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Inference in CPSs

Image: https://tecadmin.net/what-is-iot-internet-of-things/

Image: https://www.medicalbuyer.co.in/global-remote-healthcare-market-to-reach-usd-59-7b/

Image: https://www.1home.io/blog/what-is-a-smart-home/

Image: https://www.mech-mind.com/blog/definition-benefits-of-factory-automation-system.html
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System Components

End-Device


• Limited memory

• Limited compute power

• Periodically collects samples

• Needs inference on each sample 

to make control decisions

Edge-Server


• Large memory

• High compute power

• Not co-located with ED

• Can communicate with ED via 

a wireless channel
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to make control decisions

Edge-Server


• Large memory

• High compute power

• Not co-located with end-device
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a wireless channel

🤔 Where should we do the inference?

Local DL Remote DL
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Candidate Strategies
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max
c∈𝒞

es(c)

∑u∈𝒞 es(u)

Output: 


Confidence:

Confidence
• Measure of the confidence the model has in its inference


• DL model outputs a score for each candidate class 


• Sample typically classified into class with highest score


• Confidence = 


Example: max soft-max value

f(score vector for that sample)
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𝒞: set of classes

s(c) : score for a sample for class c

arg max
c∈𝒞

s(c)
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Design Challenge in HI
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Design Challenge in HI

HI

decision 

module

Local inference

and confidence

Offload

Sample

Accept 

local inference

Local DL

Sample

💡 Offload if confidence is low, i.e., below a threshold


 🤔 What should be the threshold?


 🤷 Depends on system parameters and performance metric(s)

Remote DL
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Prior Work on HI

• Multiple use cases (Al-Atat, et al., MobiSys 2023)


• Threshold selection

• based on transmission energy constraint of ED 


(Nikoloska, et al., IEEE Communication Letters 2023)

• linear regression on two highest soft-max values to obtain threshold 

(Behera, et al., ACM MobiCom 2023)


• Online learning for finding optimal threshold, dataset dependent regret bound 
(Moothedath, et al., IEEE TMLCN 2024)


• Multiple EDs (Beytur, et al., IEEE INFOCOM 2024)
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Sequence of Events

1 2 3 T-1 T
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Remote DL inference
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Confidence Values

     : possible values of 

       confidence metric

: confidence metric 

  values seen by round t

0 1

• Measure of the confidence the model has in its inference

• Examples: max soft-max value


• Belong to a discrete set

• Stochastic, generated i.i.d. across time (distribution unknown)
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Threshold Policies

Key idea: 

• Scalar parameter (threshold)

• Offload  confidence < threshold

• Threshold can vary over time


Fixed threshold policies: threshold time-invariant

⟺

Yes

(Offload)

No

(Accept) 

Local DL

Sample Confidence 

< 


Threshold
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Performance Metric

Baseline: Optimal fixed threshold policy (OPT)

Candidate policy P: Attempts to learn the optimal threshold

                                                         

RegretP  =  [LossP ] -  [LossOPT ]


                 

(T )
T

∑
t=1

𝔼 (t)
T

∑
t=1

𝔼 (t)

Yes

(Offload)

No

(Accept) 

Local DL

Sample Confidence 

< 


Threshold
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Main Results

HI
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Sample

💡 Offload if confidence is low, i.e., below a threshold


 🤔 What should be the threshold?


 🥳 Online algorithms to choose threshold with sub-linear regret

Remote DL
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Prediction with Experts

0.3

0.2

0.4

loss

🧑🏫 
👩🏫 
👨🏫✅

•  experts


• Time divided into rounds

• Algorithmic task: choosing 1 expert per round


• -dimensional loss vector in each round 


• Adversarial losses

• Loss revealed after expert chosen  

• System incurs loss of chosen expert


• Static policy: chooses the same expert in all rounds

• Baseline: optimal static policy


• Goal: minimize cumulative regret in rounds 1 to 

K

K

T
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The Hedge Algorithm
Initialize weights  for  
For  

Choose expert  with probability 

Receive loss vector 

Update 

wk(1) = 1 1 ≤ k ≤ K
t = 1, 2,⋯, T

k ∝ wk(t)
[l1(t), l2(t), ⋯, lK(t)]

wk(t + 1) = wk(t)exp(−ηlk(t))
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Hedge for HI?

• Thresholds as experts

• Loss of expert  = loss incurred if the system chooses threshold k k

Initialize weights  for  
For  

Choose expert  with probability 

Receive loss vector 

Update 

wk(1) = 1 1 ≤ k ≤ K
t = 1, 2,⋯, T

k ∝ wk(t)
[l1(t), l2(t), ⋯, lK(t)]

wk(t + 1) = wk(t)exp(−ηlk(t))
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Recall: Loss Model
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Tracking Loss
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Tracking Loss
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🥴  may be very large (algorithm to be implemented on the ED)K

Hedge for HI?
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Structural Properties of HI
Recall: In round t, if confidence < threshold, offload; else accept

• Both thresholds have the same sample path cost

• Can limit set of thresholds to a discrete set

Threshold 2

Threshold 1

     : possible values of 

       confidence metric

: confidence metric 

  values seen by round t
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Structural Properties of HI

same cost in [1, t]

parent

childchild child

Recall: In round t, if confidence < threshold, offload; else accept

     : possible values of 

       confidence metric

: confidence metric 

  values seen by round t
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Tweak 2

Yes

(Offload)

Local DL

Sample Confidence 

< 


Threshold

No

(Accept) 

🥴  may be very large (algorithm to be implemented on the ED)K

• Maintain a growing set of experts (thresholds)

• If the confidence value in round  is “new”, add to set of experts

• New expert inherits cumulative loss of its parent

t
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Our Algorithm: Hedge-HI

1⃣ Maintain a growing set of experts

• Set of experts = set of confidence values seen 

• New expert inherits cumulative loss of its parent


2⃣ Forced exploration with probability 

• Compute : an unbiased estimator of the loss


3⃣ Use Hedge to choose an expert (threshold) using s 

ϵ
̂li(t)

̂li(t)
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Performance of Hedge-HI

Theorem (sub-linear regret)


For  and ,  Hedge-HI has  regret.η = ( 𝔼[NT]
T )

2
3

ϵ =
η
2

O (T
2
3(𝔼[NT])1

3)

• Recall input parameters:

• Learning rate 

• Forced exploration probability 


• : number of experts at the end of round 

η
ϵ

NT T
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• Learning rate 
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η
ϵ

NT T
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Limitations of Hedge-HI
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1⃣ Maintain a growing set of experts

• Set of experts = set of confidence values seen 
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Limitations of Hedge-HI

💡 Freeze the set of experts after round .τ( < T )

35

1⃣ Maintain a growing set of experts

• Set of experts = set of confidence values seen 
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2⃣ Forced exploration with probability 

• Compute : an unbiased estimator of the loss


3⃣ Use Hedge to choose an expert (threshold) using s 

ϵ
̂li(t)
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Hedge-HI-Restart

Input: ,  (learning rate),  (forced exploration probability)


For , use Hedge-HI


Freeze set of experts after round , reset all weights to 1


For , use Hedge-HI on the frozen set of experts

τ η ϵ
t ≤ τ

τ
t > τ

 = 🤔

Large : large number of experts, increase in complexity

Small : may miss the optimal expert, increase in regret 

τ
τ
τ
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Theorem (sub-linear regret)

, such that Hedge-HI-Restart has  regret.∃τ, η,  and ϵ O (T

2
3(𝔼[log NT])1

3)

• Recall input parameters:

• 

• Learning rate 

• Forced exploration probability 


• : number of experts at the end of round 

• Assumption: 


τ
η

ϵ
Nt t

ℙ(confidence(t) = optimal threshold) = ν ∈ (0,1]

Hedge-HI-Restart

37



Summary

Hedge-HI Hedge-HI-Restart

Expert Set Can continue growing Stops growing after round 

Regret

τ

O (T
2
3(𝔼[NT])1

3) O (T
2
3(𝔼[log NT])1

3)

Limitations


• Guarantee for Hedge-HI-Restart holds only under an assumption

• Need to know 𝔼[NT]
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Simulation Framework

• Imagenet dataset (1000 classes, 50000 samples)

• S-ML: 8-bit quantized MobileNet tflite model


• width parameter 0.25

• size 500 KB

• accuracy 35%

• confidence 8-bit (256 unique values)


•  = 10000

• Use  = 256

T
𝔼[NT]
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Cumulative Loss
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Average Runtime
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Hedge-HI Restart  (τ)
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System Components

End-Device


• Limited memory

• Limited compute power

• Periodically collects samples

• Needs inference on each sample 

to make control decisions

Edge-Server


• Large memory

• High compute power

• Not co-located with end-device

• Can communicate with ED via 

a wireless channel

🤔 Where should we do the inference?

Local DL Remote DL
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Hierarchical Inference
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💡 Offload if confidence is low, i.e., below a threshold


 🤔 What should be the threshold?


 🥳 Variants of Hedge to choose threshold with sub-linear regret

Hierarchical Inference
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Our Contributions

HI

decision 

module

Local inference

and confidence

Offload

Sample

Accept 

local inference

Local DL

Sample

Remote DL

💡 Offload if confidence is low, i.e., below a threshold


 🤔 What should be the threshold?


 🥳 Variants of Hedge to choose threshold with sub-linear regret
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Prediction with Experts

1. Branching Experts (Gofer et al., COLT 2013)

• New experts revealed over time

•  finite

• Cumulative loss of new expert close to that of an existing expert

• Algorithm with  regret


2. Lifelong Learning with Branching Experts (Wu et al., ACML 2021)

• New experts revealed over time

•  finite

• Adversarial and stochastic losses


Hedge-HI minus forced exploration is order-optimal

NT

O ( TNT)

NT
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Online Learning for 
Hierarchical Inference*

Thanks!
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*to appear in ACM MobiHoc 2024 


