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Talk Highlights

• Network Tomography as Distributed System of Linear Equations
- Adversarial, Heterogeneous, and Sporadic Measurements

• Limitations of existing adversary-resilient approaches

• Novel ℓ1-minimization-based algorithm

• O(1/
√
n) convergence rate

• Simulation Results
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Preview of Simulation Results
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Motivation and Problem Formulation
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Network Tomography

• Network Administrator’s Goals: Diagnose and fix Issues

- Isolate a problem source

- Allocate resources to address the problem

• Example: Identify links with high latency or packet loss

• Challenge: Link level information cannot be sampled

• Alternative: Use end-to-end path-level measurements
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Delay Tomography: Problem Formulation

• Z(k): delay on link k and Y(j): delay on path Pj

• Under the additivity assumption, Y(j) =
∑

k∈Pj
Z(k)

• Joint relation: Y = PZ, where

Z ≡ (Z(1), . . . , Z(d))⊤ and Y ≡ (Y(1), . . . , Y(N))⊤

P ≡ (ajk) with ajk = 1 if link k ∈ P(j)

• Estimate E[Z] using IID samples of Y(1), . . . , Y(N)
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Network Tomography
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• Y(1) = Z(1) + Z(2) and Y(2) = Z(1) + Z(3)

• Y = PZ, where P =

[
1 1 0
1 0 1

]
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Distributed Learning Formulation

Worker 1

Monitor Path  1 Actiivity: Y(1)

Worker 2

Monitor Path  2 Actiivity: Y(2)

Worker 3

Monitor Path 3 Actiivity: Y(3)

Estimate Link 
Statistics: Z

Worker N

Monitor Path  N Actiivity: Y(N)
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Learning Amidst Frenemies
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The Rise of Adversaries

Adversaries could arise when a subset of workers wish to

1. Disrupt services

2. Hide illicit activities

3. Mislead traffic management

4. Sabotage competitors
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Existing Adversary-resilient Approaches:
A Survey
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Problem Formulation

• Setup: Parameter-server and (possibly) adversarial workers

• Joint goal: min. f(x), where

f(x) = 1
N

N∑
j=1

fj(x)

• Workers can obtain (noisy) estimates of ∇fj(x)

• Within network tomography, e.g., fj(x) = (p⊤j x−EY(j))2, where p⊤j
is the j-th row of P and EY(j) is the j-th coordinate of EY(j)
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Naive Approach (without Adversaries): Aggregation

• Each worker j shares an estimate gjn ≡ ∇fj(xn, ξn+1) of ∇fj(xn)

• Server computes gn =
∑N

j=1 g
j
n/N and then updates xn using

xn+1 = xn − αngn
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Convergence Rate: Naive Approach [Wang et al., 2023]

• Suppose the following assumptions hold:

- f is strongly convex

- ∇fj is Lipschitz continuous

- E∥gj(x)−∇fj(x)∥2 ≤ σ2(1+ ∥x− x∗∥2)

- Stepsize αn = c/n

• Then,
E∥xn − x∗∥2 = O

(
1
Nn

)
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Classification of Existing Adversary-resilient Approaches

1. Data encoding

2. Filtering

3. Homogenization
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Data Encoding

1. [Chen et al., 18], [Data et al., 2019, 2020]

2. Each worker j estimates some function of ∇f1(xn), . . . ,∇fN(xn)

3. These functions incorporate redundancy to enable the
parameter server to reliably reconstruct ∇f(xn)

4. Within network tomography, this approach would force each
worker to process samples of multiple Y-coordinates

5. All workers would need to share their estimates synchronously
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Filtering

• Synchronous: Robust Aggregator [Data21, Pillutla22]

• Asynchronous:

- Private Data [Xie20, Fang22]

- Lipshitz filter [Damaskinos18]

- Asynchronous worker, Synchronous server updates [Yang21]

• Within network tomography, private data approach is infeasible
since the server would need true path measurements

• Other approaches: Convergence to O(ζ2), where

E∥∇fj(x)−∇f(x)∥2 ≤ ζ2
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Filtering: Robust aggregation

• Each worker only shares an estimate gjn of ∇fj(xn)

• Server computes a robust aggregate g = F(g1n, . . . ,gNn), where
F could be

- coordinate-wise median,

- coordinate-wise trimmed mean,

- geometric median, etc.
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Asynchronous Worker, Synchronous Server-side Updates

• Form B buckets of workers

• Wait until ≥ 1 worker in each bucket provides an estimate

• Take average of received estimates in Bucket j to output hjn

• Server computes hn = F(h1n, . . . ,hBn) and then updates using

xn+1 = xn − αnhn
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Homogenization

• Presumes synchronous workers

• Randomly permute workers and then form B buckets of workers

• Take average of received estimates in Bucket j to output hjn

• Server computes hn = F(h1n, . . . ,hBn) and then updates using

xn+1 = xn − αnhn

• Promises exact recovery if K2 = O(1/δ) and

Ej∼G∥∇fj(x)−∇f(x)∥2 ≤ K2∥∇f(x)∥2
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Proposed ℓ1-based Algorithm
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Initial Thoughts

• Suppose b = Ax∗

• Question: How to recover x∗?

• Case I: A and b known

- Multiple algorithms

- Exact recovery: A has full column rank
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Intermediate Thoughts

• Case II: A and b′ = b+ e known, where e is m-sparse

- Smart idea: Solve min ∥Ax− b′∥1

- Exact Recovery [FTD11]: A is robust, i.e.,

for each x ∈ Rd \ 0 and each S ⊆ {1, . . . ,N} with |S| ≤ m∑
i∈Sc

|a⊤i x| >
∑
i∈S

|a⊤i x|,

where a⊤i is the i-th row of A.

[FTD11]: Fawzi, Tabuada, and Diggavi., Secure state-estimation for dynamical
systems under active adversaries, Allerton ‘11
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Examples of Robust Matrices

• A =


1
1
1
1
1



• A =


2 0
0 2
1 2
−2 1


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Extension to Network Tomography

• Recall that Z is the vector of link-level measurements

• Identify matrices A and B such that

PEZ = ABEZ

and A is robust

• Solve min ∥Ax− EY∥1 to recover BEZ, presuming access only to
IID samples of Y-coordinates in an asynchronous fashion.
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Proposed Algorithm to Estimate EX: Pseudocode

1: Initialize x0 ∈ Rd at server and y0(i) at worker i

2: for n ≥ 0 do

Server
3: Sample index in+1 ∈ {1, . . . ,N} uniformly randomly
4: Send xn to agent in+1

Worker in+1 (if honest)
5: Send sign(yn(in+1)− a⊤in+1xn) to server
6: yn+1(in+1) = yn(in+1) + βn [Yn+1(in+1)− yn(in+1)]

\\ in+1 = i implies Yn+1(in+1) ∼ Y(i)

Server
7: xn+1 = ΠX

(
xn + αn sign(yn(in+1)− a⊤in+1xn) ain+1

)
8: end for 26



Convergence Rates
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Our Main Result

Assumptions

1. Target Vector: Z has finite mean and finite covariance entries

2. Observation Matrix: A is robust

3. Stepsizes: αn = 1/
√
n+ 1 and βn = 1/(n+ 1).

Conclusion: Let g(x) = 1
N∥Ax− EY∥1. Then, for r ∈ (0, 1) and i = ⌈rn⌉,

Eg(x̄ni ) = O
(

1√
n

)
,

where

x̄ni =
n∑
j=i

ᾱkxj and ᾱj =
αj∑n
k=i αk
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Proof Sketch - I

• For En := E∥xn − BEZ∥22

En+1 ≤ En + 2αnE[(xn − E)⊤(gn + ϵn)] + α2nĀ,

where

gn =
1
N

[∑
i∈H

sign(EY(i)− a⊤i xn)ai +
∑
i∈A

sign(yn(i)− a⊤i xn)ai

]

ϵn =
1
N
∑
i∈H

[
sign(yn(i)− a⊤i xn)− sign(EY(i)− a⊤i xn)ai

]
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Proof Sketch - II

• Robustness of A implies

E[(xn − E)⊤gn] ≤
1
KE(xn − EX)⊤g′n,

where g′n = 1
N
∑N

i=1 sign(EY(i)− a⊤i xn)ai is the true sub-gradient

• Since yn(i) → EY(i) for all i ∈ H,

E[(xn − E)⊤ϵn] = O
(

1√
n

)
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Empirical Simulations
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Network Setup

32



Simulation Results
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Conclusions

• Novel ℓ1-minimization-based approach for exact recovery with
adversarial, asynchronous, and heterogeneous data

• Convergence rate: O(1/
√
n)

• Empirically demonstrated higher accuracy
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Future Directions

• Automate A-matrix design

• Extend to tracking

• Extend to general optimization
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