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Some background

▶ The release of even seemingly innocuous functions of a private
dataset can leak information about identities of users/participants.

▶ The framework of differential privacy (DP) was introduced in
[Dwork et al. (2006)] for the design/analysis of mechanisms resilient
to such attacks.
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An explosion of works since then

. . . and several more
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Our interest: User-level DP

▶ Standard DP guarantees the privacy of a user when he/she
contributes at most one data sample.

▶ However, most real-world applications, e.g., language/image
recognition tasks, federated learning, traffic analysis, record multiple
contributions from each user.

▶ Recent work [Levy et al. (2021), Cummings et al. (2022)] formally
defined user-level DP that guarantees the privacy of any user who
contributes potentially multiple samples, and provided explicit
private mechanisms for mean estimation.

▶ Other works considered user-level privacy in the context of bounding
user contributions in ML models [Amin et al. (2019)] and in private
federated learning [Wang et al. (2019), McMahan et al. (2018)].
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Basic setup
▶ Consider a city whose area is partitioned into grids/hexagons, e.g.,

using Uber’s spatial indexing system H3.

Source: https://www.uber.com/en-IN/blog/h3/

▶ We quantize/bin the data records in each hexagon into
fixed-duration timeslots.

▶ We seek to release user-level differentially private estimates of the
sample mean of data values in a fixed Hexagon And Timeslot.
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The dataset of interest
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Our contributions

Single Grid Mean Release

Algorithms; worst-case error

Multiple Grid (Mean,Var) Release

Gains in K(< G) for fixed worst-case
estimation error

Approximate CDF Release

Optimal tree-based mechanisms; optimal post-processing for consistency
6 / 40



Differentially Private Sample Mean Release for a
Single Grid/HAT



Preliminaries: Single grid/HAT

▶ Let L be the number of users in the HAT and let {mℓ : ℓ ∈ [L]} be
the collection of numbers of user contributions.

▶ We define m⋆ := minℓ mℓ and m⋆ := maxℓ mℓ.

▶ Each user ℓ contributes speed samples S (ℓ) :=
{
S
(ℓ)
j : j ∈ [mℓ]

}
,

where each sample lies in [0,U]; for us, U = 65 km/hr.

▶ Our dataset hence is D = {(ℓ,S (ℓ)) : ℓ ∈ [L]}.

▶ We wish to release the sample mean

µ(D) := 1∑
ℓ mℓ

·
∑
ℓ

mℓ∑
j=1

S
(ℓ)
j

in a user-level differentially private manner.
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User-level DP
▶ We say that two datasets D1,D2 are user-level neighbours if they

differ in the sample values of a single user.

▶ A mechanism M is user-level ε-DP if for every pair of datasets
D1,D2 that are user-level neighbours, and for every (measurable) Y ,

e−ε Pr[M(D2) ∈ Y ] ≤ Pr[M(D1) ∈ Y ] ≤ eε Pr[M(D2) ∈ Y ].

▶ Informally, a user-level DP mechanism ensures statistical
indistinguishability of its outputs when a single user changes his/her
samples.
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Achieving user-level DP: the Laplace mechanism - I
▶ Given a function f : D → R (say, the sample mean), we define its

user-level sensitivity to be

∆f := max
D1,D2 u-l nbrs.

|f (D)1 − f (D2)|.

As an example, for our dataset D,

∆µ =
Um⋆∑
ℓ mℓ

.

▶ The Laplace mechanism simply adds Laplacian noise (of the right
std. dev.) to the function of interest:

MLap(D) = f (D) + Z ,

where Z ∼ Lap(∆f /ε).

For X ∼ Lap(b), b > 0, we have fX (x) =
1
2b
e−|x|/b, x ∈ R.
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Achieving user-level DP: the Laplace mechanism - II

The following theorem is well-known:

Theorem
The mechanism MLap is user-level ε-DP.
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Achieving user-level DP: the Laplace mechanism - II

The following theorem is well-known:

Theorem
The mechanism MLap is user-level ε-DP.

The following “utility” guarantee holds, via Laplacian tail bounds:

Theorem
For any D and any δ ∈ (0, 1), we have

Pr

[∣∣MLap(D)− f (D)
∣∣ ≤ ∆f ln(1/δ)

ε

]
≥ 1− δ.
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Achieving user-level DP: the Laplace mechanism - II

The following theorem is well-known:

Theorem
The mechanism MLap is user-level ε-DP.

▶ However, for real-world datasets, when f = µ, the std. dev. of noise
Z ∼ Lap(∆µ/ε) added is

σZ =

√
2∆µ

ε
=

√
2Um⋆

ε ·
∑

ℓ mℓ
,

which is large when either U or m⋆ is large.

We attempt to reduce σZ by fine-tuning mechanisms from the
literature and by introducing novel choices of subroutines.

10 / 40



Achieving user-level DP: the Laplace mechanism - II

The following theorem is well-known:

Theorem
The mechanism MLap is user-level ε-DP.

▶ However, for real-world datasets, when f = µ, the std. dev. of noise
Z ∼ Lap(∆µ/ε) added is

σZ =

√
2∆µ

ε
=

√
2Um⋆

ε ·
∑

ℓ mℓ
,

which is large when either U or m⋆ is large.

We attempt to reduce σZ by fine-tuning mechanisms from the
literature and by introducing novel choices of subroutines.

10 / 40



Our approach

We design three ε-DP mechanisms that perform two kinds of operations:

11 / 40



Our approach

We design three ε-DP mechanisms that perform two kinds of operations:

11 / 40



Prelude: Strategies for creation of pseudo-users
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Prelude: Strategies for creation of pseudo-users

We first organize the speed samples into arrays/pseudo-users via a
natural grouping strategy, called BestFit. Fix mUB ∈ [m⋆,m

⋆].

▶ BestFit: The first min{mℓ,mUB} samples from each user ℓ ∈ L are
filled into that array of length mUB that is filled the most.

▶ The number of arrays created is

K ≥ K =

⌊∑
ℓ min{mℓ,mUB}

mUB

⌋
.

▶ Each user “occupies” at most 1 array.

12 / 40



Array-Averaging

Array-Averaging adds suitable Laplace noise to the array means.
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Array-Averaging

1. Group the samples in pseudo-users using BestFit.

2. Compute the means Ai of the sample values in each array Ai .

3. Return

Marr,best(D) =
1

K

K∑
i=1

Ai + Lap

(
U

Kε

)
.

Choosing mUB = median({mℓ}) gives a factor-of-2 approximation
of the lowest σZ to be added, under some regularity conditions.
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Levy and Quantile

Levy and Quantile first clip the array means and then add Laplace noise.
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Levy

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget ε/2) a high-probability interval [a, b]
that is the

(
1
4 ,

3
4

)
-interquantile interval [Levy et al. (2021)].

3. Project the array means Ai into the interval [a, b].

4. Return

MLevy(D) =
1

K

K∑
i=1

Π[a,b](Ai )︸ ︷︷ ︸
µLevy

+ Lap

(
2∆µLevy

ε

)
.

Here, σZ ,Levy = min

{
Θ

(
U
Kε

√
log(K)
mUB

)
, 2

√
2U

Kε

}
(potentially)

≤ σZ ,Arr.

In our experiments, we attempt a heuristic minimization of the first term
above by maximizing K

√
mUB over mUB.
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Quantile

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget ε/2) a high-probability interval
[a′, b′] that is either

▶ the
(

1
10
, 9
10

)
-interquantile interval [Smith (2011)] (FixedQuantile) or

▶ an “optimized” ε-dependent interval [Amin et al. (2019)]
(ε-DependentQuantile).

3. Project the array means Ai into the interval [a′, b′].

4. Return

MLevy(D) =
1

K

K∑
i=1

Π[a′,b′](Ai )︸ ︷︷ ︸
fQuantile

+ Lap

(
2∆fQuantile

ε

)
.

Here, σZ ,Quantile =
2
√
2(b′−a′)

Kε
.
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A quick recap
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Experimental results I: Real-world data

▶ We evaluated the performance of our algorithms on real-world ITMS
traffic data from an Indian city.

▶ We compare the mean absolute error (MAE) of our private
algorithms vis-á-vis the true sample mean.
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Experimental results II: Synthetic data

We then generate a synthetic dataset as follows. Fix a (large) integer λ.

1. User contributions:

▶ Sample scaling: Set L̂ = L and m̂ℓ = λ ·mℓ, for each ℓ ∈ L.

▶ User scaling: Set L̂ = λL and m̂λ(ℓ−1)+i = mℓ, for i ∈ [λ] and ℓ ∈ L.

2. Data samples:

Generate i.i.d. speed samples {Ŝ (ℓ)
j : ℓ ∈ [L̂], j ∈ [m̂ℓ]} such that

Ŝ
(ℓ)
j ∼ Π[0,U](Z ), where Z ∼ N (µ, σ2),

where µ, σ2 are the (true) mean and variance of the ITMS samples.
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We compare the mean absolute error (MAE) of our private algorithms
vis-á-vis the true sample mean.
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Some theoretical justification of performance trends

From our simulations, we see that

Levy ≻ other alg. (Sample scaling)

(Fixed-)Quantile ≻ other alg. (User scaling)
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Levy ≻ other alg. (Sample scaling)

(Fixed-)Quantile ≻ other alg. (User scaling)

Theorem
Under sample scaling, using our choices of mUB

(median/heuristically optimized),

σ
(s)
Z ,Base = σZ ,Base, σ

(s)
Z ,Arr = σZ ,Arr,

and

σ
(s)
Z ,Levy =

1√
λ
· σZ ,Levy.
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Some theoretical justification of performance trends

From our simulations, we see that

Levy ≻ other alg. (Sample scaling)

(Fixed-)Quantile ≻ other alg. (User scaling)

Theorem
Under user scaling, using our choices of mUB

(median/heuristically optimized), for large enough scaling λ,

σ
(u)
Z ,Arr < min

{
σ
(u)
Z ,Levy, σ

(u)
Z ,ε-Dep.-Quantile

}
w.h.p.,

if the exact sample-dependent quantiles are employed.
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A second look at Array-Averaging: Error bounds

▶ We attempt to characterize exactly a measure of the total
estimation error (clipping+privacy loss) in Array-Averaging.

▶ Since our real-world datasets D contain non-i.i.d. samples, we define
a notion of the worst-case error, for a fixed m = mUB:

E (ε)(m) := max
D

E (ε)(D,m),

where

E (ε)(D,m) = |fArr(D,m)− f (D)|︸ ︷︷ ︸
Clipping

+
∆̃fArr

ε︸ ︷︷ ︸
Privacy

.

Theorem

max
D
|fArr(D,m)− f (D)| = U ·

(
1−

∑
ℓ min{mℓ,m}∑

ℓ mℓ

)
.
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A second look at Array-Averaging: Error bounds

Let Γℓ := min{mℓ,m}. We then set

E (ε) = min
m⋆≤m≤m⋆

E (ε)(m)

= min
m⋆≤m≤m⋆

(
U ·
(
1−

∑
ℓ Γℓ∑
ℓ mℓ

)
+

Um

ε ·
∑L

ℓ=1 Γℓ

)
. (1)

Since

E (ε) ≥ max
D′

min
m⋆≤m≤m⋆

E (D′,m) ≥ min
m⋆≤m≤m⋆

E (D,m),

we have that E (ε) is an upper bound on the smallest error of Array-
Averaging on any dataset D.

The optimization problem in (1) is non-convex in m. Let m(ε) be an
optimizer.
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Some properties of m(ε)

1. There exists

m(ε) ∈ {m1, . . . ,mL}.

2. m(ε) is non-decreasing in ε.

3. Let εmin :=
m⋆

L·
∑

ℓ mℓ
and εmax :=

(∑
ℓ mℓ

Lm⋆

)2
. Then, for ε ≤ εmin, we

have m(ε) = m⋆, and for ε ≥ εmax, we have m(ε) = m⋆.
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All mechanisms in one figure



Differentially Private Sample Mean and Variance
Release for Multiple Grids/HATs



Preliminaries: Multiple grids/HATs

▶ Let L be the total number of users and G be the total number of
disjoint grids.

{gmℓ : ℓ ∈ [L], g ∈ [G ]} ← numbers of user contributions.

▶ Further, let

gL = {ℓ : gmℓ > 0} and Gℓ = {g : gmℓ > 0}

and let gL and Gℓ be their cardinalities.

▶ Analogous to the case earlier, let gS (ℓ) :=
{
gS

(ℓ)
j : j ∈ [gmℓ]

}
, be

the data samples, all of which lie in [0,U].

▶ We wish to release

f (D) := (g f (D))g , where g f (D) =

 gµ(D)︸ ︷︷ ︸
Mean in grid g

, gVar(D)︸ ︷︷ ︸
Var. in grid g


in a user-level ε-DP manner.
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A pictorial depiction
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Achieving user-level DP: the Laplace mechanism again

▶ As earlier, one can define an ε-user-level DP Laplace mechanism

MLap(D) = f (D) + Z ,

where Z = (Z1, . . . ,ZG ), with Zi
i.i.d.∼ Lap(∆f /ε).

▶ Explicitly characterizing ∆f is hard, owing to the contributions of
users across grids.

▶ A simple (and practical) solution: allocate a “privacy budget” ε to
each grid, with

gMLap
µ (D) = gµ(D) + gZ1,

gMLap
Var (D) =

gVar(D) + gZ2.

Here, gZ1 ∼ Lap(2∆gµ/ε) and
gZ2 ∼ Lap(2∆gVar/ε).

▶ By the Basic Composition Thm., the mechanism

M =
((

gMLap
µ (D), gMLap

Var (D)
)
: g ∈ [G ]

)
is Gε-user-level DP.

27 / 40



Achieving user-level DP: the Laplace mechanism again

▶ As earlier, one can define an ε-user-level DP Laplace mechanism

MLap(D) = f (D) + Z ,

where Z = (Z1, . . . ,ZG ), with Zi
i.i.d.∼ Lap(∆f /ε).

▶ Explicitly characterizing ∆f is hard, owing to the contributions of
users across grids.

▶ A simple (and practical) solution: allocate a “privacy budget” ε to
each grid, with

gMLap
µ (D) = gµ(D) + gZ1,

gMLap
Var (D) =

gVar(D) + gZ2.

Here, gZ1 ∼ Lap(2∆gµ/ε) and
gZ2 ∼ Lap(2∆gVar/ε).

▶ By the Basic Composition Thm., the mechanism

M =
((

gMLap
µ (D), gMLap

Var (D)
)
: g ∈ [G ]

)
is Gε-user-level DP.

27 / 40



Achieving user-level DP: the Laplace mechanism again

▶ As earlier, one can define an ε-user-level DP Laplace mechanism

MLap(D) = f (D) + Z ,

where Z = (Z1, . . . ,ZG ), with Zi
i.i.d.∼ Lap(∆f /ε).

▶ Explicitly characterizing ∆f is hard, owing to the contributions of
users across grids.

▶ A simple (and practical) solution: allocate a “privacy budget” ε to
each grid, with

gMLap
µ (D) = gµ(D) + gZ1,

gMLap
Var (D) =

gVar(D) + gZ2.

Here, gZ1 ∼ Lap(2∆gµ/ε) and
gZ2 ∼ Lap(2∆gVar/ε).

▶ By the Basic Composition Thm., the mechanism

M =
((

gMLap
µ (D), gMLap

Var (D)
)
: g ∈ [G ]

)
is Gε-user-level DP.

27 / 40



A vanilla bound in a picture

. . . but can we do better?
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A simple observation

Indeed, in our problem setting, if gM are ε-user-level DP mechanisms for
each grid g ,

Theorem
The mechanism M = (gM : g ∈ [G ]) is user-level
ε ·maxℓ Gℓ-DP.

▶ We hence seek to reduce maxℓ Gℓ, i.e., the largest number of grids
any user “occupies”.

▶ This is accomplished by completely suppressing contributions of
selected users in selected grids, while maintaining the same
worst-case error.

. . . but how is the error computed?
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A notion of a worst-case error

▶ Suppose that we have mechanisms gMθ : D → Rd for each grid g ,
to privately release statistics gθ, where

gMθ(D) = gθ(D) + Z ,

with Z ∼ Lap⊗d
(
∆gθ/ε

)
, for some estimator gθ of the true statistic

gθ.

▶ We define the worst-case estimation error of gMθ as

gE :=
∑
i∈[d ]

max
D∈D

∣∣gθi (D)− gθi (D)
∣∣︸ ︷︷ ︸

Worst-case bias

+ E[∥Z∥]︸ ︷︷ ︸
Privacy loss

.

▶ Finally, we define the error metric E of Mθ = (gMθ : g ∈ [G ]) as

E := max
g∈[G ]

gE .

▶ We treat the error threshold of a dataset-unaware client as precisely
this worst-case error E .
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Exact error characterizations I: Sensitivities

▶ Focus on a single grid g .

▶ Consider estimators of sample mean and variance that are obtained
by (arbitrarily) clipping user contributions.

▶ Fix a strategy Clip that retains any Γℓ ∈ [0 : mℓ] contributions of
each user ℓ. Let Γ⋆ := maxℓ Γℓ.

Theorem
We have

∆µClip
=

U Γ⋆∑L
ℓ=1 Γℓ

and

∆VarClip =


U2 Γ⋆

ℓ (
∑

ℓ Γℓ−Γ⋆
ℓ )

(
∑

ℓ Γℓ)
2 , if

∑
ℓ Γℓ > 2Γ⋆,

U2

4 , if
∑

ℓ Γℓ ≤ 2Γ⋆ and
∑

ℓ Γℓ is even,
U2

4 ·
(
1− 1

(
∑

ℓ Γℓ)2

)
, if

∑
ℓ Γℓ ≤ 2Γ⋆ and

∑
ℓ Γℓ is odd.
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Exact error characterizations II: Clipping/Bias errors

Let Eµ and EVar be the clipping errors via Clip.

Theorem
We have

Eµ = U ·
(
1−

∑
ℓ Γℓ∑
ℓ mℓ

)
.

Theorem
EVar = 0 if Γℓ = mℓ, for all ℓ ∈ [L]. Furthermore, if∑

ℓ Γℓ <
∑

ℓ mℓ, we have

EVar =


U2·

∑
ℓ Γℓ·

∑
ℓ′ (mℓ′−Γℓ′ )

(
∑

ℓ mℓ)
2 , if

∑
ℓ mℓ > 2

∑
ℓ Γℓ,

U2

4 , if
∑

ℓ mℓ ≤ 2
∑

ℓ Γℓ and
∑

ℓ mℓ is even,
U2

4 ·
(
1− 1

(
∑

ℓ mℓ)2

)
, otherwise.
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Some remarks

▶ There is a close relationship between the proofs for sensitivity and
for the worst-case clipping error.

▶ The user-level sensitivity ∆Var gives as a corollary the item-level
sensitivity

∆Var,item =
U2(L− 1)

L
,

obtained in [D’Orazio, Honaker, King (2015)].

The techniques for computing ∆Var are however much more
involved.

▶ Via the worst-case bias and sensitivity expressions, we obtain
expressions for the worst-case errors gE :

gE :=
∑
i∈[d ]

max
D∈D

∣∣gθi (D)− gθi (D)
∣∣︸ ︷︷ ︸

Worst-case bias

+ E[∥Z∥]︸ ︷︷ ︸
Privacy loss

.

Goal: Can we reduce maxℓ Gℓ without hurting E = maxg
gE?
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The Chop-User algorithm for suppression

▶ For each grid g , compute the initial privacy loss errors E[
∥∥gZ∥∥].

▶ Set Ethresh = maxg E[
∥∥gZ∥∥].

▶ Iterate the following until Stop:

▶ For each user ℓ, identify the grid

g(ℓ) = min
g∈Gℓ

gE post,

where gE post is the error obtained by (potentially) suppressing ℓ in g ,
i.e., by setting gΓℓ = 0 and gΓℓ′ =

gmℓ′ , for all ℓ
′ ∈ Lg .

▶ If g(ℓ)E post > Ethresh, then Stop.

▶ Else, update Gℓ ← Gℓ \ {g(ℓ)} and gL ← gL \ {ℓ}.

▶ Return K = maxℓ Gℓ.

(!) Such a suppression-based approach will not work in the item-level DP setting.
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Experimental results I: Real-world data

Plot of privacy loss under composition Kε after execution of Clip-User on
the real-world ITMS dataset, against the original privacy loss ε ·maxℓ Gℓ = 11ε.
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Experimental results II: Synthetic data

Plot of privacy loss under composition Kε after execution of Clip-User on a
synthetic dataset with a single heavy-hitter user, against the original privacy
loss ε ·maxℓ Gℓ = 12ε.

Clear gains in composition privacy loss are to be had for small (high-privacy) ε!
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Summary

▶ Vanilla user-level DP mechanisms can be beaten by clipping-based
mechanisms, with some fine-tuning.

▶ The simple Array-Averaging mechanism can be rigorously analyzed
for worst-case error.

▶ Using exact expressions for worst-case errors, it is possible in
practice to improve the composition privacy loss of mechanisms on
disjoint grids, via suppression.
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Ongoing and future research directions

▶ Exploring the release of user-level DP data cluster centers for
telecom inference tasks

▶ Investigating user-level DP mechanisms for general machine learning
tasks

▶ Deriving exact expressions for the worst-case clipping errors and
user-level sensitivities for other statistics of interest
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Thank You!


