Online Learning for Hierarchical Inference

Sharayu Moharir IIT Bombay

Joint work with Ghina Al-Atat, Puranjay Datta, and Jaya Prakash Champati

Online Learning for HI

Motivation

Our Setting

Main Results

Background: Prediction with Experts

Our Algorithms and Guarantees

Numerical Results

Conclusions

Online Learning for HI

Motivation

Our Setting

Main Results

Background: Prediction with Experts

Our Algorithms and Guarantees

Numerical Results

Conclusions

Inference in CPSs

Image: https://www.1home.io/blog/what-is-a-smart-home/ Image: https://www.mech-mind.com/blog/definition-benefits-of-factory-automation-system.html

Image: <u>https://tecadmin.net/what-is-iot-internet-of-things/</u> Image: https://www.medicalbuyer.co.in/global-remote-healthcare-market-to-reach-usd-59-7b/

System Components

System Components

System Components

Confidence

- Measure of the confidence the model has in its inference
- DL model outputs a score for each candidate class
- Sample typically classified into class with highest score
- Confidence = *f*(score vector for that sample)

Confidence

- Measure of the confidence the model has in its inference
- DL model outputs a score for each candidate class
- Sample typically classified into class with highest score
- Confidence = f(score vector for that sample)

Example: max soft-max value

 $\mathscr{C}: \text{ set of classes}$ s(c): score for a sample for class c $Output: \arg \max_{c \in \mathscr{C}} s(c)$ $Confidence: \max_{c \in \mathscr{C}} \frac{e^{s(c)}}{\sum_{u \in \mathscr{C}} e^{s(u)}}$

Design Challenge in HI

Design Challenge in HI

Offload if confidence is low, i.e., below a threshold

What should be the threshold?

Depends on system parameters and performance metric(s)

Prior Work on HI

- Multiple use cases (Al-Atat, et al., *MobiSys* 2023)
- Threshold selection
 - based on transmission energy constraint of ED (Nikoloska, et al., *IEEE Communication Letters* 2023)
 - linear regression on two highest soft-max values to obtain threshold (Behera, et al., ACM MobiCom 2023)
- Online learning for finding optimal threshold, dataset dependent regret bound (Moothedath, et al., *IEEE TMLCN* 2024)
- Multiple EDs (Beytur, et al., *IEEE INFOCOM* 2024)

Online Learning for HI

Motivation

Our Setting

Main Results

Background: Prediction with Experts

Our Algorithms and Guarantees

Numerical Results

Conclusions

Confidence Values

- Measure of the confidence the model has in its inference
 - Examples: max soft-max value
- Belong to a discrete set
- Stochastic, generated i.i.d. across time (distribution unknown)
 - X: possible values of confidence metric
 - : confidence metric values seen by round *t*

Loss Model HI Offload Sample decision module Local DL **Remote DL** Accept Local inference No Yes =Remote inference

Loss Model HI Offload Sample decision module Local DL **Remote DL** Accept Local inference No Yes =Remote Case I inference Loss = 0

Loss Model HI Offload Sample decision module Local DL **Remote DL** Accept Local inference No Yes =Remote Case I Case II inference Loss = 1Loss = 0

Loss Model

Threshold Policies

Key idea:

- Scalar parameter (threshold)
- Offload \iff confidence < threshold
- Threshold can vary over time

Fixed threshold policies: threshold time-invariant

Performance Metric

Baseline: Optimal fixed threshold policy (OPT)

Candidate policy P: Attempts to learn the optimal threshold

$$\mathsf{Regret}_{\mathsf{P}}(T) = \sum_{t=1}^{T} \mathbb{E}[\mathsf{Loss}_{\mathsf{P}}(t)] - \sum_{t=1}^{T} \mathbb{E}[\mathsf{Loss}_{\mathsf{OPT}}(t)]$$

Online Learning for HI

Motivation

Our Setting

Main Results

Background: Prediction with Experts

Our Algorithms and Guarantees

Numerical Results

Conclusions
Main Results

Offload if confidence is low, i.e., below a threshold

What should be the threshold?

Online algorithms to choose threshold with sub-linear regret

Online Learning for HI

Motivation

Our Setting

Main Results

Background: Prediction with Experts

Our Algorithms and Guarantees

Numerical Results

Conclusions

Prediction with Experts

- K experts
- Time divided into rounds
- Algorithmic task: choosing 1 expert per round
- *K*-dimensional loss vector in each round
 - Adversarial losses
 - Loss revealed after expert chosen
 - System incurs loss of chosen expert
- Static policy: chooses the same expert in all rounds
- Baseline: optimal static policy
- Goal: minimize cumulative regret in rounds 1 to T

loss

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t + 1) = w_k(t) \exp(-\eta l_k(t))$

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t + 1) = w_k(t) \exp(-\eta l_k(t))$

$$t = 1$$

weight

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t + 1) = w_k(t) \exp(-\eta l_k(t))$

$$t = 1$$

weight

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t + 1) = w_k(t) \exp(-\eta l_k(t))$

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t + 1) = w_k(t) \exp(-\eta l_k(t))$

t = 1 t = 2weight loss weight $1 \quad \bigcup_{i=1}^{\infty} 0.3 \qquad e^{-0.3\eta} \quad \bigcup_{i=1}^{\infty} 1$ $1 \quad \bigcup_{i=1}^{\infty} 0.2 \qquad e^{-0.2\eta} \quad \bigcup_{i=1}^{\infty} 1$ $e^{-0.4\eta} \quad \bigcup_{i=1}^{\infty} 0.4 \qquad e^{-0.4\eta}$

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t + 1) = w_k(t) \exp(-\eta l_k(t))$

t = 1 t = 2weight loss weight $1 \quad \bigcup \quad 0.3 \quad \bigtriangledown \quad e^{-0.3\eta} \quad \bigcup \quad 1$ $1 \quad \bigcup \quad 0.2 \quad - e^{-0.2\eta} \quad \bigsqcup \quad e^{-0.2\eta} \quad \bigsqcup \quad e^{-0.4\eta} \quad u^{-0.4\eta} \quad u^{$

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t + 1) = w_k(t) \exp(-\eta l_k(t))$

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t+1) = w_k(t) \exp(-\eta l_k(t))$

Hedge for HI?

Initialize weights $w_k(1) = 1$ for $1 \le k \le K$ For $t = 1, 2, \dots, T$ Choose expert k with probability $\propto w_k(t)$ Receive loss vector $[l_1(t), l_2(t), \dots, l_K(t)]$ Update $w_k(t + 1) = w_k(t) \exp(-\eta l_k(t))$

- Thresholds as experts
- Loss of expert k = loss incurred if the system chooses threshold k

Online Learning for HI

Motivation

Our Setting

Main Results

Background: Prediction with Experts

Our Algorithms and Guarantees

Numerical Results

Conclusions

24

Recall: Loss Model

If we accept, loss vector only partially revealed

 $\bigotimes K$ may be very large (algorithm to be implemented on the ED)

Structural Properties of HI

Recall: In round *t*, if confidence < threshold, offload; else accept

- × : possible values of confidence metric
 : confidence metric
 - values seen by round t

- Both thresholds have the same sample path cost
- Can limit set of thresholds to a discrete set

Structural Properties of HI

Recall: In round *t*, if confidence < threshold, offload; else accept

- X: possible values of confidence metric
 - confidence metric values seen by round t

Tweak 2

 $\bigotimes K$ may be very large (algorithm to be implemented on the ED)

- Maintain a growing set of experts (thresholds)
- If the confidence value in round *t* is "new", add to set of experts
- New expert inherits cumulative loss of its parent

Our Algorithm: Hedge-Hl

Maintain a growing set of experts

- Set of experts = set of confidence values seen
- New expert inherits cumulative loss of its parent

2 Forced exploration with probability ϵ

• Compute $\hat{l}_i(t)$: an unbiased estimator of the loss

3 Use Hedge to choose an expert (threshold) using $\hat{l}_i(t)$ s

Performance of Hedge-HI

- Recall input parameters:
 - Learning rate η
 - Forced exploration probability ϵ
- N_T : number of experts at the end of round T

Theorem (sub-linear regret)
For
$$\eta = \left(\frac{\mathbb{E}[N_T]}{T}\right)^{\frac{2}{3}}$$
 and $\epsilon = \sqrt{\frac{\eta}{2}}$, Hedge-HI has $O\left(T^{\frac{2}{3}}(\mathbb{E}[N_T])^{\frac{1}{3}}\right)$ regret.

Performance of Hedge-HI

- Recall input parameters:
 - Learning rate η
 - Forced exploration probability ϵ
- N_T : number of experts at the end of round T

Theorem (sub-linear regret)
For
$$\eta = \left(\frac{\mathbb{E}[N_T]}{T}\right)^{\frac{2}{3}}$$
 and $\epsilon = \sqrt{\frac{\eta}{2}}$, Hedge-HI has $O\left(T^{\frac{2}{3}}(\mathbb{E}[N_T])^{\frac{1}{3}}\right)$ regret.

upper bounded by a constant for our setting

Performance of Hedge-HI

- Recall input parameters:
 - Learning rate η
 - Forced exploration probability ϵ
- N_T : number of experts at the end of round T

not known
Theorem (sub-linear regret)
For
$$\eta = \left(\frac{\mathbb{E}[N_T]}{T}\right)^{\frac{2}{3}}$$
 and $\epsilon = \sqrt{\frac{\eta}{2}}$, Hedge-HI has $O\left(T^{\frac{2}{3}}(\mathbb{E}[N_T])^{\frac{1}{3}}\right)$ regret.

upper bounded by a constant for our setting

Limitations of Hedge-HI

Maintain a growing set of experts

- Set of experts = set of confidence values seen
- New expert inherits cumulative loss of its parent

2 Forced exploration with probability ϵ

• Compute $\hat{l}_i(t)$: an unbiased estimator of the loss

3 Use Hedge to choose an expert (threshold) using $\hat{l}_i(t)$ s

Limitations of Hedge-HI

Maintain a growing set of experts

- Set of experts = set of confidence values seen
- New expert inherits cumulative loss of its parent

2 Forced exploration with probability ϵ

• Compute $\hat{l}_i(t)$: an unbiased estimator of the loss

3 Use Hedge to choose an expert (threshold) using $\hat{l}_i(t)$ s

Hedge-HI-Restart

Input: τ , η (learning rate), ϵ (forced exploration probability) For $t \leq \tau$, use Hedge-HI Freeze set of experts after round τ , reset all weights to 1 For $t > \tau$, use Hedge-HI on the frozen set of experts

τ = 🤪

Large τ : large number of experts, increase in complexity Small τ : may miss the optimal expert, increase in regret

Hedge-HI-Restart

- Recall input parameters:
 - τ
 - Learning rate η
 - Forced exploration probability ϵ
- N_t : number of experts at the end of round t
- Assumption: $\mathbb{P}(\operatorname{confidence}(t) = \operatorname{optimal threshold}) = \nu \in (0,1]$

Theorem (sub-linear regret)

 $\exists \tau, \eta, \text{ and } \epsilon, \text{ such that Hedge-HI-Restart has } O\left(T^{\frac{2}{3}}(\mathbb{E}[\log N_T])^{\frac{1}{3}}\right) \text{ regret.}$

Summary

	Hedge-HI	Hedge-HI-Restart
Expert Set	Can continue growing	Stops growing after round $ au$
Regret	$O\left(T^{\frac{2}{3}}(\mathbb{E}[N_T])^{\frac{1}{3}}\right)$	$O\left(T^{\frac{2}{3}}(\mathbb{E}[\log N_T])^{\frac{1}{3}}\right)$

Limitations

- Guarantee for Hedge-HI-Restart holds only under an assumption
- Need to know $\mathbb{E}[N_T]$

Online Learning for HI

Motivation

Our Setting

Main Results

Background: Prediction with Experts

Our Algorithms and Guarantees

Numerical Results

Conclusions
Simulation Framework

- Imagenet dataset (1000 classes, 50000 samples)
- S-ML: 8-bit quantized MobileNet tflite model
 - width parameter 0.25
 - size 500 KB
 - accuracy 35%
 - confidence 8-bit (256 unique values)
- *T* = 10000
- Use $\mathbb{E}[N_T] = 256$

Cumulative Loss

Average Runtime

Hedge-HI Restart(τ)

Online Learning for HI

Motivation

Our Setting

Main Results

Background: Prediction with Experts

Our Algorithms and Guarantees

Numerical Results

Conclusions

System Components

Hierarchical Inference

Hierarchical Inference

Offload if confidence is low, i.e., below a threshold

What should be the threshold?

Our Contributions

Offload if confidence is low, i.e., below a threshold

What should be the threshold?

Variants of Hedge to choose threshold with sub-linear regret

Prediction with Experts

1. Branching Experts (Gofer et al., COLT 2013)

- New experts revealed over time
- N_T finite
- Cumulative loss of new expert close to that of an existing expert
- Algorithm with $O\left(\sqrt{TN_T}\right)$ regret
- 2. Lifelong Learning with Branching Experts (Wu et al., ACML 2021)
 - New experts revealed over time
 - N_T finite
 - Adversarial and stochastic losses

Hedge-HI minus forced exploration is order-optimal

Online Learning for Hierarchical Inference*

Thanks!

*to appear in ACM MobiHoc 2024