
Differentially Private Release of Spatio-Temporal
Data Statistics

Arvind Rameshwar

IUDX

based on joint works with

Anshoo Tandon Prajjwal Gupta Novoneel Chakraborty

IUDX Northeastern U. IUDX

Aditya Singh Abhay Sharma

IISc IUDX

CNI Networks Seminar 2024

Some background

▶ The release of even seemingly innocuous functions of a private
dataset can leak information about identities of users/participants.

▶ The framework of differential privacy (DP) was introduced in
[Dwork et al. (2006)] for the design/analysis of mechanisms resilient
to such attacks.

1 / 40

An explosion of works since then

. . . and several more

2 / 40

Our interest: User-level DP

▶ Standard DP guarantees the privacy of a user when he/she
contributes at most one data sample.

▶ However, most real-world applications, e.g., language/image
recognition tasks, federated learning, traffic analysis, record multiple
contributions from each user.

▶ Recent work [Levy et al. (2021), Cummings et al. (2022)] formally
defined user-level DP that guarantees the privacy of any user who
contributes potentially multiple samples, and provided explicit
private mechanisms for mean estimation.

▶ Other works considered user-level privacy in the context of bounding
user contributions in ML models [Amin et al. (2019)] and in private
federated learning [Wang et al. (2019), McMahan et al. (2018)].

3 / 40

Basic setup
▶ Consider a city whose area is partitioned into grids/hexagons, e.g.,

using Uber’s spatial indexing system H3.

Source: https://www.uber.com/en-IN/blog/h3/

▶ We quantize/bin the data records in each hexagon into
fixed-duration timeslots.

▶ We seek to release user-level differentially private estimates of the
sample mean of data values in a fixed Hexagon And Timeslot.

4 / 40

https://www.uber.com/en-IN/blog/h3/

The dataset of interest

5 / 40

Our contributions

Single Grid Mean Release

Algorithms; worst-case error

Multiple Grid (Mean,Var) Release

Gains in K(< G) for fixed worst-case
estimation error

Approximate CDF Release

Optimal tree-based mechanisms; optimal post-processing for consistency
6 / 40

Differentially Private Sample Mean Release for a
Single Grid/HAT

Preliminaries: Single grid/HAT

▶ Let L be the number of users in the HAT and let {mℓ : ℓ ∈ [L]} be
the collection of numbers of user contributions.

▶ We define m⋆ := minℓ mℓ and m⋆ := maxℓ mℓ.

▶ Each user ℓ contributes speed samples S (ℓ) :=
{
S
(ℓ)
j : j ∈ [mℓ]

}
,

where each sample lies in [0,U]; for us, U = 65 km/hr.

▶ Our dataset hence is D = {(ℓ,S (ℓ)) : ℓ ∈ [L]}.

▶ We wish to release the sample mean

µ(D) := 1∑
ℓ mℓ

·
∑
ℓ

mℓ∑
j=1

S
(ℓ)
j

in a user-level differentially private manner.

7 / 40

User-level DP
▶ We say that two datasets D1,D2 are user-level neighbours if they

differ in the sample values of a single user.

▶ A mechanism M is user-level ε-DP if for every pair of datasets
D1,D2 that are user-level neighbours, and for every (measurable) Y ,

e−ε Pr[M(D2) ∈ Y] ≤ Pr[M(D1) ∈ Y] ≤ eε Pr[M(D2) ∈ Y].

▶ Informally, a user-level DP mechanism ensures statistical
indistinguishability of its outputs when a single user changes his/her
samples.

8 / 40

User-level DP
▶ We say that two datasets D1,D2 are user-level neighbours if they

differ in the sample values of a single user.

▶ A mechanism M is user-level ε-DP if for every pair of datasets
D1,D2 that are user-level neighbours, and for every (measurable) Y ,

e−ε Pr[M(D2) ∈ Y] ≤ Pr[M(D1) ∈ Y] ≤ eε Pr[M(D2) ∈ Y].

. . . Think of eε ≈ 1 + ε, for ε > 0 small

▶ Informally, a user-level DP mechanism ensures statistical
indistinguishability of its outputs when a single user changes his/her
samples.

8 / 40

User-level DP
▶ We say that two datasets D1,D2 are user-level neighbours if they

differ in the sample values of a single user.

▶ A mechanism M is user-level ε-DP if for every pair of datasets
D1,D2 that are user-level neighbours, and for every (measurable) Y ,

e−ε Pr[M(D2) ∈ Y] ≤ Pr[M(D1) ∈ Y] ≤ eε Pr[M(D2) ∈ Y].

▶ Informally, a user-level DP mechanism ensures statistical
indistinguishability of its outputs when a single user changes his/her
samples.

8 / 40

Achieving user-level DP: the Laplace mechanism - I
▶ Given a function f : D → R (say, the sample mean), we define its

user-level sensitivity to be

∆f := max
D1,D2 u-l nbrs.

|f (D)1 − f (D2)|.

As an example, for our dataset D,

∆µ =
Um⋆∑
ℓ mℓ

.

▶ The Laplace mechanism simply adds Laplacian noise (of the right
std. dev.) to the function of interest:

MLap(D) = f (D) + Z ,

where Z ∼ Lap(∆f /ε).

For X ∼ Lap(b), b > 0, we have fX (x) =
1
2b
e−|x|/b, x ∈ R.

9 / 40

Achieving user-level DP: the Laplace mechanism - I
▶ Given a function f : D → R (say, the sample mean), we define its

user-level sensitivity to be

∆f := max
D1,D2 u-l nbrs.

|f (D)1 − f (D2)|.

As an example, for our dataset D,

∆µ =
Um⋆∑
ℓ mℓ

.

▶ The Laplace mechanism simply adds Laplacian noise (of the right
std. dev.) to the function of interest:

MLap(D) = f (D) + Z ,

where Z ∼ Lap(∆f /ε).

For X ∼ Lap(b), b > 0, we have fX (x) =
1
2b
e−|x|/b, x ∈ R.

9 / 40

Achieving user-level DP: the Laplace mechanism - II

The following theorem is well-known:

Theorem
The mechanism MLap is user-level ε-DP.

10 / 40

Achieving user-level DP: the Laplace mechanism - II

The following theorem is well-known:

Theorem
The mechanism MLap is user-level ε-DP.

The following “utility” guarantee holds, via Laplacian tail bounds:

Theorem
For any D and any δ ∈ (0, 1), we have

Pr

[∣∣MLap(D)− f (D)
∣∣ ≤ ∆f ln(1/δ)

ε

]
≥ 1− δ.

10 / 40

Achieving user-level DP: the Laplace mechanism - II

The following theorem is well-known:

Theorem
The mechanism MLap is user-level ε-DP.

▶ However, for real-world datasets, when f = µ, the std. dev. of noise
Z ∼ Lap(∆µ/ε) added is

σZ =

√
2∆µ

ε
=

√
2Um⋆

ε ·
∑

ℓ mℓ
,

which is large when either U or m⋆ is large.

We attempt to reduce σZ by fine-tuning mechanisms from the
literature and by introducing novel choices of subroutines.

10 / 40

Achieving user-level DP: the Laplace mechanism - II

The following theorem is well-known:

Theorem
The mechanism MLap is user-level ε-DP.

▶ However, for real-world datasets, when f = µ, the std. dev. of noise
Z ∼ Lap(∆µ/ε) added is

σZ =

√
2∆µ

ε
=

√
2Um⋆

ε ·
∑

ℓ mℓ
,

which is large when either U or m⋆ is large.

We attempt to reduce σZ by fine-tuning mechanisms from the
literature and by introducing novel choices of subroutines.

10 / 40

Our approach

We design three ε-DP mechanisms that perform two kinds of operations:

11 / 40

Our approach

We design three ε-DP mechanisms that perform two kinds of operations:

11 / 40

Prelude: Strategies for creation of pseudo-users

12 / 40

Prelude: Strategies for creation of pseudo-users

We first organize the speed samples into arrays/pseudo-users via a
natural grouping strategy, called BestFit. Fix mUB ∈ [m⋆,m

⋆].

12 / 40

Prelude: Strategies for creation of pseudo-users

We first organize the speed samples into arrays/pseudo-users via a
natural grouping strategy, called BestFit. Fix mUB ∈ [m⋆,m

⋆].

▶ BestFit: The first min{mℓ,mUB} samples from each user ℓ ∈ L are
filled into that array of length mUB that is filled the most.

▶ The number of arrays created is

K ≥ K =

⌊∑
ℓ min{mℓ,mUB}

mUB

⌋
.

▶ Each user “occupies” at most 1 array.

12 / 40

Array-Averaging

Array-Averaging adds suitable Laplace noise to the array means.

13 / 40

Array-Averaging

1. Group the samples in pseudo-users using BestFit.

2. Compute the means Ai of the sample values in each array Ai .

3. Return

Marr,best(D) =
1

K

K∑
i=1

Ai + Lap

(
U

Kε

)
.

Choosing mUB = median({mℓ}) gives a factor-of-2 approximation
of the lowest σZ to be added, under some regularity conditions.

13 / 40

Levy and Quantile

Levy and Quantile first clip the array means and then add Laplace noise.

14 / 40

Levy

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget ε/2) a high-probability interval [a, b]
that is the

(
1
4 ,

3
4

)
-interquantile interval [Levy et al. (2021)].

3. Project the array means Ai into the interval [a, b].

4. Return

MLevy(D) =
1

K

K∑
i=1

Π[a,b](Ai)︸ ︷︷ ︸
µLevy

+ Lap

(
2∆µLevy

ε

)
.

Here, σZ ,Levy = min

{
Θ

(
U
Kε

√
log(K)
mUB

)
, 2

√
2U

Kε

}
(potentially)

≤ σZ ,Arr.

In our experiments, we attempt a heuristic minimization of the first term
above by maximizing K

√
mUB over mUB.

15 / 40

Levy

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget ε/2) a high-probability interval [a, b]
that is the

(
1
4 ,

3
4

)
-interquantile interval [Levy et al. (2021)].

3. Project the array means Ai into the interval [a, b].

4. Return

MLevy(D) =
1

K

K∑
i=1

Π[a,b](Ai)︸ ︷︷ ︸
µLevy

+ Lap

(
2∆µLevy

ε

)
.

Here, σZ ,Levy = min

{
Θ

(
U
Kε

√
log(K)
mUB

)
, 2

√
2U

Kε

}
(potentially)

≤ σZ ,Arr.

In our experiments, we attempt a heuristic minimization of the first term
above by maximizing K

√
mUB over mUB.

15 / 40

Quantile

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget ε/2) a high-probability interval
[a′, b′] that is either

▶ the
(

1
10
, 9
10

)
-interquantile interval [Smith (2011)] (FixedQuantile) or

▶ an “optimized” ε-dependent interval [Amin et al. (2019)]
(ε-DependentQuantile).

3. Project the array means Ai into the interval [a′, b′].

4. Return

MLevy(D) =
1

K

K∑
i=1

Π[a′,b′](Ai)︸ ︷︷ ︸
fQuantile

+ Lap

(
2∆fQuantile

ε

)
.

Here, σZ ,Quantile =
2
√
2(b′−a′)

Kε
.

16 / 40

Quantile

1. Group the speed samples into pseudo-users using BestFit.

2. Privately estimate (with budget ε/2) a high-probability interval
[a′, b′] that is either

▶ the
(

1
10
, 9
10

)
-interquantile interval [Smith (2011)] (FixedQuantile) or

▶ an “optimized” ε-dependent interval [Amin et al. (2019)]
(ε-DependentQuantile).

3. Project the array means Ai into the interval [a′, b′].

4. Return

MLevy(D) =
1

K

K∑
i=1

Π[a′,b′](Ai)︸ ︷︷ ︸
fQuantile

+ Lap

(
2∆fQuantile

ε

)
.

Here, σZ ,Quantile =
2
√
2(b′−a′)

Kε
.

16 / 40

A quick recap

17 / 40

Experimental results I: Real-world data

▶ We evaluated the performance of our algorithms on real-world ITMS
traffic data from an Indian city.

▶ We compare the mean absolute error (MAE) of our private
algorithms vis-á-vis the true sample mean.

18 / 40

Experimental results II: Synthetic data

We then generate a synthetic dataset as follows. Fix a (large) integer λ.

1. User contributions:

▶ Sample scaling: Set L̂ = L and m̂ℓ = λ ·mℓ, for each ℓ ∈ L.

▶ User scaling: Set L̂ = λL and m̂λ(ℓ−1)+i = mℓ, for i ∈ [λ] and ℓ ∈ L.

2. Data samples:

Generate i.i.d. speed samples {Ŝ (ℓ)
j : ℓ ∈ [L̂], j ∈ [m̂ℓ]} such that

Ŝ
(ℓ)
j ∼ Π[0,U](Z), where Z ∼ N (µ, σ2),

where µ, σ2 are the (true) mean and variance of the ITMS samples.

19 / 40

Experimental results II: Synthetic data

We compare the mean absolute error (MAE) of our private algorithms
vis-á-vis the true sample mean.

Sample scaling
20 / 40

Experimental results II: Synthetic data

We compare the mean absolute error (MAE) of our private algorithms
vis-á-vis the true sample mean.

User scaling
20 / 40

Some theoretical justification of performance trends

From our simulations, we see that

Levy ≻ other alg. (Sample scaling)

(Fixed-)Quantile ≻ other alg. (User scaling)

21 / 40

Some theoretical justification of performance trends

From our simulations, we see that

Levy ≻ other alg. (Sample scaling)

(Fixed-)Quantile ≻ other alg. (User scaling)

Theorem
Under sample scaling, using our choices of mUB

(median/heuristically optimized),

σ
(s)
Z ,Base = σZ ,Base, σ

(s)
Z ,Arr = σZ ,Arr,

and

σ
(s)
Z ,Levy =

1√
λ
· σZ ,Levy.

21 / 40

Some theoretical justification of performance trends

From our simulations, we see that

Levy ≻ other alg. (Sample scaling)

(Fixed-)Quantile ≻ other alg. (User scaling)

Theorem
Under user scaling, using our choices of mUB

(median/heuristically optimized), for large enough scaling λ,

σ
(u)
Z ,Arr < min

{
σ
(u)
Z ,Levy, σ

(u)
Z ,ε-Dep.-Quantile

}
w.h.p.,

if the exact sample-dependent quantiles are employed.

21 / 40

A second look at Array-Averaging: Error bounds

▶ We attempt to characterize exactly a measure of the total
estimation error (clipping+privacy loss) in Array-Averaging.

▶ Since our real-world datasets D contain non-i.i.d. samples, we define
a notion of the worst-case error, for a fixed m = mUB:

E (ε)(m) := max
D

E (ε)(D,m),

where

E (ε)(D,m) = |fArr(D,m)− f (D)|︸ ︷︷ ︸
Clipping

+
∆̃fArr

ε︸ ︷︷ ︸
Privacy

.

Theorem

max
D
|fArr(D,m)− f (D)| = U ·

(
1−

∑
ℓ min{mℓ,m}∑

ℓ mℓ

)
.

22 / 40

A second look at Array-Averaging: Error bounds

Let Γℓ := min{mℓ,m}. We then set

E (ε) = min
m⋆≤m≤m⋆

E (ε)(m)

= min
m⋆≤m≤m⋆

(
U ·
(
1−

∑
ℓ Γℓ∑
ℓ mℓ

)
+

Um

ε ·
∑L

ℓ=1 Γℓ

)
. (1)

Since

E (ε) ≥ max
D′

min
m⋆≤m≤m⋆

E (D′,m) ≥ min
m⋆≤m≤m⋆

E (D,m),

we have that E (ε) is an upper bound on the smallest error of Array-
Averaging on any dataset D.

The optimization problem in (1) is non-convex in m. Let m(ε) be an
optimizer.

23 / 40

Some properties of m(ε)

1. There exists

m(ε) ∈ {m1, . . . ,mL}.

2. m(ε) is non-decreasing in ε.

3. Let εmin :=
m⋆

L·
∑

ℓ mℓ
and εmax :=

(∑
ℓ mℓ

Lm⋆

)2
. Then, for ε ≤ εmin, we

have m(ε) = m⋆, and for ε ≥ εmax, we have m(ε) = m⋆.

24 / 40

Some properties of m(ε)

1. There exists

m(ε) ∈ {m1, . . . ,mL}.

2. m(ε) is non-decreasing in ε.

3. Let εmin :=
m⋆

L·
∑

ℓ mℓ
and εmax :=

(∑
ℓ mℓ

Lm⋆

)2
. Then, for ε ≤ εmin, we

have m(ε) = m⋆, and for ε ≥ εmax, we have m(ε) = m⋆.

24 / 40

All mechanisms in one figure

Differentially Private Sample Mean and Variance
Release for Multiple Grids/HATs

Preliminaries: Multiple grids/HATs

▶ Let L be the total number of users and G be the total number of
disjoint grids.

{gmℓ : ℓ ∈ [L], g ∈ [G]} ← numbers of user contributions.

▶ Further, let

gL = {ℓ : gmℓ > 0} and Gℓ = {g : gmℓ > 0}

and let gL and Gℓ be their cardinalities.

▶ Analogous to the case earlier, let gS (ℓ) :=
{
gS

(ℓ)
j : j ∈ [gmℓ]

}
, be

the data samples, all of which lie in [0,U].

▶ We wish to release

f (D) := (g f (D))g , where g f (D) =

 gµ(D)︸ ︷︷ ︸
Mean in grid g

, gVar(D)︸ ︷︷ ︸
Var. in grid g


in a user-level ε-DP manner.

25 / 40

Preliminaries: Multiple grids/HATs

▶ Let L be the total number of users and G be the total number of
disjoint grids.

{gmℓ : ℓ ∈ [L], g ∈ [G]} ← numbers of user contributions.

▶ Further, let

gL = {ℓ : gmℓ > 0} and Gℓ = {g : gmℓ > 0}

and let gL and Gℓ be their cardinalities.

▶ Analogous to the case earlier, let gS (ℓ) :=
{
gS

(ℓ)
j : j ∈ [gmℓ]

}
, be

the data samples, all of which lie in [0,U].

▶ We wish to release

f (D) := (g f (D))g , where g f (D) =

 gµ(D)︸ ︷︷ ︸
Mean in grid g

, gVar(D)︸ ︷︷ ︸
Var. in grid g


in a user-level ε-DP manner.

25 / 40

A pictorial depiction

26 / 40

Achieving user-level DP: the Laplace mechanism again

▶ As earlier, one can define an ε-user-level DP Laplace mechanism

MLap(D) = f (D) + Z ,

where Z = (Z1, . . . ,ZG), with Zi
i.i.d.∼ Lap(∆f /ε).

▶ Explicitly characterizing ∆f is hard, owing to the contributions of
users across grids.

▶ A simple (and practical) solution: allocate a “privacy budget” ε to
each grid, with

gMLap
µ (D) = gµ(D) + gZ1,

gMLap
Var (D) =

gVar(D) + gZ2.

Here, gZ1 ∼ Lap(2∆gµ/ε) and
gZ2 ∼ Lap(2∆gVar/ε).

▶ By the Basic Composition Thm., the mechanism

M =
((

gMLap
µ (D), gMLap

Var (D)
)
: g ∈ [G]

)
is Gε-user-level DP.

27 / 40

Achieving user-level DP: the Laplace mechanism again

▶ As earlier, one can define an ε-user-level DP Laplace mechanism

MLap(D) = f (D) + Z ,

where Z = (Z1, . . . ,ZG), with Zi
i.i.d.∼ Lap(∆f /ε).

▶ Explicitly characterizing ∆f is hard, owing to the contributions of
users across grids.

▶ A simple (and practical) solution: allocate a “privacy budget” ε to
each grid, with

gMLap
µ (D) = gµ(D) + gZ1,

gMLap
Var (D) =

gVar(D) + gZ2.

Here, gZ1 ∼ Lap(2∆gµ/ε) and
gZ2 ∼ Lap(2∆gVar/ε).

▶ By the Basic Composition Thm., the mechanism

M =
((

gMLap
µ (D), gMLap

Var (D)
)
: g ∈ [G]

)
is Gε-user-level DP.

27 / 40

Achieving user-level DP: the Laplace mechanism again

▶ As earlier, one can define an ε-user-level DP Laplace mechanism

MLap(D) = f (D) + Z ,

where Z = (Z1, . . . ,ZG), with Zi
i.i.d.∼ Lap(∆f /ε).

▶ Explicitly characterizing ∆f is hard, owing to the contributions of
users across grids.

▶ A simple (and practical) solution: allocate a “privacy budget” ε to
each grid, with

gMLap
µ (D) = gµ(D) + gZ1,

gMLap
Var (D) =

gVar(D) + gZ2.

Here, gZ1 ∼ Lap(2∆gµ/ε) and
gZ2 ∼ Lap(2∆gVar/ε).

▶ By the Basic Composition Thm., the mechanism

M =
((

gMLap
µ (D), gMLap

Var (D)
)
: g ∈ [G]

)
is Gε-user-level DP.

27 / 40

A vanilla bound in a picture

. . . but can we do better?

28 / 40

A simple observation

Indeed, in our problem setting, if gM are ε-user-level DP mechanisms for
each grid g ,

Theorem
The mechanism M = (gM : g ∈ [G]) is user-level
ε ·maxℓ Gℓ-DP.

▶ We hence seek to reduce maxℓ Gℓ, i.e., the largest number of grids
any user “occupies”.

▶ This is accomplished by completely suppressing contributions of
selected users in selected grids, while maintaining the same
worst-case error.

. . . but how is the error computed?

29 / 40

A simple observation

Indeed, in our problem setting, if gM are ε-user-level DP mechanisms for
each grid g ,

Theorem
The mechanism M = (gM : g ∈ [G]) is user-level
ε ·maxℓ Gℓ-DP.

▶ We hence seek to reduce maxℓ Gℓ, i.e., the largest number of grids
any user “occupies”.

▶ This is accomplished by completely suppressing contributions of
selected users in selected grids, while maintaining the same
worst-case error.

. . . but how is the error computed?

29 / 40

A notion of a worst-case error

▶ Suppose that we have mechanisms gMθ : D → Rd for each grid g ,
to privately release statistics gθ, where

gMθ(D) = gθ(D) + Z ,

with Z ∼ Lap⊗d
(
∆gθ/ε

)
, for some estimator gθ of the true statistic

gθ.

▶ We define the worst-case estimation error of gMθ as

gE :=
∑
i∈[d]

max
D∈D

∣∣gθi (D)− gθi (D)
∣∣︸ ︷︷ ︸

Worst-case bias

+ E[∥Z∥]︸ ︷︷ ︸
Privacy loss

.

▶ Finally, we define the error metric E of Mθ = (gMθ : g ∈ [G]) as

E := max
g∈[G]

gE .

▶ We treat the error threshold of a dataset-unaware client as precisely
this worst-case error E .

30 / 40

Exact error characterizations I: Sensitivities

▶ Focus on a single grid g .

▶ Consider estimators of sample mean and variance that are obtained
by (arbitrarily) clipping user contributions.

▶ Fix a strategy Clip that retains any Γℓ ∈ [0 : mℓ] contributions of
each user ℓ. Let Γ⋆ := maxℓ Γℓ.

Theorem
We have

∆µClip
=

U Γ⋆∑L
ℓ=1 Γℓ

and

∆VarClip =


U2 Γ⋆

ℓ (
∑

ℓ Γℓ−Γ⋆
ℓ)

(
∑

ℓ Γℓ)
2 , if

∑
ℓ Γℓ > 2Γ⋆,

U2

4 , if
∑

ℓ Γℓ ≤ 2Γ⋆ and
∑

ℓ Γℓ is even,
U2

4 ·
(
1− 1

(
∑

ℓ Γℓ)2

)
, if

∑
ℓ Γℓ ≤ 2Γ⋆ and

∑
ℓ Γℓ is odd.

31 / 40

Exact error characterizations II: Clipping/Bias errors

Let Eµ and EVar be the clipping errors via Clip.

Theorem
We have

Eµ = U ·
(
1−

∑
ℓ Γℓ∑
ℓ mℓ

)
.

Theorem
EVar = 0 if Γℓ = mℓ, for all ℓ ∈ [L]. Furthermore, if∑

ℓ Γℓ <
∑

ℓ mℓ, we have

EVar =


U2·

∑
ℓ Γℓ·

∑
ℓ′ (mℓ′−Γℓ′)

(
∑

ℓ mℓ)
2 , if

∑
ℓ mℓ > 2

∑
ℓ Γℓ,

U2

4 , if
∑

ℓ mℓ ≤ 2
∑

ℓ Γℓ and
∑

ℓ mℓ is even,
U2

4 ·
(
1− 1

(
∑

ℓ mℓ)2

)
, otherwise.

32 / 40

Some remarks

▶ There is a close relationship between the proofs for sensitivity and
for the worst-case clipping error.

▶ The user-level sensitivity ∆Var gives as a corollary the item-level
sensitivity

∆Var,item =
U2(L− 1)

L
,

obtained in [D’Orazio, Honaker, King (2015)].

The techniques for computing ∆Var are however much more
involved.

▶ Via the worst-case bias and sensitivity expressions, we obtain
expressions for the worst-case errors gE :

gE :=
∑
i∈[d]

max
D∈D

∣∣gθi (D)− gθi (D)
∣∣︸ ︷︷ ︸

Worst-case bias

+ E[∥Z∥]︸ ︷︷ ︸
Privacy loss

.

Goal: Can we reduce maxℓ Gℓ without hurting E = maxg
gE?

33 / 40

The Chop-User algorithm for suppression

▶ For each grid g , compute the initial privacy loss errors E[
∥∥gZ∥∥].

▶ Set Ethresh = maxg E[
∥∥gZ∥∥].

▶ Iterate the following until Stop:

▶ For each user ℓ, identify the grid

g(ℓ) = min
g∈Gℓ

gE post,

where gE post is the error obtained by (potentially) suppressing ℓ in g ,
i.e., by setting gΓℓ = 0 and gΓℓ′ =

gmℓ′ , for all ℓ
′ ∈ Lg .

▶ If g(ℓ)E post > Ethresh, then Stop.

▶ Else, update Gℓ ← Gℓ \ {g(ℓ)} and gL ← gL \ {ℓ}.

▶ Return K = maxℓ Gℓ.

(!) Such a suppression-based approach will not work in the item-level DP setting.

34 / 40

Experimental results I: Real-world data

Plot of privacy loss under composition Kε after execution of Clip-User on
the real-world ITMS dataset, against the original privacy loss ε ·maxℓ Gℓ = 11ε.

35 / 40

Experimental results II: Synthetic data

Plot of privacy loss under composition Kε after execution of Clip-User on a
synthetic dataset with a single heavy-hitter user, against the original privacy
loss ε ·maxℓ Gℓ = 12ε.

Clear gains in composition privacy loss are to be had for small (high-privacy) ε!

36 / 40

Summary

▶ Vanilla user-level DP mechanisms can be beaten by clipping-based
mechanisms, with some fine-tuning.

▶ The simple Array-Averaging mechanism can be rigorously analyzed
for worst-case error.

▶ Using exact expressions for worst-case errors, it is possible in
practice to improve the composition privacy loss of mechanisms on
disjoint grids, via suppression.

37 / 40

Our works

Presented in ISIT IT-TML, SPCOM;
arXiv: 2401.15906

Submitted to IEEE T-IT;
arXiv: 2405.06261

38 / 40

Our works

Submitted to IEEE TIFS; arXiv: 2409.18573

39 / 40

Ongoing and future research directions

▶ Exploring the release of user-level DP data cluster centers for
telecom inference tasks

▶ Investigating user-level DP mechanisms for general machine learning
tasks

▶ Deriving exact expressions for the worst-case clipping errors and
user-level sensitivities for other statistics of interest

40 / 40

Thank You!

