Traffic Peering Games in Internet Exchange Points

Koushik Kar

Professor

Rensselaer Polytechnic Institute

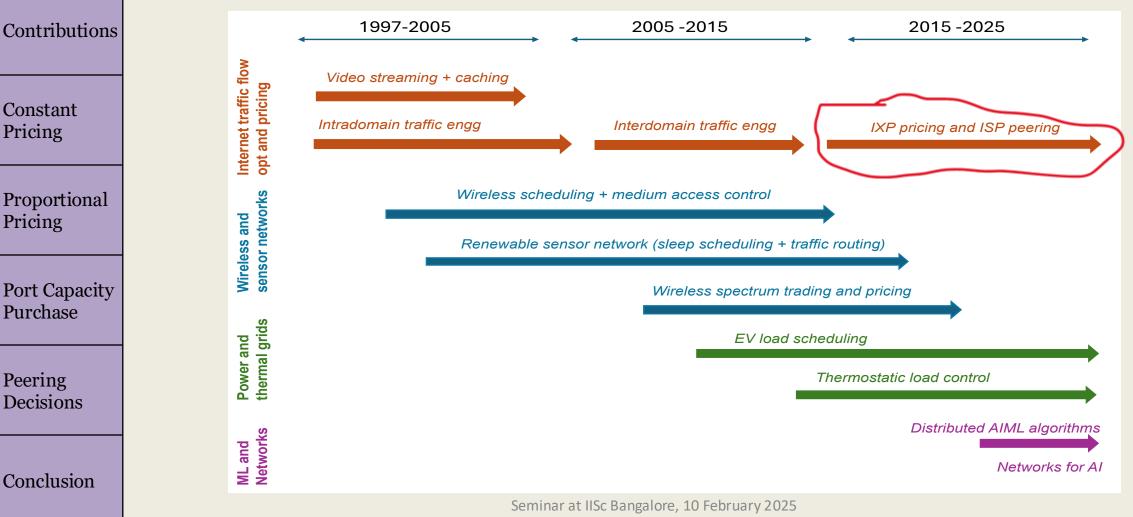
Troy, New York, USA

[Joint work with Md. Ibrahim Alam (RPI), Elliot Anshelevich (RPI) and Murat Yuksel (UCF)]

Related Work

Research Interests and Timeline

- Common theme in my work: Control and optimization of networked systems
- Common tools utilized: non-linear and stochastic optimization, game theory



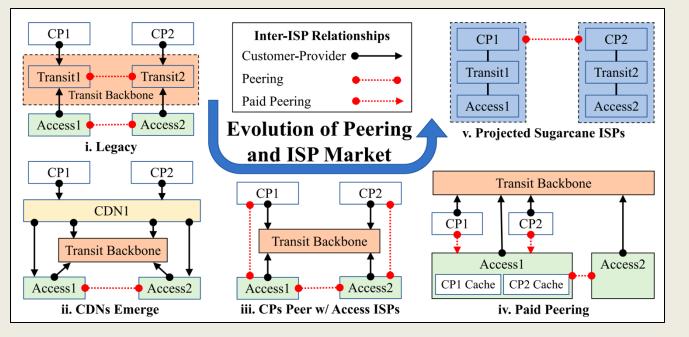
Related Work

- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase
- Peering Decisions

Conclusion

Background and Motivation

- Internet service providers (ISPs) connect individuals and companies to the Internet.
- **ISPs** *peer* at **IXP** (data center with network switches) to exchange traffic.
- *Alternatively*, ISPs can **pay transit providers** for global Internet access.
- Recent insurgence of peering between content and access ISPs (flattening of the Internet).



Three Related Topics in this Space

- 1. Pricing Policy of IXPs
 - **Constant** Pricing

0

0

-120

50

45

40

35

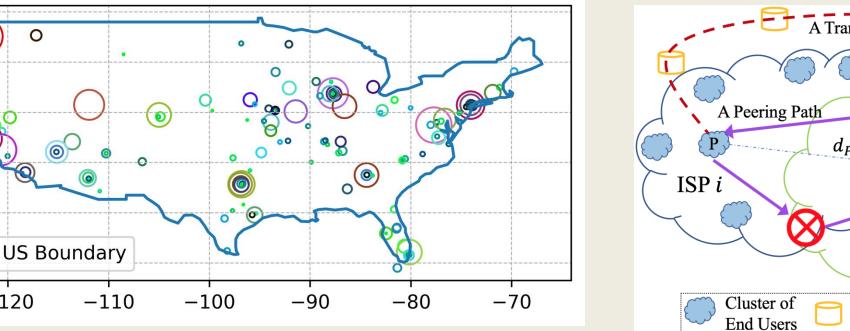
30

25

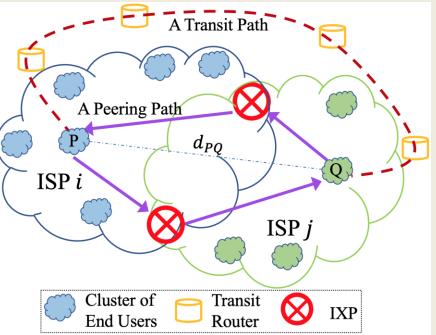
Proportional Pricing

- 2. Port Purchase at IXP
 - **No Transit** Available
 - **Transit** Available

- 3. <u>Peering Choices of ISPs</u>
 - Peering **Partner** Selection
 - Peering Location Selection



IXPs in the US (Circle size \propto # of ISPs)



Example of Peering and Transit Path

Related Work

Background and Motivation

Pricing Policy of IXPs

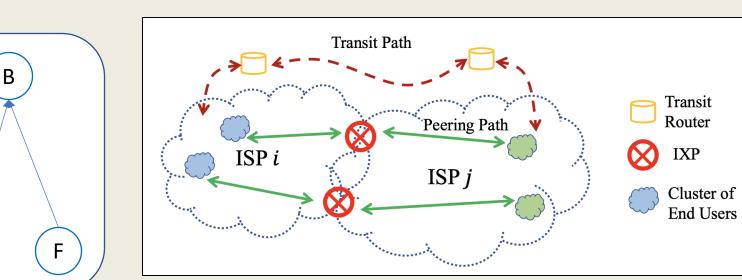
Peer

Ε

D

P-C

- **IXPs** usually **charge a fee** to the ISPs for cost recovery or profit.
- ▶ ISPs' decision to peer at IXP depends on QoS, pricing, transit cost etc.
- > Despite falling transit costs, **peering** between ISPs has been **on the rise**.
- Careful design of IXP pricing policy may ensure stable and efficient peering.



Proportional

Constant

Pricing

Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

Related Work

Contributions

Constant Pricing

Proportional

Port Capacity

Purchase

Peering

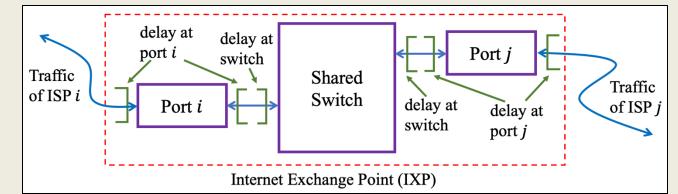
Decisions

Conclusion

Pricing

Background and Motivation

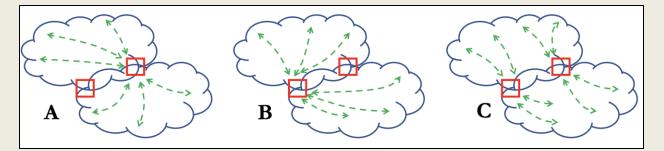
- Port Purchase at IXP
 - ISPs typically pay the IXPs according to the port capacity purchased by them.



- ▶ The QoS of traffic depends on the port capacities purchased by the ISPs.
- Making the port-capacity purchasing decisions dependent on other ISPs decision.

Peering Decision Process

 Peering allows more room for ISP-specific optimizations.

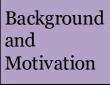


Identifying potential peer and locations are crucial for efficient traffic exchange.

<u>Game Theory – Common Terms</u>

- > Agent / Player : A person or entity that participates in economic activity (ISP and IXP in our study)
- **Utility:** Value / worth / satisfaction of a good / service.
- **Cost:** dissatisfaction / money spent on a service. (Delay in internet traffic)
- **Revenue (Rev):** Income (In our study it is usually IXP's revenue)
- **Social Cost (SC):** *Sum of costs* of all agents / players.
- Social Welfare (SW): (Sum of utility of all agents) (Social Cost)
- **Equilibrium (Eq.):** A state at which no agents can improve their utility by changing strategy unilaterally.

$$\blacktriangleright PoA(SW): \frac{Max SW}{SW at Eq.}, \qquad PoA(Revenue): \frac{Max Rev}{Rev at Eq.}, \qquad PoA(SC): \frac{SC at Eq.}{Min SC}$$



Related Work

- Related Work
- Contributions
- Constant Pricing
- Proportional Pricing
- **Port Capacity** Purchase
- Peering Decisions
- Conclusion

- - Network formation games: two nodes build links mutually but can sever links individually. Studied for different settings: The models focus on **fixed connection cost**.
 - Works on pricing network services and traffic: **Do not consider** an IXP setting.
 - **Peering Decision of ISPs:**
 - Only a few works explored solution of **peering decision** on a **global scale**.

Selfish routing and congestion games: many existing work studies Nash equilibrium.

Nash Equilibrium **no longer appropriate** when deciding **pairwise peering** decision.

Peering **location selection** can be computationally difficult.

Topic 1: Efficient Pricing Policies at IXPs

Our Publications on this Topic:

- 1. [ToN 2023] M. Alam, E Anshelevich, K Kar, M Yuksel. "Pricing for Efficient Traffic Exchange at IXPs".
- 2. [Globecom 2021] M. Alam, K Kar, E Anshelevich, "Balancing Traffic Flow Efficiency with IXP Revenue in Internet Peering".
- 3. [ITC 2021] M. Alam, E Anshelevich, K Kar, M Yuksel, "Proportional Pricing for Efficient Traffic Equilibrium at Internet Exchange Points".

Related Work

- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase
- Peering Decisions

Conclusion

Constant Pricing Policy *Motivation*

- **ISPs** exchange traffic via IXP to attain **better SW**.
- **IXP** tries to **maximize** its **revenue** with a good pricing policy.
- We aim to choose a pricing policy that attain better SW and Revenue.
- Previous work:
 - 1. How the operational cost of (non-profit) IXP be shared among ISPs.
 - 2. Explored conditions to have good SW and revenue (strong smoothness needed)

Constant Pricing Policy System Model

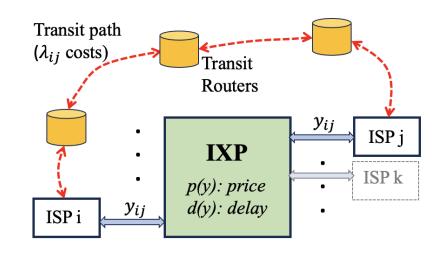
Related Work

- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase
- Peering Decisions

Conclusion

Some common notations used in the paper

Term	Description
y_{ij}	Traffic of ISP pair (i, j) sent publicly through the IXP.
y_i	$\sum_{j} y_{ij}$, total traffic of ISP <i>i</i> going through the IXP.
y	$\frac{1}{2}\sum_{i}\sum_{j}y_{ij}$, total traffic flowing through the IXP.
\overrightarrow{y}	Total traffic allocation vector (vector of values y_{ij})
λ_{ij}	Per-unit cost incurred by (i, j) for routing traffic externally
d(y)	Congestion cost per unit traffic incurred at the IXP
p(y)	Price per unit traffic set by the IXP



- $\blacktriangleright SW of an ISP i is,$
 - Or,
- SW of al ISPs
- Rev of IXP,
- SW (system)
- $y_{ij}\lambda_{ij}$ $y_{ij} + d(y)$ $y_{ij}\},$ $\{p(y)\}$ $(ij) \ni i$ $(ij) \ni i$ $(ij) \ni i$ $SW_i(\vec{y}, c(y))$ $W_i(\vec{y})$ $c(y)y_i$. = $SW_{ISP}(\vec{y}, c(y))$ $2(W(\vec{y})) - c(y)y,$ = $Rev(\vec{y}, p(y)) = p(y) \sum \sum y_{ij} = 2p(y)y.$ $(ij) \ni i$ $SW(\vec{y})$ $SW_{ISP}(\vec{y}, c(y)) + Rev(\vec{y}, p(y)),$ = $2W(\vec{y}) - 2d(y)y = 2W(\vec{y}) - 2E(y),$

Related Work

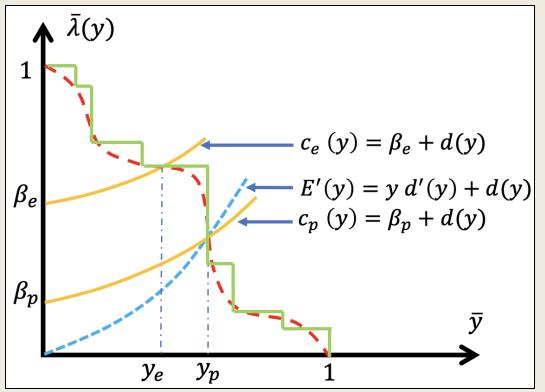
- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase

Peering Decisions

Conclusion

Constant Pricing Policy System Model

- **Definition.** A traffic flow $\overrightarrow{y_e}$ with $y_e = |\overrightarrow{y_e}|$ is said to be an equilibrium flow if and only if all the traffic with $\lambda_{ij} > c_e(y_e)$ is sent and the traffic with $\lambda_{ij} < c_e(y_e)$ is not sent.
- **Theorem.** y_e is an equilibrium traffic flow when $\lambda(y_e^-) \ge c_e(y_e) \ge \lambda(y_e^+)$.
- **Theorem.** At social optimality, all the traffic with $\lambda_{ij} > E'(y_p)$ flows through the IXP and all traffic with $\lambda_{ij} < E'(y_p)$ does not. Also, $\lambda(y_p^-) \ge$ $E'(y_p) \ge \lambda(y_p^+)$.



 $\lambda(y)$ curve with E'(y) and c(y).

Related Work

Constant

Pricing

Pricing

Purchase

Peering

Decisions

Conclusion

Constant Pricing Policy

Theoretical Analysis

An inverse demand curve $(\lambda(y))$ has a **shift factor** α_1 if,

 $\frac{\lambda(y)}{\lambda_{max}} + \frac{y}{y_{max}} \ge \alpha_1, \forall y.$ Contributions $\mathbf{A} \ \overline{\lambda}(y)$ Whereas $\lambda(y)$ has a **stretch factor** α_2 if Sample α_2 support curve Sample α_1 support curve $\left(\frac{\lambda(y)}{\lambda_{max}}\right)^{\alpha_2} + \left(\frac{y}{y_{max}}\right)^{\alpha_2} \ge 1, \forall y.$ $c_e(y) = \beta_e + d(y)$ Proportional E'(y) = y d'(y) + d(y) β_e $c_p(y) = \beta_p + d(y)$ **Port Capacity** PoA(SW): $\frac{SW \text{ at OPT}}{SW \text{ at Equilibrium}}$ β_p v $PoA(Rev): \frac{\max(Rev)}{Rev \ at \ Equilibrium}$ y_p y_e

Related Work

Contributions

Constant Pricing

Proportional Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

Constant Pricing Policy *Theoretical Analysis* (contd.)

- The pricing policy to attain good SW and Rev is to charge per unit traffic $p(y) = \beta_b = \max(\beta_e, \beta_p)$,
 - where β_e is dependent on *K*, α , d(y); e.g. $\beta_e = K\alpha_1 d(y_e)$, and β_p is dependent on *y*, d(y).
- **Theorem.** If $\lambda(y)$ has a **shift factor** α_1 , then with $p(y) = \beta_b$, we can attain atleast $\left(\frac{1}{\alpha_1(1-K)}, \max\left(\frac{1}{\alpha_1(1-K)}, \frac{2}{K\alpha_1}\right)\right)$ of the maximum achievable SW and Revenue respectively.

With
$$K = \frac{2}{3}$$
, the *PoA* for both SW and Rev is $\frac{3}{\alpha_1}$

Theorem. If $\lambda(y)$ has a **stretch factor** α_2 , then with $p(y) = \beta_b$, we can attain at least $\left(\frac{1}{(1-K)^{1/\alpha_2}}, \max\left(\frac{1}{(1-K)^{1/\alpha_2}}, \frac{2}{K^{1/\alpha_2}}\right)\right)$ of the maximum achievable SW and Revenue respectively.

With
$$K = \frac{2^{\alpha_2}}{1+2^{\alpha_2}}$$
, the *PoA* for both SW and Rev is $(1+2^{\alpha_2})^{1/\alpha_2}$.

Constant Pricing Policy *Simulations*

Related Work

Contributions

Constant Pricing

Proportional Pricing

Port Capacity Purchase

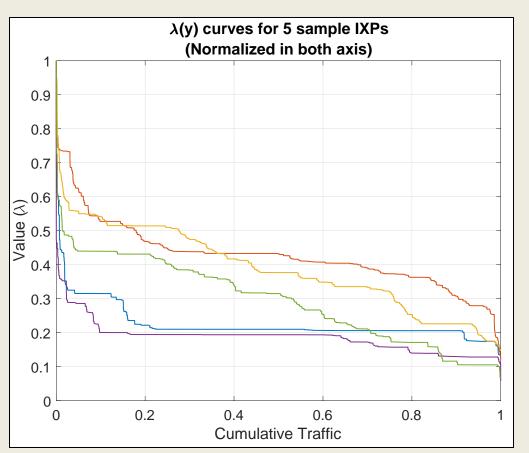
Peering Decisions

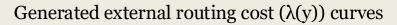
Conclusion

- Data Collection
 - PeeringDB
 - **CAIDA**
- Simulation Setup
 - Generating Inverse demand curve $(\lambda(y))$
 - Simulations

POA VALUES FOR POLYNOMIAL AND QUEUING DELAY FUNCTIONS.

Term	K=0.3	K=0.5	K=0.7
PoA(SW) (polynomial)	3.3851	2.4319	5.8607
PoA(SW) (queuing)	1.9968	2.4902	6.6428
PoA(SW) (Theo)	5.3908	7.5472	12.5786
PoA(Rev) (polynomial)	1.5511	1.8605	5.1399
PoA(Rev) (queuing)	5.5403	1.9556	2.0722
PoA(Rev) (Theo)	25.1572	15.0943	12.5786

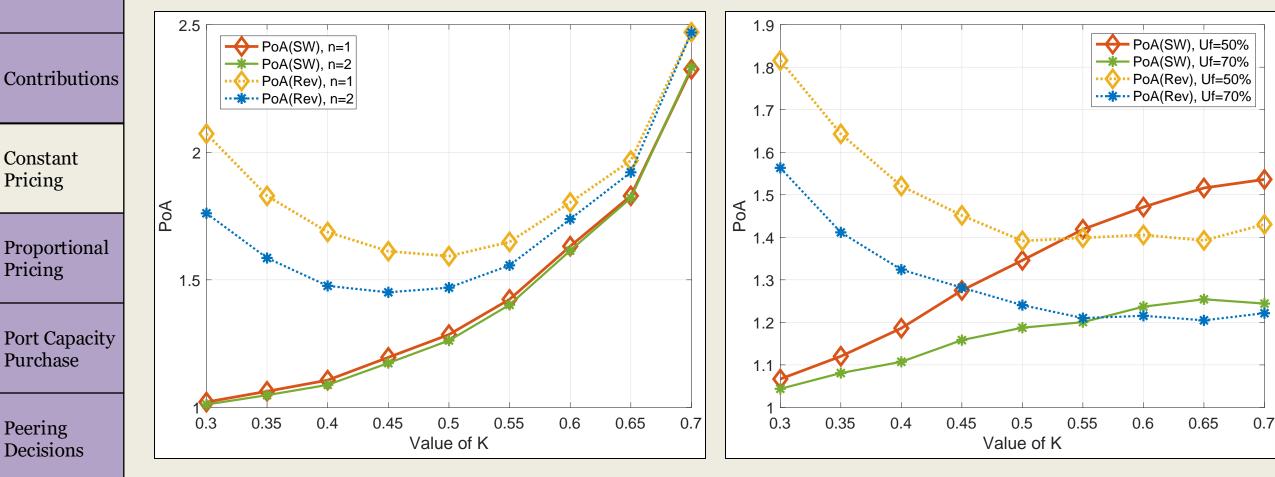




Conclusion

Constant Pricing Policy *Simulations*

Related Work



Avg PoA of SW and Rev - Simulated (polynomial delay function).

Avg PoA of SW and Rev - Simulated (queuing delay function).

Constant Pricing Policy Conclusion

Contributions

Related Work

- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase

Peering Decisions

Conclusion

- Pricing policy ensuring good social welfare and IXP Revenue simultaneously exists.
- The pricing policy (and PoA) depends on the sub-linearity measure of inverse demand curve.

Related Work

Contributions

Constant Pricing

Proportional

Port Capacity

Purchase

Peering Decisions

Pricing

Proportional Pricing Policy

Motivation

- Good constant pricing policy is heavily dependent on the characteristics of inverse demand curve.
- Proportional pricing policy can be used to aid IXPs on the pricing decision policy without the knowledge of inverse demand curve.
 - Social cost, another performance metric like SW, can be used to bound the performance.
- Show the co-existence of close-to-optimum SC and IXP revenue.

Proportional Pricing Policy System Model

Related Work

Contributions

Constant Pricing

Proportional Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

 $p(y)\sum_{j}y_{ij} + d(y)\sum_{j}y_{ij} + \sum_{j}(B_{ij} - y_{ij})\lambda_{ij},$

Or, $C_i(\vec{y}, c(y)) = c(y)y_i + L_i(\vec{y}).$

The total cost of ISPs

Cost of an ISP *i* is,

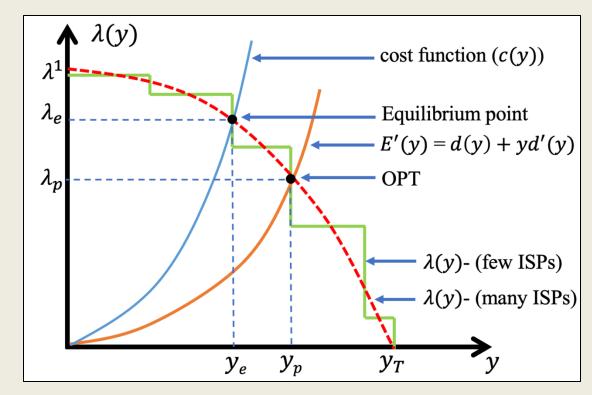
 $C(\vec{y}, c(y)) = 2(c(y)y + L(\vec{y})),$

Revenue, $p(y) \sum_{i} \sum_{j} y_{ij} = 2p(y)y.$

Social Cost,

$$SC(\vec{y}, d(y)) = C(\vec{y}, c(y)) - Rev(\vec{y}, p(y)),$$

= $2d(y)y + 2L(\vec{y}) = 2E(y) + 2L(\vec{y})$



Related Work

- Contributions
- Constant Pricing
- Proportional Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

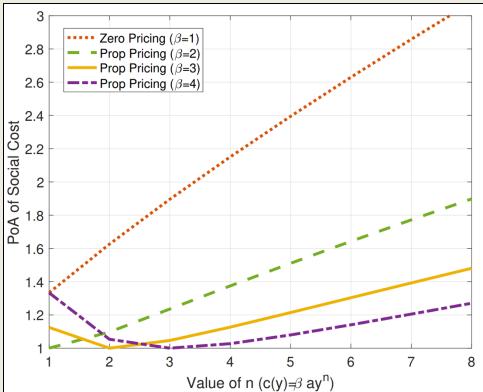
Proportional Pricing Policy

Theoretical Analysis: Social Cost

- **PoA**(SC): ratio of SC_{eq} to SC_{OPT}
- **Theorem.** $p(y) = y \cdot d'(y)$ attains a *PoA(SC)* of 1.
 - Can lead to very poor revenue.
- **Definition.** Proportional Pricing with $\beta \ge 1$ means $p(y) = (\beta 1) d(y)$.
- **Theorem.** For Proportional Pricing, if congestion cost (delay) function $d(y) = ay^n$ with a > 0, $n \ge 1$, and

i.
$$\beta \leq n+1$$
, then PoA is bounded by $\left[\beta - n\left(\frac{\beta}{n+1}\right)^{\frac{n+1}{n}}\right]^{-1} \leq \frac{n+1}{\beta};$

ii $\beta > n + 1$, then PoA is bounded by $\frac{\beta}{n+1} \left[\frac{\beta n}{(\beta-1)(n+1)}\right]^n \le \frac{\beta}{n+1}$



Related Work

Contributions

Constant Pricing

Proportional Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

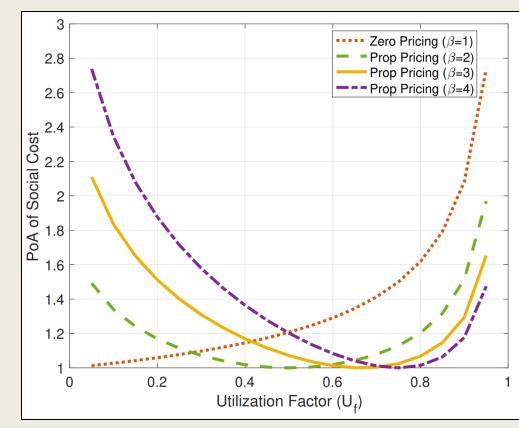
Proportional Pricing Policy

Theoretical Analysis: Social Cost

- **Definition.** Utilization factor, $U_f = \frac{y_e}{\mu}$.
 - y_e the equilibrium traffic
 - μ total capacity

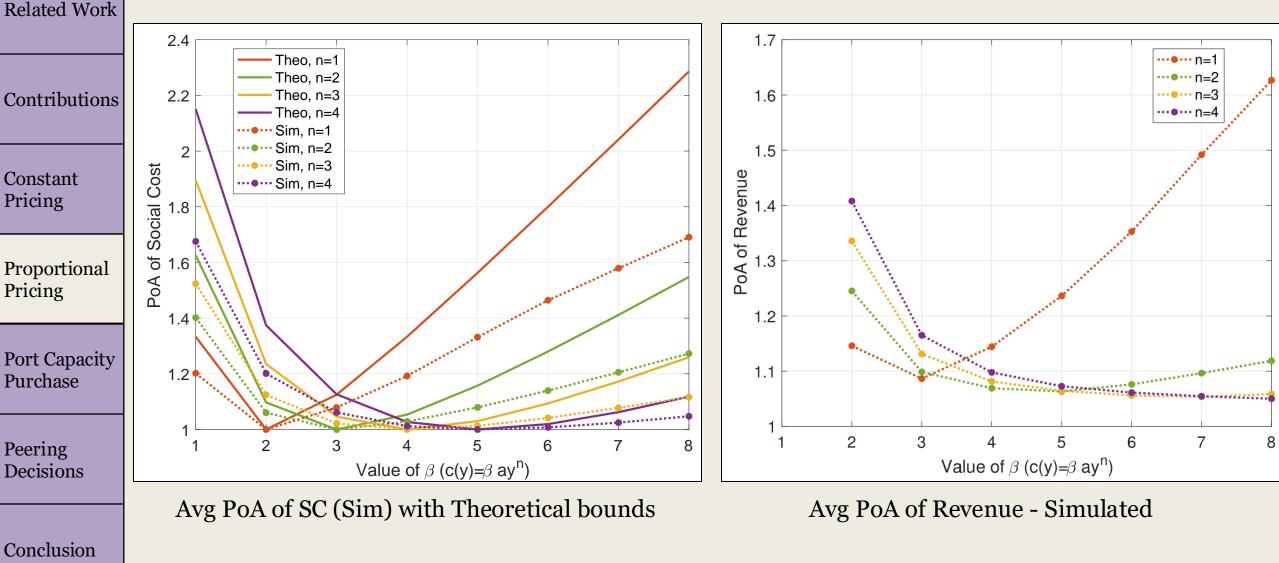
Theorem. For Proportional Pricing (i.e., $c(y) = \beta d(y)$) and congestion cost (delay) function $d(y) = \frac{a}{y-y}$, the PoA is bounded by

$$i. \quad \frac{U_f \sqrt{\frac{1-U_f}{\beta}}}{(1-U_f) \left[2-\sqrt{1-U_f} \left(\frac{1+\beta}{\sqrt{\beta}}\right)\right]}, \text{ when } U_f \ge 1 - \frac{1}{\beta}$$
$$ii. \quad \frac{\left(\sqrt{\beta} - \sqrt{U_f(\beta-1)}\right)^2}{1-U_f}, \text{ when } U_f < 1 - \frac{1}{\beta}.$$

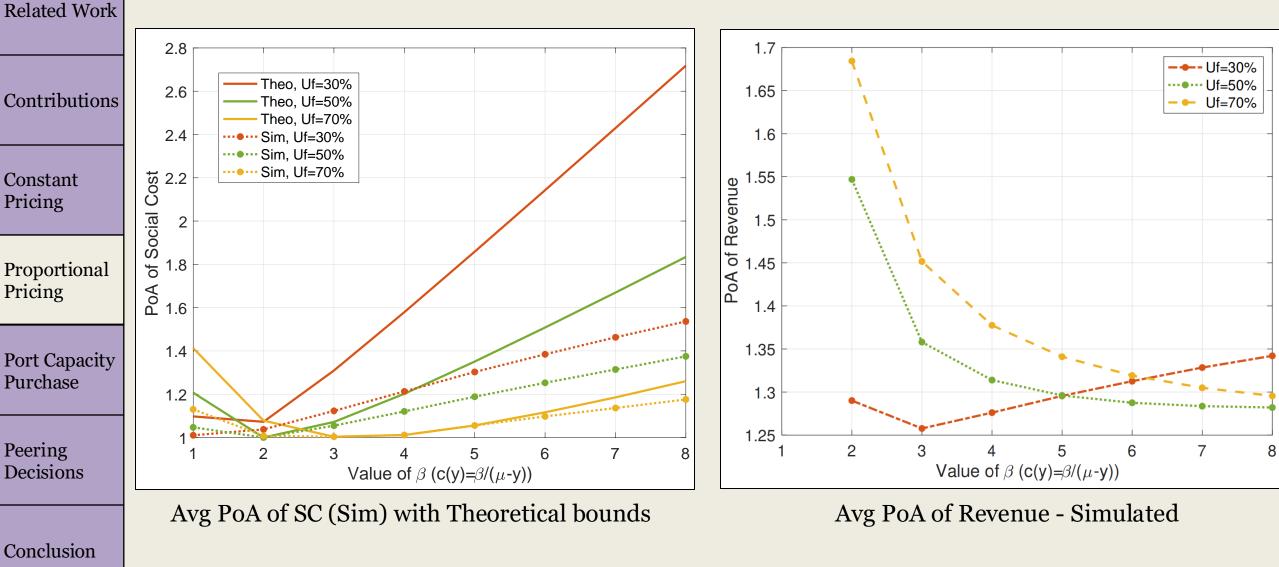


Proportional Pricing Policy

Simulation Results – Polynomial Delay



Seminar at IISc Bangalore, 10 February 2025



Proportional Pricing Policy *Simulation Results – Queuing Delay*

Seminar at IISc Bangalore, 10 February 2025

Related Work

Contributions

Constant Pricing

Proportional

Port Capacity

Purchase

Peering Decisions

Conclusion

Pricing

Proportional Pricing Policy Conclusion

- Theoretical **PoA (SC)** values **maintained small value** for a wide range of model parameters.
 - The **IXP does not need to know the external routing costs** of the participating ISPs.
 - Which is **not possible** with **constant pricing** policy.
 - **For appropriate range of** price proportionality factor ($\beta 1$), the *PoA* (*SC*) and *PoA*(*Rev*) **are small** for two broad type of delay functions.

Topic 2: Port Capacity Purchase at IXPs

Our Publications on this Topic:

- 1. [GameNets 2021] M. Alam, E Anshelevich, K Kar, "Port Capacity Leasing Games at Internet Exchange Points".
- ** <u>Under Review in TNSE</u>: "Port Capacity Purchase Games for Public Peering at Internet Exchange Points".

Related Work

- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase
- Peering Decisions

Conclusion

Port Capacity Purchase Motivation

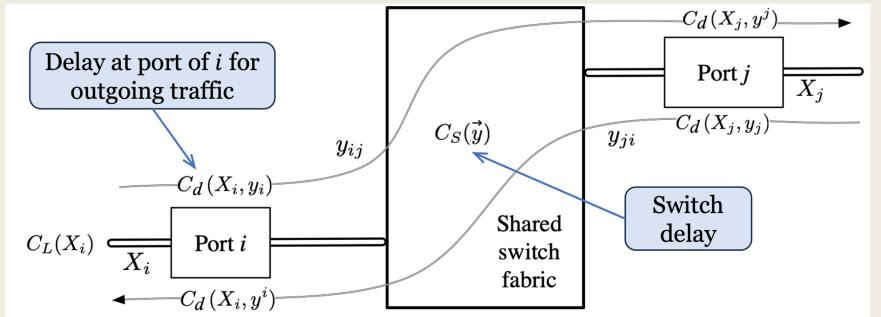
- ISP decisions at an IXP:
 - **1.** *unilaterally* determine the port capacity to purchase at an IXP.
 - 2. *bilaterally* (with the other ISPs) the amount of traffic to exchange.
- A complex bi-level coupling between unilateral and bilateral decision
- No prior work on this bi-level problem of Port Purchase at IXP.
- The goal is to ascertain the optimal port capacity to purchase that will
 - minimize the costs,
 - and maximize incentives.

Related Work

Contributions

Constant Pricing

Port Capacity Purchase (PCP) System model and properties



Port Capacity Purchase

Proportional

Pricing

Peering Decisions

Conclusion

$$\begin{aligned} & \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Related Work

Contributions

Constant Pricing

Proportional Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

Port Capacity Purchase

Transit Option Not Available

- Assumption 1: $C_i(X_i, X_{-i})$ has a unique minimum in X_i for any given X_{-i} .
- **Proposition:** Under Assumption 1, an equilibrium always exists.
- Multiple Equilibria:

$$y_{ij} = y_{ji} = 1; C_P = const.; C_S(X) = max\left(10 - \left(\sum_i X_i - y\right), 0\right); C_L(X_i) = \log X_i$$

Then all values satisfying $X_i + X_j = 12$, is an equilibrium.

Contributions

Constant Pricing

Proportional

Port Capacity

Purchase

Peering Decisions

Conclusion

Pricing

Related Work

- Transit Option Not Available Fixed Switch Capacity
 - When $C_S(X, y)$ is independent of X, the port purchase game becomes a potential game.
 - The potential function is given by,

Port Capacity Purchase

$$\Phi(X) = \sum_{i} \left[\left(y_i C_P(X_i, y_i) + y^i C_P(X_i, y^i) \right) + C_L(X_i) + (y_i + y^i) \cdot C_S \right]$$

- **Theorem 1:** Under Assumption 1, if $C_S(X, y)$ is independent of X then:
 - i. Each ISP has a dominant strategy; port purchase game has a unique equilibrium.

ii. $PoA = PoS \leq 2$.

Related Work

Contributions

Constant Pricing

Proportional

Port Capacity

Purchase

Peering Decisions

Pricing

ivation Port Capacity Purchase

Transit Option Not Available - Variable Switch Capacity

- Well provisioned IXP switch: $\sum_i \left(y_i C_P(X_i, y_i) + y^i C_P(X_i, y^i) \right) \ge \sum_i \left(y_i + y^i \right) C_S(X, y)$
- Bounding PoA (with Smoothness): if the following condition is true,

 $\sum_{i} \left[\lambda \cdot C_{i}(X^{*}) + \mu \cdot C_{i}(X) - C_{i}(X_{i}^{*}, X_{-i}) \right] \geq 0$

- ► Then, $PoA \le \frac{\lambda}{1-\mu}$
- With $\lambda = 1$, and $\mu = \frac{1}{2}$, *PoA* of current game can be bounded using Theorem 2.
- **Theorem 2.** If IXP switch is well provisioned, the PCP game has a $PoA \leq 2$.
- ► **Corollary.** If both C_P and C_S represent M/M/1 delay functions, and the switch has a capacity of $\sum_i X_i$, then $PoA \le 2$.

Related Work

Contributions

Constant Pricing

Proportional Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

Port Capacity Purchase

Transit Option Available

- Bilevel game: ISP *i* chooses port capacity X_i unilaterally, but choose traffic rate y_{ij} through bilateral (pairwise) agreement with ISP *j*
- Total cost of ISP *i* : $\sum_{j} \left[y_{ij} C_d(f_i(y_i, y^i), y_i) + y_{ji} C_d(f_i(y_i, y^i), y^i) \right]$ + $\sum_{j} \left[y_{ij}C_d(f_j(y_j, y^j), y^j) + y_{ji}C_d(f_j(y_j, y^j), y_j) \right]$ $+C_L(f_i(y_i, y^i)) + (y_i + y^i) \cdot C_S(y) + \sum_j \lambda_{ij}(B_{ij} - y_{ij}) + \sum_i \lambda_{ji}(B_{ji} - y_{ji})$ $\sum_{j} \left[y_{ij} C_{d_i}(y_i, y^i) + y_{ji} C_{d^i}(y_i, y^i) \right] + \sum_{j} \left[y_{ij} C_{d^j}(y_j, y^j) + y_{ji} C_{d_j}(y_j, y^j) \right]$ $+ C_{L_i}(y_i, y^i) + (y_i + y^i) \cdot C_S(y) + \sum_{j} \lambda_{ij} (B_{ij} - y_{ij}) + \sum_{j} \lambda_{ji} (B_{ji} - y_{ji}).$ =

Port Capacity Purchase *Transit Option Available*

- Related Work
- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase

Peering Decisions

Conclusion

Assumption 2. For any ISP *i*, $y_i C_{P_i}(y_i, y^i)$, and $y^i C_{P^i}(y_i, y^i)$ are convex and increasing in y_i and y^i respectively.

Assumption 3. For any ISP *i*, $y_i C_{d_i}(y_i, y^i)$, and $y^i C_{d^i}(y_i, y^i)$ are convex and increasing in y_i and y^i respectively.

Where

re
$$\frac{C_{d_i}(y_i, y^i) + \frac{y_i}{y_i + y^i} C_{L_i}(y_i, y^i) = C_{P_i}(y_i, y^i)}{C_{d^i}(y_i, y^i) + \frac{y^i}{y_i + y^i} C_{L_i}(y_i, y^i) = C_{P^i}(y_i, y^i)}$$

Related Work

Contributions

Constant Pricing

Proportional Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

Port Capacity Purchase

Transit Option Available

- **PoA without** switch delay:
 - ► Theorem 3. If switch delay is negligible and Assumption 2 holds, then PCP game with transit option has *PoA* ≤ 4.
 - **Theorem 4.** If switch delay is negligible and Assumptions 2 and 3 hold, then PCP game with transit option has $PoA \leq 2$.
- **PoA with switch delay:**
 - Theorem 5. If the switch is well-provisioned, then PCP game with transit option has
 (a) *PoA* ≤ 8 if Assumption 2 holds; (b) *PoA* ≤ 4 if both Assumptions 2 and 3 hold.

Related Work

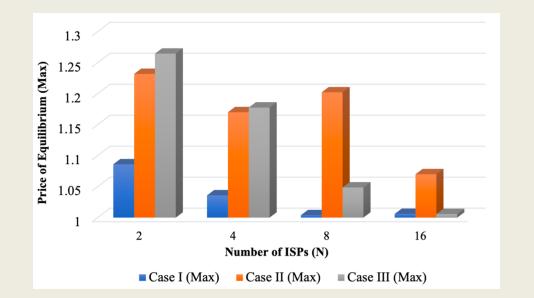
- Contributions
- Constant Pricing
- Proportional Pricing
- **Port Capacity** Purchase
- Peering Decisions

Conclusion

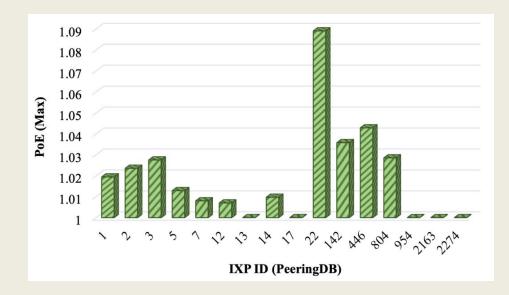
Port Capacity Purchase

Simulation results

- Price of equilibrium (*PoE*) = ratio of cost at (any) equilibrium to cost of optimum.
- PoS < PoE < PoA
 - **Three cases:** none or some constraints on real traffic data,
 - i)
 - for any ISP pair $(i, j), B_{ij} = B_{ji}$, and ii)



No constraint on the B_{ij} values, iii) for any ISP pair $(i, j), 10^{-5} < B_{ij} < 100$.



Related Work

Contributions

Constant Pricing

Proportional Pricing

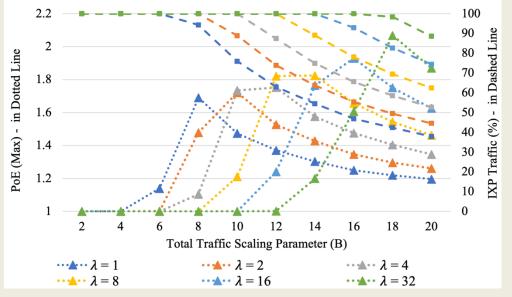
Port Capacity Purchase

Peering Decisions

Conclusion

Port Capacity Purchase *Simulation results* (contd.)

- For different traffic demands (*B*), max *PoE* value is proportional to transit cost (λ values).
- ▶ Highest *PoE* when IXP traffic falls from 100% (dotted and dashed lines of same colors).
 - Worst-case *PoE* (*PoA*): when **ISPs** do not use transit and **exhaust IXP resources** fully.



Effect of transit cost scaling parameter (λ) and total traffic scaling parameter (B)

Related Work

- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase

Peering Decisions

Conclusion

Port Capacity Purchase Conclusion

- > Port purchase game at IXP is analyzed for two scenarios: **Transit** and **No Transit** option.
- For **No Transit** Scenario:
 - ▶ If switch capacity of IXP is fixed, ISPs have a dominant strategy and $PoA \leq 2$.
 - ▶ If switch capacity changes but is well provisioned, $PoA \leq 2$.
- For **Transit** Scenario:
 - ▶ If switch delay is negligible, $PoA \le 4$.
 - ▶ If switch is well provisioned, $PoA \le 8$.

Topic 3: Modeling ISP Peering Decision Process

Our Publications on this Topic:

- 1. [ICC 2022] M. Alam, K Kar, E Anshelevich, "Modeling and Automating ISP Peering Decision Process: Willingness and Stability"
- 2. [TNSM 2024] M. Alam, A Mahmood, K Kar, M Yuksel, "Meta-Peering: Automating ISP Peering Decision Process".
- ** <u>Under Review in TMLCN</u>: M. Alam, A. Senapati, A Mahmood, K Kar, M Yuksel, "Peering Partner Recommendation for ISPs using Machine Learning".

ISP Peering Decisions *Motivation*

Related Work

- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase

Peering Decisions

Conclusion

- **ISPs peer** with **other ISPs** to decrease delay, enhance security etc.
- Finding **suitable peers** is **crucial to survive** the market.
- Automating the peering decision process can save time and money.
 - Automation of peering process has only been explored in few recent works.

Peering Partner Prediction *Data Collection*

Related Work

Contributions

Constant Pricing

Proportional Pricing

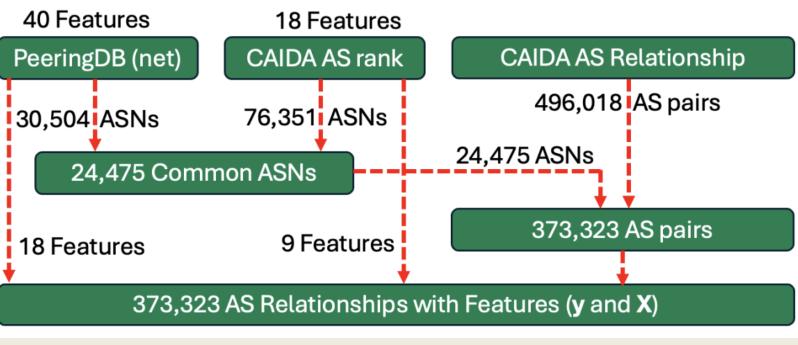
Port Capacity Purchase

Peering Decisions

Conclusion

<u>Data Sources:</u>

• PeeringDB and CAIDA

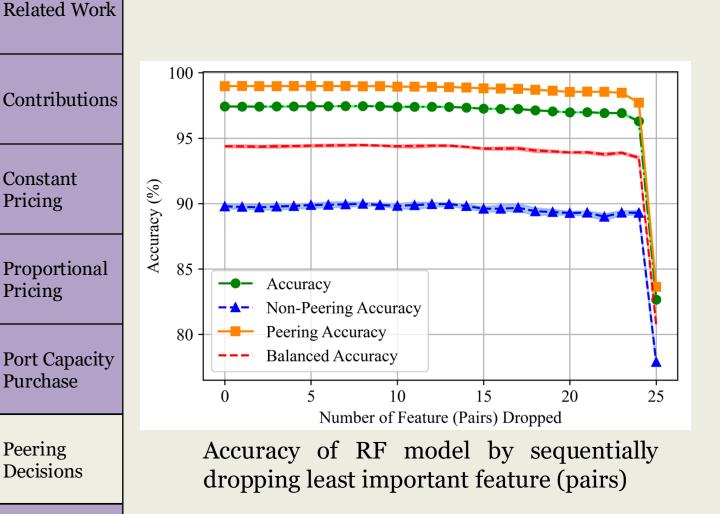


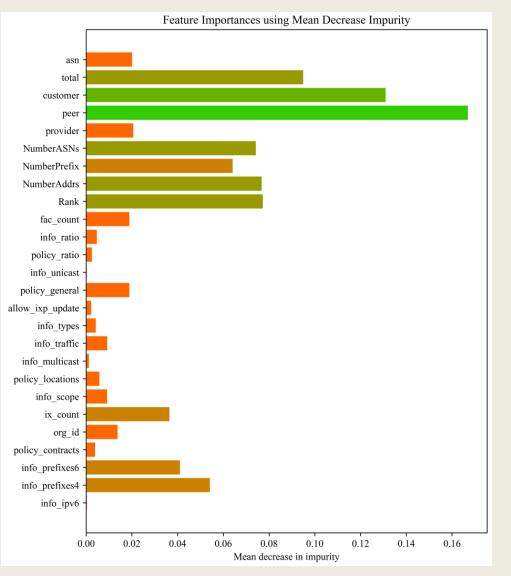
Data extraction and forming feature set of AS pairs

Conclusion

Peering Partner Prediction

Performance (Filtered Dataset)





Seminar at IISc Bangalore, 10 February 2025

Feature importance

40

Peering Partner Prediction *Model and Dataset Selection*

Related Work

Constant Pricing

Proportional Pricing

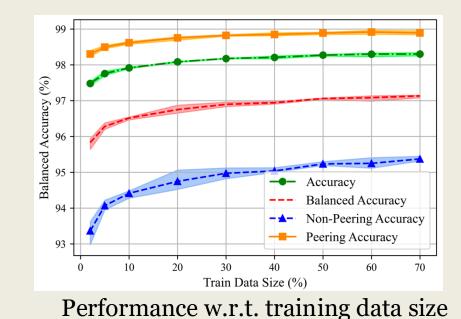
Port Capacity Purchase

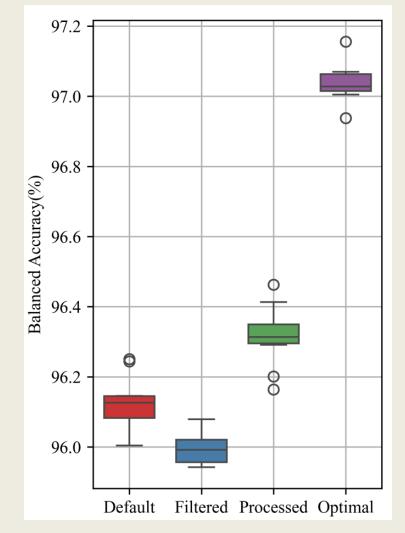
Peering Decisions

Conclusion

Model	Overall	Balanced	Training	Evaluation
Name	Accuracy	Accuracy	Time (sec)	Time (sec)
BERT	95.80	93.35	5325	10300
DNN	96.01	93.54	14.38	4.19
RF	97.01	95.68	8.29	2.47
SVM	93.65	92.60	20.78	225.9
XGB	97.13	95.70	2.76	0.098

Performance of different ML models



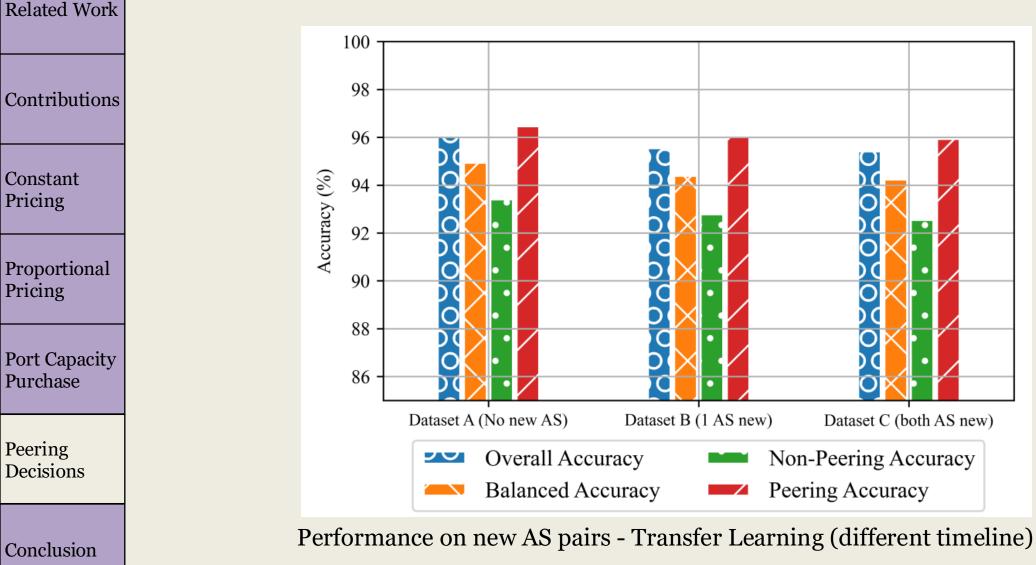


Performance with default and processed datasets

Seminar at IISc Bangalore, 10 February 2025

Peering Partner Prediction

Transfer Learning on New Data Over Time



Related Work

Contributions

Constant

Proportional

Port Capacity

Purchase

Peering

Decisions

Pricing

Pricing

Peering Location Decision System model and properties

- Possible Peering Points (**PPP**s): where an ISP pair can peer.
- Acceptable Peering Contracts (APCs): set of contracts (locations) where ISP pairs have no (policy) issue to peer at.
- Traffic from **ISP R at Location 1** to **ISP C at Location 2**:

$$T_{1,2}^{R \to C} = s_2 * u * \frac{p_2}{d^2} * \frac{R_{C,2}}{\sum_k R_{k,2}},$$

Routing Costs

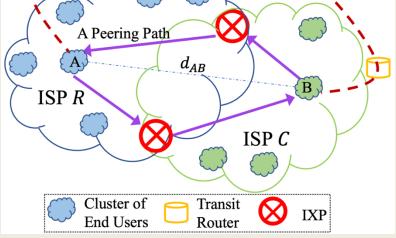
$$C_I = a_I \sum_r d_r = a_I \times d_I \quad _{_{40}}$$

$$C_T = a_T \times f \times d_{AB}$$

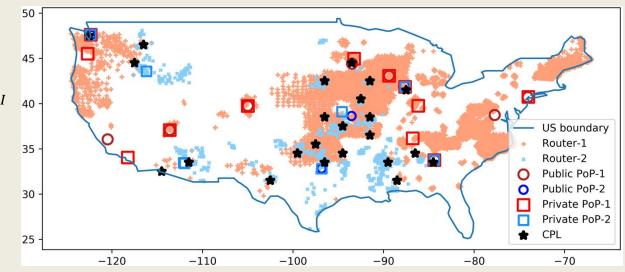
$$d^{2} = 32 * d * d^{2} \sum_{k} R_{k,2},$$

$$C_I = a_I \sum_r d_r = a_I \times d_I$$

$$C_T = a_T \times f \times d_{AB}$$



A Transit Path



Seminar at IISc Bangalore, 10 February 2025

Conclusion

Peering Location Decision *Peering Willingness and Stability*

Related Work

Contributions

Constant Pricing

Proportional Pricing $i \in APC$,

Port Capacity Purchase

Peering Decisions

Conclusion

Peering Willingness of ISP *R* with contact $i \in APC$:

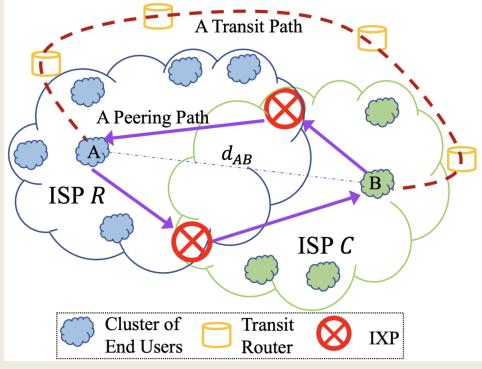
 $W_i^{R \to C} = \frac{\sum_t C_T(t, R, C)}{\sum_t C_I(i, t, R, C)} = \frac{\sum_t a_T * d_{(AB)_t} * f}{\sum_t a_I * d_{I_t}(i)} ,$

Peering willingness between ISPs (R, C) using contract

$$W_i^{R,C} = \sqrt{W_i^{R \to C} \times W_i^{C \to R}}$$

Peering Stability of ISP R with using contact $i \in APC$:

$$S_i^{R \to C} = \frac{\min_{\tilde{i} \in \mathcal{APC}} \sum_t C_I(\tilde{i}, t, R, C)}{\sum_t C_I(i, t, R, C)}$$



peering stability for an ISP pair (R, C) using contract

$$E \in APC, \quad S_i^{R,C} = \sqrt{S_i^{R \to C} \times S_i^{C \to R}}$$

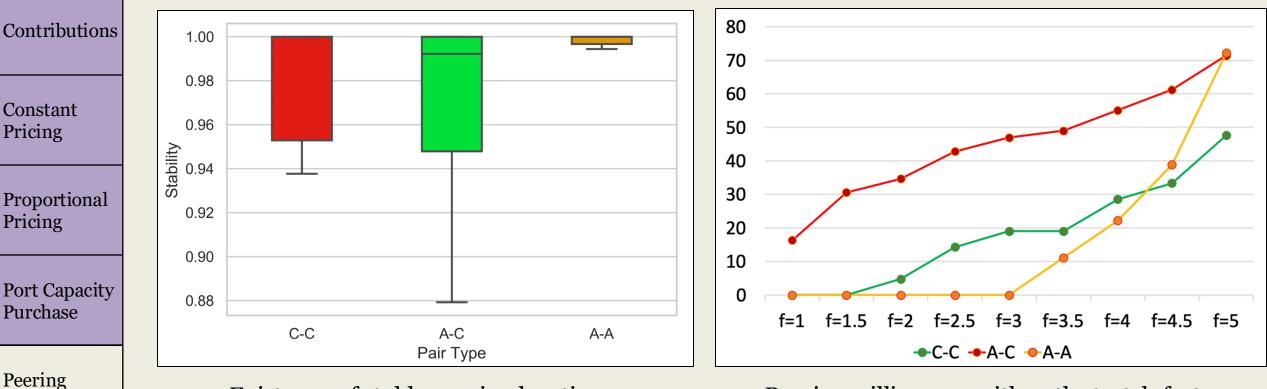
Related Work

Decisions

Conclusion

Peering Location Decision

Simulation Results - Single Point Peering



Existence of stable peering location.

Peering willingness with path stretch factor.

Related Work

- Contributions
- Constant Pricing
- Proportional Pricing
- Port Capacity Purchase

Peering Decisions

Conclusion

ISP Peering Decisions

Conclusion

Methods that automate the decision of peering and peering locations are developed.

Peering Partner Prediction

- AS features are extracted and processed to train machine learning (ML) based models.
- > Optimal dataset constructed: contains important features to predict peering partners.
- ML based XGB showed robustness to different scenarios and attained great accuracy (>96%).

Peering Location Prediction

- Higher Peering willingness indicates higher motivation to peer.
- There is usually a stable peering location for all ISP pairs.
- The Access-Content ISP pair type showed high *PW*, *PS* and low *PoS*.

Conclusion

Related Work

Contributions

Constant Pricing

Proportional Pricing

Port Capacity Purchase

Peering Decisions

Conclusion

Conclusion Essential Insights

- 1. Pricing Policy of IXPs: Can ensure good Social Cost (or Welfare) and Revenue with
 - **Constant pricing** when Internet demands are stable.
 - **Proportional pricing** when Internet demands are dynamic.
- 2. Port Capacity Leasing game
 - The social utility cannot be too bad even with selfish behaviors of ISPs.
- 3. ISP Peering Decisions
 - Machine learning models can **accurately** predict **peering partner** with public data.
 - > Peering of an ISP pair depends mainly on the features of the respective ISP pair.
 - > ISP peering locations are dependent on the geographic presence of other ISPs.

Practical Implications

- Contribution

Related Work

- Constant Pricing
- Proportional Pricing
- **Port Capacity** Purchase

Peering Decisions

Conclusion

- **IXP** Policy Recommendations
 - For stable internet demand, IXPs can consider constant pricing policy.
- With appropriately chosen per-unit price, good **social welfare** and **revenue** can be achieved.
- If Internet demand is more dynamic, IXPs may consider **proportional pricing** policy.
- **Recommendation to ISPs**
 - ISPs can selfishly take port purchase decisions at IXP and do not hurt the social utility much.
 - The decision of two ISPs to peer does not depend much on the entire system.
 - The peering location decision, however, may depend on the entire system of all ISPs.

Thank you for listening!

Questions?