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Some background

» The release of even seemingly innocuous functions of a private
dataset can leak information about identities of users/participants.
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> The framework of differential privacy (DP) was introduced in
[Dwork et al. (2006)] for the design/analysis of mechanisms resilient
to such attacks.
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Our interest: User-level DP

» Standard DP guarantees the privacy of a user when he/she
contributes at most one data sample.

» However, most real-world applications, e.g., language/image
recognition tasks, federated learning, traffic analysis, record multiple
contributions from each user.

> Recent work [Levy et al. (2021), Cummings et al. (2022)] formally
defined user-level DP that guarantees the privacy of any user who
contributes potentially multiple samples, and provided explicit
private mechanisms for mean estimation.

» Other works considered user-level privacy in the context of bounding
user contributions in ML models [Amin et al. (2019)] and in private
federated learning [Wang et al. (2019), McMahan et al. (2018)].

3/40



Basic setup

» Consider a city whose area is partitioned into grids/hexagons, e.g.,
using Uber's spatial indexing system H3.

Source: https://www.uber.com/en-IN/blog/h3/

» We quantize/bin the data records in each hexagon into
fixed-duration timeslots.

» We seek to release user-level differentially private estimates of the
sample mean of data values in a fixed Hexagon And Timeslot.
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https://www.uber.com/en-IN/blog/h3/

The dataset of interest

Central Catalogue
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Publishes realtime information ke bus position, ETA, planned trip schedules and
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Our contributions

Multiple Grid (Mean,Var) Release
Single Grid Mean Release
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Optimal tree-based mechanisms; optimal post-processing for consistency 6/40



Differentially Private Sample Mean Release for a
Single Grid/HAT



Preliminaries: Single grid/HAT

» Let L be the number of users in the HAT and let {my : ¢ € [L]} be
the collection of numbers of user contributions.

» We define my. := miny; my and m* := maxy my.

» Each user ¢ contributes speed samples S(*) ;= {51.(@) j € [mg]},
where each sample lies in [0, U]; for us, U = 65 km/hr.

» Our dataset hence is D = {(¢,5¥) : ¢ € [L]}.
» We wish to release the sample mean

W) =30

¢ j=1

in a user-level differentially private manner.
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User-level DP

» We say that two datasets D;, D, are user-level neighbours if they
differ in the sample values of a single user.

User User

Gk W N
9w N
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» A mechanism M is user-level e-DP if for every pair of datasets

Dy, D, that are user-level neighbours, and for every (measurable) Y,

e S Pr[M(D,) € Y] < Pr[M(Dy) € Y] < e Pr[M(D,) € Y].
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User-level DP

» We say that two datasets D;, D, are user-level neighbours if they
differ in the sample values of a single user.

User User
1 1
2 2
3 3
4 —_—> 4
5 5
. A . O

» A mechanism M is user-level e-DP if for every pair of datasets
D1, D; that are user-level neighbours, and for every (measurable) Y,

e~ Pr[M(D,) € Y] < Pr[M(Dy) € Y] < & Pr[M(D,) € Y].

... Think of e =1+ ¢, for € > 0 small
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User-level DP

» We say that two datasets D;, D, are user-level neighbours if they
differ in the sample values of a single user.

User User
1 1
2 2
3 3
4 —_—> 4
5 5
L O  (TTTTTTT]

» A mechanism M is user-level e-DP if for every pair of datasets
Dy, D, that are user-level neighbours, and for every (measurable) Y,

e S Pr[M(D,) € Y] < Pr[M(Dy) € Y] < e Pr[M(D,) € Y].

» Informally, a user-level DP mechanism ensures statistical
indistinguishability of its outputs when a single user changes his/her
samples.
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Achieving user-level DP: the Laplace mechanism - |

» Given a function f : D — R (say, the sample mean), we define its
user-level sensitivity to be

Af = Dl,DTi-)I(nbrs.|f(D)1 N f(Dz)‘

As an example, for our dataset D,

Um*

Auzm.
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Achieving user-level DP: the Laplace mechanism - |

» Given a function f : D — R (say, the sample mean), we define its
user-level sensitivity to be

Af = Dl,DTi-)fnbrs.|f(D)1 N f(D2)‘

As an example, for our dataset D,

Um*

Auzm.

» The Laplace mechanism simply adds Laplacian noise (of the right
std. dev.) to the function of interest:

MP(D) = f(D) + Z,

where Z ~ Lap(A¢/e).

For X ~ Lap(b), b > 0, we have fx(x) = ﬁe*b"/b, x € R.
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Achieving user-level DP: the Laplace mechanism - Il

The following theorem is well-known:

Theorem
The mechanism M2P is user-level e-DP.
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Achieving user-level DP: the Laplace mechanism - Il

The following theorem is well-known:

Theorem
The mechanism M2P is user-level e-DP.

The following “utility” guarantee holds, via Laplacian tail bounds:

Theorem
For any D and any € (0,1), we have

_ Brin(1/5)

>1-4.

Pr ||M"P(D) — f(D)|
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Achieving user-level DP: the Laplace mechanism - Il

The following theorem is well-known:

Theorem
The mechanism M2P is user-level e-DP.

» However, for real-world datasets, when f = p, the std. dev. of noise
Z ~ Lap(A,/¢) added is

_V2A,  V2Um*

7z= ey, m’

which is large when either U or m* is large.
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Achieving user-level DP: the Laplace mechanism - Il

The following theorem is well-known:

Theorem
The mechanism M2P is user-level e-DP.

» However, for real-world datasets, when f = p, the std. dev. of noise
Z ~ Lap(A,/¢) added is

_V2A,  V2Um*

7z= ey, m’

which is large when either U or m* is large.

We attempt to reduce oz by fine-tuning mechanisms from the
literature and by introducing novel choices of subroutines.
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Our approach

We design three e-DP mechanisms that perform two kinds of operations:

|(sgl>,s<;), e S, (SRR, o, SR), -, (S, 5P, ...,sgz«g]|

Clip lengths of arrays

Organize into arrays
(or pseudo-users)

Clip sample values to
high-prob. interval

11/40



Our approach

We design three e-DP mechanisms that perform two kinds of operations:

|(sgl>,s<;), e S, (SRR, o, SR), -, (S, 5P, ...,sg;«g]|

Organize into arrays
(or pseudo-users)

Clip sample values to
high-prob. interval

1. Array-Averaging

Clip lengths of arrays
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Prelude: Strategies for creation of pseudo-users

| (50,5, .., S0), (52,52, .., 5B), ., (5,58, ..., 581)

Organize into arrays
(or pseudo-users)

1. Array-Averaging Clip lengths of arrays + Laplace noise
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Prelude: Strategies for creation of pseudo-users

We first organize the speed samples into arrays/pseudo-users via a
natural grouping strategy, called BestFit. Fix myg € [m,, m*].
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Prelude: Strategies for creation of pseudo-users

We first organize the speed samples into arrays/pseudo-users via a
natural grouping strategy, called BestFit. Fix myg € [m,, m*].

» BestFit: The first min{m;, myg} samples from each user ¢ € L are
filled into that array of length myg that is filled the most.

K arrays

-
=
| e
-
n
@
c
5

» The number of arrays created is

> min{my, mUB}J .

?szl
mus

» Each user “occupies” at most 1 array.
12/40



Array-Averaging

Array-Averaging adds suitable Laplace noise to the array means.

| (59,5, .., S0), (52,52, .. 5B), ., (52,5, .., 583)

0. Baseline

J

Organize into arrays
(or pseudo-users)

1. Array-Averaging Clip lengths of arrays + Laplace noise
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Array-Averaging

1. Group the samples in pseudo-users using BestFit.
2. Compute the means A; of the sample values in each array A;.

3. Return

1 & U
Marr,best(D) - ZA, + Lap () .

Choosing myg = median({m;y}) gives a factor-of-2 approximation
of the lowest o7 to be added, under some regularity conditions.
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Levy and Quantile

Levy and Quantile first clip the array means and then add Laplace noise.

| (52,59, .., 50), (5P, 5P, .., 53,

.q(sﬁhsgh,“,sﬁ)

A4
e

Organize into arrays
(or pseudo-users)

Clip lengths of arrays

Clip sample values to
high-prob. interval

+ Laplace

noise
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Levy

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget £/2) a high-probability interval [a, b]
that is the (3, 2)-interquantile interval [Levy et al. (2021)].
3. Project the array means A; into the interval [a, b].

4. Return

1 & _ 20
MLevy(D) = ? Z I'l[a,b](A,-) + Lap ((:Levy) .
=1

HlLevy
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Levy

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget £/2) a high-probability interval [a, b]
that is the (3, 2)-interquantile interval [Levy et al. (2021)].

3. Project the array means A; into the interval [a, b].

4. Return

M, 2A)U‘Levy
Levy Z n[a b] + Lap T .

HlLevy

Ke myg Ke

) = (potentially)
Here, 07 Levy = min {9 <U log(K)) ,W} < OZ Arr-

In our experiments, we attempt a heuristic minimization of the first term
above by maximizing K\/myg over myg.

15 /40



Quantile

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget £/2) a high-probability interval
[2', b'] that is either

> the (4, & )-interquantile interval [Smith (2011)] (FixedQuantile) or

10 10

> an “optimized” e-dependent interval [Amin et al. (2019)]
(e-DependentQuantile).

3. Project the array means A; into the interval [a’, b].

4. Return

K
22 foyamie
MLevy = ? Z [a/ b/ + Lap (§\|> .
i=1

fQuantile
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Quantile

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget £/2) a high-probability interval
[2', b'] that is either

> the (15, 13 )-interquantile interval [Smith (2011)] (FixedQuantile) or

10 10

> an “optimized” e-dependent interval [Amin et al. (2019)]
(e-DependentQuantile).

3. Project the array means A; into the interval [a’, b].

4. Return

K
2D e
MLevy = ? Z [a/ b’ + Lap (2') .
i=1

fQuantile

2v2(b'—a’)

Here, 0 Z Quantile = Ke
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A quick recap

Baseline Array-Averaging
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Experimental results |: Real-world data

» We evaluated the performance of our algorithms on real-world ITMS
traffic data from an Indian city.

> We compare the mean absolute error (MAE) of our private
algorithms vis-3-vis the true sample mean.

—=- BASELINE
—— ARRAY — AVERAGING
——LEVY
FIXEDQUANTILE
——¢ —~ DEPENDENTQUANTILE

MAE
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Experimental results |I: Synthetic data

We then generate a synthetic dataset as follows. Fix a (large) integer A.

1. User contributions:

»> Sample scaling: Set L =L and me = \-my, for each £ € L.

» User scaling: Set L=M\Land Mxe—1)+i = my, for i € [\] and £ € L.

2. Data samples:

Generate i.i.d. speed samples {§j(£) : e [L], j € [mq]} such that
S\ ~ Nio,u(2), where Z ~ Ny, 0?),

where y, 02 are the (true) mean and variance of the ITMS samples.
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Experimental results |I: Synthetic data

We compare the mean absolute error (MAE) of our private algorithms
vis-a-vis the true sample mean.

—=— BASELINE
—— ARRAY — AVERAGING
——LEVY
3 FIXEDQUANTILE
——¢& — DEPENDENTQUANTILE

Sample scaling
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Experimental results |I: Synthetic data

We compare the mean absolute error (MAE) of our private algorithms
vis-a-vis the true sample mean.

—=— BASELINE
—— ARRAY — AVERAGING
——LEVY
FIXEDQUANTILE
——¢& — DEPENDENTQUANTILE

MAE

User scaling
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Some theoretical justification of performance trends

From our simulations, we see that

Levy > other alg.  (Sample scaling)
(Fixed-)Quantile > other alg. (User scaling)
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Some theoretical justification of performance trends

From our simulations, we see that

Levy > other alg.  (Sample scaling)
(Fixed-)Quantile > other alg. (User scaling)

Theorem

Under sample scaling, using our choices of myg
(median/heuristically optimized),

O'(S) =0 CT(S) =0
Z,Base — YZ,Base; Oz pApr — OZ,Arr,
and
o _ 1
O—Z,Levy— \/X *0Z, Levy-
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Some theoretical justification of performance trends

From our simulations, we see that

Levy > other alg.  (Sample scaling)
(Fixed-)Quantile > other alg. (User scaling)

Theorem
Under user scaling, using our choices of myg
(median/heuristically optimized), for large enough scaling ),

(u) . (u) (u)
Oz.Ar < min {UZJ—EV}” UZ,&—Dep.—QuantiIe} w.h.p.,

if the exact sample-dependent quantiles are employed.
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A second look at Array-Averaging: Error bounds
» We attempt to characterize exactly a measure of the total
estimation error (clipping+privacy loss) in Array-Averaging.

» Since our real-world datasets D contain non-i.i.d. samples, we define
a notion of the worst-case error, for a fixed m = myg:

EC)(m) = max EE)(D, m),

where )
A
E(E)(D, m) = |fan(D, m) — £(D)| + B
Clipping m
Theorem
max |fa,(D, m) — f(D)| = U - (1 — Zem'”{’"@’”}> _
P Zz my
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A second look at Array-Averaging: Error bounds

Let Iy := min{m,, m}. We then set

E® = min E®(m)

m, <m<m*

=  min U- (1 - 2. > + Uzn : (1)
m,<m<m* D0 me e y—1Te

Since

E®) >max min E(D'.,m)> min E(D,m),

D' m,<m<m* my, <m<m*

we have that £(¥) is an upper bound on the smallest error of Array-
Averaging on any dataset D.

The optimization problem in (1) is non-convex in m. Let m() be an
optimizer.
23 /40



Some properties of m(®)

1. There exists
m(e) e {my,....,m.}. E

2. m is non-decreasing in ¢.
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Some properties of m(®)

1. There exists
) R o
m e {my,...,m.}.

2. m is non-decreasing in ¢.

2
3. Let emin 1= #Zme and emay 1= (ZLZTTZ) . Then, for & < epin, We

have m(®) = m,, and for ¢ > Emax, We have m(€) = m*.
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Baseline Array-Averaging Error Analysis for
Array-Averaging
| w— ) .
oe——= }Average E———= }Average —
H ]
] —tl » {A;} E }Average
um* WrapAround : [cu] —_—
+ Lap Myg + Lap| — :
Smge BestFit Ke H [cu]
My + Lap|—
Ke
Worst-Case Error
_:: Levy E€(D) = min,, maxy, E©(m, D)
—= non-convex
[Eh— }Average —
: ;o T,
_:' 0_,_,_ + Lap[b__” ] Quantile Worst-case clipping error = U - [1— Il
: oY Ke Zmy
WrapAround a b
Myg
BestFit Ciip i
OPT-Array-Averaging

All mechanisms in one figure



Differentially Private Sample Mean and Variance
Release for Multiple Grids/HATs



Preliminaries: Multiple grids/HATs

» Let L be the total number of users and G be the total number of
disjoint grids.

{Emy : L € [L], g € [G]} < numbers of user contributions.
» Further, let
EL={¢: 8my >0} and G, ={g: em; > 0}
and let &L and G, be their cardinalities.

> Analogous to the case earlier, let £S(*) := {gsj.“) 1J € [gmz]}, be
the data samples, all of which lie in [0, U].
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Preliminaries: Multiple grids/HATs

>

Let L be the total number of users and G be the total number of
disjoint grids.

{Emy : L € [L], g € [G]} < numbers of user contributions.
Further, let
EL={¢: 8my >0} and G, ={g: em; > 0}
and let &L and G, be their cardinalities.

Analogous to the case earlier, let £S(*) := {gsj.“) 1J € [gme]}, be
the data samples, all of which lie in [0, U].

We wish to release

f(D) := (f(D)), , where (D) = | &u(D) , &Var(D)
—— ———
Mean in grid g Var. in grid g

in a user-level e-DP manner.
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A pictorial depiction
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Achieving user-level DP: the Laplace mechanism again

» As earlier, one can define an e-user-level DP Laplace mechanism
M“*(D) = f(D) + Z,
where Z = (Zy, ..., Z¢), with Z; "% Lap(A¢/e).

» Explicitly characterizing Ay is hard, owing to the contributions of
users across grids.
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Achieving user-level DP: the Laplace mechanism again
» As earlier, one can define an e-user-level DP Laplace mechanism
M“*(D) = f(D) + Z,
where Z = (Zy, ..., Z¢), with Z; "% Lap(A¢/e).

» Explicitly characterizing Ay is hard, owing to the contributions of
users across grids.

> A simple (and practical) solution: allocate a “privacy budget” ¢ to
each grid, with

EMLP(D) = (D) + €21, EMGZP(D) = £Var(D) + £ 2.

Here, 87, ~ Lap(2As, /<) and 82, ~ Lap(2Qsvar/€).
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Achieving user-level DP: the Laplace mechanism again
» As earlier, one can define an e-user-level DP Laplace mechanism
M“*(D) = f(D) + Z,
where Z = (Zy, ..., Z¢), with Z; "% Lap(A¢/e).

» Explicitly characterizing Ay is hard, owing to the contributions of
users across grids.

> A simple (and practical) solution: allocate a “privacy budget” ¢ to
each grid, with

EMLP(D) = (D) + €21, EMGZP(D) = £Var(D) + £ 2.
Here, 87, ~ Lap(2As, /<) and 82, ~ Lap(2Qsvar/€).
» By the Basic Composition Thm., the mechanism
M= (=Mt (D), sM5 (D)) - g < [6])

is Ge-user-level DP.

27 /40



A vanilla bound in a picture

[ .S'AMFI gﬂMVﬂl’]

M = (81M,£1M,33M’84M)
is 4¢-DP

[ ngwg‘MVar] [ S‘Ml" glew]

... but can we do better?

28/40



A simple observation

Indeed, in our problem setting, if 8 M are e-user-level DP mechanisms for
each grid g,

Theorem
The mechanism M = (M : g € [G]) is user-level
€ - maxy Gyg-DP.

29 /40



A simple observation

Indeed, in our problem setting, if 8 M are e-user-level DP mechanisms for
each grid g,

Theorem
The mechanism M = (M : g € [G]) is user-level
€ - maxy Gyg-DP.

» We hence seek to reduce max, Gy, i.e., the largest number of grids
any user “occupies”.

» This is accomplished by completely suppressing contributions of
selected users in selected grids, while maintaining the same
worst-case error.

... but how is the error computed?
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A notion of a worst-case error

>

Suppose that we have mechanisms € M, : D — R for each grid g,
to privately release statistics &6, where

&My(D) =€0(D) + Z,

with Z ~ Lap®? (A,5/¢), for some estimator €0 of the true statistic
6.

We define the worst-case estimation error of & My as

gF — gh. _&g. 7
E: _e%gggl %(D) = %6,(D)| + ElIZI]

. Privacy loss
Worst-case bias

Finally, we define the error metric E of My = (8My : g € [G]) as
E := max E.
g€l[6]

We treat the error threshold of a dataset-unaware client as precisely
this worst-case error E.
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Exact error characterizations |: Sensitivities

» Focus on a single grid g.

» Consider estimators of sample mean and variance that are obtained
by (arbitrarily) clipping user contributions.

» Fix a strategy Clip that retains any I'; € [0 : my] contributions of
each user £. Let [ := max,[,.

Theorem
We have U+
A/J'Cﬁp ey and
Eezl e
w if r 2r*
(Ez rz) y ZZ 0>

AVarg, = —, if>,Te <2M* and Y, Ty is even,

v (1 At ) if S, Ty < 2T and 2, T is odd.
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Exact error characterizations II: Clipping/Bias errors

Let E,, and Ey,r be the clipping errors via Clip.

Theorem
We have ST
E=U-(1- #) )
g ( Ze my
Theorem

Evar =0 if Ty = my, for all £ € [L]. Furthermore, if
Y>oeTe <>, me, we have

28 E ’ 1= pr .
v Zf&:z;;:;;‘f re), ify gmg>2%,T,,

2 . 5
Evar = %, if Y, my <23,T, and >, my is even,

UTZ : (1 — W) , otherwise.
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Some remarks

» There is a close relationship between the proofs for sensitivity and
for the worst-case clipping error.

» The user-level sensitivity Avy,, gives as a corollary the item-level
sensitivity
U(L—-1
AVar,item = %,
obtained in [D’'Orazio, Honaker, King (2015)].

The techniques for computing Ay, are however much more
involved.

» Via the worst-case bias and sensitivity expressions, we obtain
expressions for the worst-case errors 8 E:

EF -— max |g(9,-(7.7) — gg’_(D)’ + E[Z]] .
) DeD —

Privacy loss

Worst-case bias

Goal: Can we reduce max, G without hurting E = maxg 8E?
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The CHOP-USER algorithm for suppression

> For each grid g, compute the initial privacy loss errors E[||€ Z]|].
> Set Eihresh = Maxg E[||g7||]
> |terate the following until STOP:
» For each user ¢, identify the grid
g — . ngost
g(t) = min :

where 8 EP*" is the error obtained by (potentially) suppressing £ in g,
i.e., by setting €T, = 0 and €Ty = &my, for all ¢’ € L,.

> If 8OEP > Eyregn, then STOP.
» Else, update G, + Go \ {g(¢)} and 8L «+ 8L\ {¢}.

» Return K = max; Gy.

(1) Such a suppression-based approach will not work in the item-level DP setting.
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Experimental results |: Real-world data

25 T
— Privacy loss post suppression
—Privacy loss without suppression

Privacy losses

Plot of privacy loss under composition Ke after execution of CLIP-USER on
the real-world ITMS dataset, against the original privacy loss € - max, G; = 1le.
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Experimental results |I: Synthetic data

— Privacy loss post suppression
—Privacy loss without suppression

—_
(<] e} o

Expected privacy losses
EN

L -
0.1 0.3 0.5 0.7 09 1

Plot of privacy loss under composition Ke after execution of CLIP-USER on a
synthetic dataset with a single heavy-hitter user, against the original privacy
loss € - maxy Gy = 12¢.

Clear gains in composition privacy loss are to be had for small (high-privacy) €!
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Summary

» Vanilla user-level DP mechanisms can be beaten by clipping-based
mechanisms, with some fine-tuning.

» The simple Array-Averaging mechanism can be rigorously analyzed
for worst-case error.

» Using exact expressions for worst-case errors, it is possible in
practice to improve the composition privacy loss of mechanisms on
disjoint grids, via suppression.
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Our works

Mean Estimation with User-Level Privacy for
Spatio-Temporal IoT Datasets

V. Arvind Rameshwar, Anshoo Tandon, Prajjwal Gupta, Aditya Vikram Singh,
Novoneel Chakraborty, and Abhay Sharma

Absiract—This paper considers the probiem of the private

paper applicab
tio-temporal ToT .....\ o venin » difcently
P o e

L INtropuction
s now well-undersood tht he release of even seemingly

involved & somewhat naively anonymized.
data, released by the Taxi and Limousine Commission of
New York City 3, hichvas sl desponymize (4
therehy revealing sensity "

sample. However, most real-
databases, record multple contributions from every user; a

of noise to gusraniee privacy. Recent work on “user-level
privacy” [6] however demonstates

new algorthms that guarantee much improved estimation c
due 10 the additonal privacy requirement fo (s fixed) m > 1

the effctivencss of some.

In this paper, we provide algorithms, which draw on the
cescarch in [6), for ensuring userlevel privacy in the context
raffic

might affect vehicle insurance premi-

s e deigned vih e e of conoling

the “userlevel sensitvity” of the sample me:

interesied in.

We i empeically et e pefornance of uch
their

city. Here, the s 1 buses are drawa in 4
oty aundd. maner o 0 unkooun discbtion
2 e s of e sougo o by diffent

e syhtc duae, wing e siies of e el

number of samples contributed per user, We demonstrae, via
extensive experimens, the cllectiveness or the relative poor
performance of the different algorithms we employ, in cach
case. In additon, we provide theoretical ustification for the
rends that we observe and recommendations f
th i sgorm o bowed o e el wod dunes
‘We mention that the results presented in this paper can

poor estimalion crrors, owing o the addiion of & arge amount

Presented in ISIT

. 8. 16D :m

pp g

IT-TML, SPCOM;

arXiv: 2401.15906

Improving the Privacy Loss Under User-Level

DP Composition for Fixed Estimation Error

V. Arvind Rameshwar, Graduate Student Member, IEEE, Anshoo Tandon, Senior

Member, IEEE

Abstract

This paper considers the private release of statisties of several disjoint subsets of a datasets. Tn
particula, we consider the e-user-level differntilly privae release of sample means and variances of
sample values in disjoint subsets of a dataset, in a potentally sequential manner. Traditional analysis
of the privacy loss under user-level privacy due 1o the composition of queris to the disfoint subsets
necessitaes a privacy loss degradtion by the total number of disjoint subsets. Our main contribution i

lgorithm, based . which

the overal privacy
loss degradation under a canonical Laplce mechanism, while not increasing the worst estimation error
among the subsets. Important components of this analysis are our exact, analytical characterizations of
the sensiivities and the worst.case bias errors of estimators of the sample mean and variance, which
are obtsined by clipping or suppressing user contibutions. We test the performance of our algorithm on
real-world and synthetic datasts and demonstrte improvements in the privacy Toss degradation fctor,
for fixed estimation error. We also show improvements in the worst-case error across subsets, via

natural optimization procedure, for fixed numbers of users contributing to cach subset

Index Terms

User-level differential privacy, minimax error, composition, traffic datasets

Submitted to IEEE T-IT;
arXiv: 2405.06261
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Our works

Optimal Tree-Based Mechanisms for Differentially
Private Approximate CDFs

V. Arvind Rameshwar, Anshoo Tandon, and Abhay Sharma

Abstract—This paper considers the s-differentially private
(DP) release of an approximate cumulative distribution function
(CDF) of the samples taset. We assume that the true
(approximate) CDF is obtained after lu
into a fixed number K of bi
well-known binary tree mechanis
tree-based mechanisms and identify &-DP mechanisms that
have a small £y-error. We identify optimal or close-to-optimal
tree structures when either of the parameters, which are the
branching factors or the privacy budgets at each tree level, are
given. and when the algorithm designer is free to choose both
sets of parameters. Interestingly, when we allow the branching
factors to take on real values, under certain mild restrictions,
the optimal level-uniform tree-based mechanism is obtained by
choosing equal branching factors independent of K, and equal
dgets at allevels, Furthermore or selected K valoes,
optimal inieger branching factors and
tree height, Issllmmgequa] privacy budgets at all levels, Finally,
e describe gencral statcgies for mproving the privaie CDF
estimates further, by combining multiple noisy estimates and
by post-processing the estimates ﬁn consistency.

1. INTRODUCTION

It is now well-understood that the release of even seem-
ingly innocuous functions of a dataset that is not publicly
available can result in the reconstruction of the identities
of individuals (or users) in the dataset with alarming levels
of accuracy (see, ¢.g., [1], [2]). To alleviate concems over
such attacks, the framework of differential privacy (DP) was
introduced in [3], which guarantees the privacy of any single
sample. Subsequently, several works (see the surveys [4],
[5] for references) have sought to design DP mechanisms or
algorithms for the provably private release of statistics such
as the mean, variance, counts, and histograms, resulting in
the widespread adoption of DP for private data mining and
analysis [6], [7)

In this work, we consider the fundamental problem of the
DP release of (approximate) cumulative distribution functions

been only few works that seek to optimize the parameters
of such mechanisms to achieve low errors. In particular, the
works [12], [13] consider variants of the well-known binary
tree mechanism and suggest choices of the tree branching
factor that achieve low errors using somewhat unnatural
error metrics and asymptotic analysis. On the other hand,
in the context of continual counting, given a fixed choice of
parameters of (variants of) the binary tree mechanism, the
works [14], [15] suggest techniques to optimally process the
information in the nodes of the tree and use multiple noisy
estimates of the same counts to obtain low-variance estimates
of interval queries. We mention also that there have been
several works (see, e.z., [16]-[18] and references therein)
on matrix factorization-based mechanisms that result in the
overall optimal error for general “linear queries” (see [3, Sec.
1.5] for the definition). In this work, we concentrate on the
class of tree-based mechanisms and seck to optimize their
parameters for low £2-error.

‘We first revisit some simple mechanisms for differentially
private CDF release, via direct interval queries or histogram-
based approaches, and explicitly characterize their &-errors.
While such results are well-known (see, ¢.g., [10]), they allow
for comparisons with the errors of the broad class of “level-
uniform tree-based” mechanisms — a class that we define
in this work — that subsumes the binary tree mechanism
and its previously studied variants [12], [13], [15]. First,
by relaxing the integer constraint on the branching factors
of the tree, we identify the optimal mechanism within this
class, which turns out to be a simple tree-based mechanism
with equal branching factors and privacy budgets at all levels.
Furthermore, for sufficiently large K, the optimal branching
factor, under a mild restriction on the branching factors,
is a constant — roughly 17. We mention that, interestingly,
[12] reports the optimal branching factor in a subclass of

Submitted to IEEE TIFS; arXiv: 2409.18573
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Ongoing and future research directions

» Exploring the release of user-level DP data cluster centers for
telecom inference tasks

» Investigating user-level DP mechanisms for general machine learning
tasks

» Deriving exact expressions for the worst-case clipping errors and
user-level sensitivities for other statistics of interest
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