπ
νk
(T )

)
≥ 1

2
min {∆min(ν, ε),∆min(νk , ε)} ×

(
Pπ
ν(α̂

π
T /∈ B⋆

ν) + Pπ
νk
(α̂π

T ∈ B⋆
ν)
)
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Minimax Lower Bound (K=2)

� Looks familiar! Lower bound using total variation + Brutagnolle-Huber inequality?

R⋆(T ) ≥ 1

2
min {∆min(ν, ε),∆min(νk , ε)} × exp

−
∑
i∈[K ]

Eπ
ν [τ

π
T (i)]DKL(ν(i)∥νk(i))



Yes! However, the principal and the alternate bandit instances should satisfy the following properties.

(P1) Principal and alternate instances should have different optimal bins

(P2) The alternate instances should not be “too different” from the principal instance. Specifically,

1

DKL(ν(1)∥ν1(1)
+

1

DKL(ν(2)∥ν2(2))
≥ T
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Minimax Lower Bound (Theorem)

Q. How to set p and δ in he bandit instances, such that (P1) and (P2) are satisfied?

A. Set p = 0.5 + η, ε = δ/4 for (P1), and δ = 1/
√
T for (P2).

Final step: Find a lower bound on the minimum utility gap ∆min(ν, ε). For Gini deviation, we have

∆min(ν, ε) ≥ 1

4
ε2η2 .

Theorem (Minimax Lower Bound)

For Gini deviation, for a bandit instance with K = 2 arms, the minimax lower bound on the regret is of
the order Ω(1/T ).
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Risk-Sensitive Decision Making: Takeaways...

▶ Risk-sensitivity is an important aspect for human-in-the-loop decision-making

▶ Existing algorithms works only when solitary arms are optimal

▶ Key observation: Various risk measures exhibit optimal mixtures

▶ RS-UCB-M and RS-ETC-M algorithms proposed for safe decision making, regret-efficient, works
for mixtures

▶ Key idea: Optimistic estimate for mixtures, undersampling for tracking mixtures
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Open Questions

� Closing the regret gap

• Can we close the gap between the regret upper bound and the minimax lower bound? Current gap of
the order O(1/

√
T ).

• Can we incorporate the dependence on the number of arms K in the minimax lower bound?

� Instance-dependent lower bound

Can we devise instance-dependent lower bounds for risk-sensitive bandits with optimal mixtures?

� Structred bandits

How do we extend risk-sensitive decision-making for the larger class of distortion riskmetrics to
structured bandits, such as linear bandits, causal bandits, and restless bandits?

� Heavy-tailed bandits

Can we derive exponential convergence in CDF estimates for heavy-tailed bandits? What are the
performance guarantees for risk-sensitive decision making for heavy-tailed bandits?

34 / 35



35/35

Discussion
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