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Talk Highlights

- Network Tomography as Distributed System of Linear Equations
- Adversarial, Heterogeneous, and Sporadic Measurements

- Limitations of existing adversary-resilient approaches
- Novel £;-minimization-based algorithm
- 0(1/+4/n) convergence rate

- Simulation Results



Preview of Simulation Results
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Motivation and Problem Formulation
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Network Tomography

- Network Administrator’'s Goals: Diagnose and fix Issues
- Isolate a problem source

- Allocate resources to address the problem
- Example: Identify links with high latency or packet loss
- Challenge: Link level information cannot be sampled

- Alternative: Use end-to-end path-level measurements
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Delay Tomography: Problem Formulation

- Z(R): delay on link k and Y(j): delay on path P;
- Under the additivity assumption, Y(j) = ZfeeP, Z(R)

- Joint relation: Y = PZ, where
Z=(Z(1),...,Z(d))T and Y = (Y(1),...,Y(N))T

P = (aj) with aj, = 1if link k € P())

- Estimate E[Z] using IID samples of Y(1),..., Y(N)



Network Tomography
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Distributed Learning Formulation
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Learning Amidst Frenemies
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The Rise of Adversaries

Adversaries could arise when a subset of workers wish to

1. Disrupt services
2. Hide illicit activities
3. Mislead traffic management

4. Sabotage competitors



Existing Adversary-resilient Approaches:
A Survey
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Problem Formulation

- Setup: Parameter-server and (possibly) adversarial workers

- Joint goal: min. f(x), where

- Workers can obtain (noisy) estimates of Vfj(x)

- Within network tomography, e.g, fj(x) = ([J/TX —EY(j))?, where pjT
is the j-th row of P and EY(j) is the j-th coordinate of EY())



Naive Approach (without Adversaries): Aggregation

- Each worker j shares an estimate gjg = Vfj(Xn, &n41) Of VSj(xn)

- Server computes g, = Z}L gL/N and then updates x, using

Xn+1 = Xn — QnGn



Convergence Rate: Naive Approach [Wang et al., 2023]

- Suppose the following assumptions hold:
- fis strongly convex
- Vfj is Lipschitz continuous
-E[lg(x) = VHI? < (1 + [Ix = x:])

- Stepsize ay = ¢/n

- Then,
1
Ellxp —X|> =0 —
o — X (Nn>
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Classification of Existing Adversary-resilient Approaches

1. Data encoding
2. Filtering

3. Homogenization



Data Encoding

1. [Chen et al, 18], [Data et al,, 2019, 2020]
2. Each worker j estimates some function of Vfi(xy), ..., Viv(xn)

3. These functions incorporate redundancy to enable the
parameter server to reliably reconstruct Vf(x,)

4. Within network tomography, this approach would force each
worker to process samples of multiple Y-coordinates

5. All workers would need to share their estimates synchronously
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- Synchronous: Robust Aggregator [Data21, Pillutla22]

- Asynchronous:

- Private Data [Xie20, Fang22]
- Lipshitz filter [Damaskinos18]

- Asynchronous worker, Synchronous server updates [Yang21]

- Within network tomography, private data approach is infeasible
since the server would need true path measurements

- Other approaches: Convergence to O(¢?), where

E[|Vfj(x) = Vix)|* < ¢?



Filtering: Robust aggregation

- Each worker only shares an estimate g/, of Vfi(xn)

- Server computes a robust aggregate g = F(g),...,g"), where
F could be
- coordinate-wise median,
- coordinate-wise trimmed mean,

- geometric median, etc.



Asynchronous Worker, Synchronous Server-side Updates

- Form B buckets of workers
- Wait until > 1 worker in each bucket provides an estimate
- Take average of received estimates in Bucket j to output H,

- Server computes h, = F(h},...,h8) and then updates using

Xn41 = Xn — anhy

19



Homogenization

- Presumes synchronous workers
- Randomly permute workers and then form B buckets of workers
- Take average of received estimates in Bucket j to output H,

- Server computes h, = F(h},...,h8) and then updates using

Xn+1 = Xn — anhn

- Promises exact recovery if K = 0(1/4) and
Ej~glIVfi(x) = VIX)I? < K| VAX)I?
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Proposed /;-based Algorithm
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Initial Thoughts

- Suppose b = Ax,
- Question: How to recover x,?

- Case I: A and b known
- Multiple algorithms

- Exact recovery: A has full column rank
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Intermediate Thoughts

- Case ll: Aand b’ = b + e known, where e is m-sparse
- Smart idea: Solve min ||Ax — b/||;
- Exact Recovery [FTD11]: A is robust, i.e,

for each x e R9\ 0 and each S C {1,...,N} with |S| < m

SlaTx > Y laTxl,

iese €S

where a is the i-th row of A.

[FTD11]: Fawzi, Tabuada, and Diggavi., Secure state-estimation for dynamical

systems under active adversaries, Allerton ‘11
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Examples of Robust Matrices
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Extension to Network Tomography

-+ Recall that Z is the vector of link-level measurements

- Identify matrices A and B such that
PEZ = ABEZ

and A is robust

- Solve min ||Ax — EYJ}; to recover BEZ, presuming access only to
[ID samples of Y-coordinates in an asynchronous fashion.
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Proposed Algorithm to Estimate EX: Pseudocode

1. Initialize xo € RY at server and yo(i) at worker i

2. forn > 0do

Server
3 Sample index ip11 € {1,...,N} uniformly randomly
4 Send x, to agent ip
Worker i, (if honest)
5. Send sign(Vn(ins1) — OLXH) to server
6 Ynt1(in+1) = Yn(int1) + Bn [Ynt1(ing1) = Yn(in41)]

\\ inp1 = i implies Yni1(ins1) ~ Y(i)

Server
7 Xpp1 =Ny (xn + an sign(Yn(ing) — agﬂxﬂ) a,-w)

8: end for -



Convergence Rates
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Our Main Result

Assumptions

1. Target Vector: Z has finite mean and finite covariance entries

2. Observation Matrix: A is robust
3. Stepsizes: oy =1/v/n+1and B, =1/(n+1).

Conclusion: Let g(x) = & ||Ax — EY|)s. Then, for r € (0,1) and i = [rn],
_ 1
Eg(x') =0 (ﬁ) )

where
n

— _ _ Q
X/n = ZGRXJ and Q) = n /
j=i Zfe:i o7
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Proof Sketch - |

- For Ey := E||x, — BEZ|2
Engr < En 4 200E[(Xn — E)T(gn + €n)] + o2A,
where

1 . . . .
9 = > " sign(BY(i) — a xa)a; + > sign(ya(i) — a xa)a;
= ieA

. %Z [sign(va(i) — aTxy) — sign(EY(i) - a xn)a;]
ieH
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Proof Sketch - Il

- Robustness of A implies
]
E[(x, —E)"gs] < EE(XH —EX)" gy,

where g, = %ZL sign(EY(i) — a/' xn)a; is the true sub-gradient
- Since yy(i) — EY(i) for all i € H,

B~ ) er) = 0 (=)
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Empirical Simulations

31



o
>
)
Q
(2]
=7
—
o
=
=
()
=2

-®

L1

O)

——
- oo - O — —

S O - O = = -
S —-H O A = O~

o I S B I~ I )
[}

- 0O - O - -
©C O —H O — = =
S = O H = O
S OO0 O = ~H —
- - o o o o -
- O = - - O O
(=R B =)
S = O © O = O

(

JioSoAl
@ > y P
®

(b) Matrix P (c) Matrix A

(a) A simple network example

32



Simulation Results
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Conclusions

- Novel £,-minimization-based approach for exact recovery with
adversarial, asynchronous, and heterogeneous data

- Convergence rate: O(1/4/n)

- Empirically demonstrated higher accuracy
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Future Directions

- Automate A-matrix design
- Extend to tracking

- Extend to general optimization
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