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Group testing: origin

First studied by Robert Dorfman

in US in the 1940s for syphilis

testing amongst soldiers.

Can do individual testing,

inefficient since most tests will

be negative.

Key idea: ‘pool’ samples from
many soldiers and test it
◮ Negative test: all in the pool

are uninfected
◮ Positive test: at least one

soldier is infected

Goal: design pooling strategies

to minimize number of tests.

Img. source: https://www.cartoonstock.com/
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Model

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n
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Model

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Each test t can be represented by x ∈ {0,1}n.
◮ xt

i = 1 if item i included in test.

Outcome yt =
∨

i∈K

xt
i .

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019
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Problem

Testing design X ∈ {0,1}T×n, output y =
∨

i∈K

Xi .

X is feasible if we can recover any K from y, |K| ≤ k .

Goal : Given n, k , find feasible testing designs of minimum size.
◮ Explicit constructions, efficient decoding rules
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Lower bound

Feasible testing design =⇒ ∃ injective function from set of

possible defective sets to the set of possible outputs



Lower bound

Feasible testing design =⇒ ∃ injective function from set of

possible defective sets to the set of possible outputs

2T ≥
k

∑

i=0

(

n

i

)



Lower bound

Feasible testing design =⇒ ∃ injective function from set of

possible defective sets to the set of possible outputs

2T ≥
k

∑

i=0

(

n

i

)

=⇒ T ≥ Ω
(

k log
n

k

)



Achievable strategies: adaptive testing

Sequential design of tests



Achievable strategies: adaptive testing

Sequential design of tests

k = 1



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search.



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search. Needs at most ⌈log n⌉ tests.



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search. Needs at most ⌈log n⌉ tests.

k > 1
◮ Repeat above process, removing one defective in each round.



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search. Needs at most ⌈log n⌉ tests.

k > 1
◮ Repeat above process, removing one defective in each round.

◮ Needs at most O (k logn) tests.



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search. Needs at most ⌈log n⌉ tests.

k > 1
◮ Repeat above process, removing one defective in each round.

◮ Needs at most O (k logn) tests.

◮ More sophisticated algorithms achieve O
(

k log n
k

)

tests.

Order-optimal w.r.t lower bound.



Group testing: bounds

Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k
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Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.
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Simple decoding algorithm: if all tests involving an item o/p

positive, mark defective.
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Non-adaptive testing: bounds

Lower bound : Ω(k2 logk n) tests; connection to k-cover

families [D’yachkov & Rykov’82, Furedi’96]

Random construction: O
(

k2 log n
k

)

tests; choose each entry

i.i.d. ∼ Ber(1/(k + 1)).

Explicit construction: O
(

k2 min{log2
k n, log n}

)

tests; based on

a concatenated code construction [Kautz & Singleton’64, Porat

& Rotschild’08]



Group testing: bounds

Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k

)

Non-adaptive k2 logk n k2 min{log2
k n, log n}



Cascaded Group Testing

with Waqar Mirza and Niranjan Balachandran

Information Theory Workshop (ITW), Nov. 2024

https://arxiv.org/abs/2405.17917
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Model

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

t2 1 2 3 4 5 6 2

t3 1 3 4 6 7 0

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Each test t is associated with an ordered subset of items

(i1, i2, . . . , iItI).

Test t returns first defective item in the sequence.
◮ 0 if no defective in test.
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Cascaded GT vs Binary GT

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

outcome
BGT

t1 3 1 5 7 5 Yes

t2 1 2 3 4 5 6 2 Yes

t3 1 3 4 6 7 0 No

t4 6 3 4 7 0 No

t5 7 5 4 6 5 Yes

CGT test provides at least as much information as BGT test.

Feasible design under BGT =⇒ Feasible design under CGT
◮ Upper bounds for BGT are also upper bounds for CGT

How much can the additional information help?
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3 If the test returns v , then update K̂ ← K̂ ∪ {v}.

4 Update i ← i + 1. If i > k , terminate and return K̂.
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Adaptive testing

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 1 2 3 4 5 6 7 2

t2 1 3 4 5 6 7 5

Sequential design of tests

Initialise V = {1,2, . . . ,n}, K̂ ← ∅, i ← 1 and run the loop:

1 Run a test with items in V\K̂ in an arbitrary order.

2 If the test returns 0, terminate and return K̂.

3 If the test returns v , then update K̂ ← K̂ ∪ {v}.

4 Update i ← i + 1. If i > k , terminate and return K̂.

Needs at most k tests, optimal in the worst-case.



Cascaded group testing: bounds

BGT Lower bound Upper bound

Adaptive k log
(

n
k

)
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(

n
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)

Non-adaptive k2 logk n k2 min{log2
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CGT Lower bound Upper bound

Adaptive k k

Non-adaptive k2 min{log2
k n, log n}
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Non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1: one test suffices, t1 = (1,2, ...,n)

k = 2: two tests suffice,

t1 = (1,2, ...,n), t2 = (n,n − 1, ...,1)

Optimal for k = 1,2. BGT would need Ω(log n) tests.

What about larger k?



Non-adaptive testing: feasibility
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V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6
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Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

K1 = {1, 2, 3}

K2 = {1, 3}Test outcome
CGT

t1 3 1 5 7 3

t2 1 2 3 4 5 6 1

t3 1 3 4 6 7 1

t4 6 3 4 7 3

t5 7 5 4 6 0

Testing design X is feasible if we can recover K from y.

Distinct outputs for each K1 6= K2, s.t. |K1|, |K2| ≤ k .

Analogue of disjunctness property under BGT.
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∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

K = {1, 2, 3}

v = 1

v = 2

v = 3

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7
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1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 1 5 6 7

t2 2 6 5 7

t3 3 7 5 6

t4 4 7 6 5

K = {2, 5, 7}

v = 2

v = 5

v = 7

X

X

X

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.
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t1 1 5 6 7

t2 2 6 5 7

t3 3 7 5 6

t4 4 7 6 5

K = {3, 4, 6}

v = 3

v = 4

v = 6

X

X

X

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.
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Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test outcome
CGT

t1
K = {3, 4, 6}

1 5 6 7 6

t2 2 6 5 7 6

t3 3 7 5 6 3

t4 4 7 6 5 4

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.

Reconstruction: K̂ = {yi : i ∈ [T ], yi 6= 0}

Lower bound : Any feasible design has at least ⌊k+1
2
⌋⌈k+1

2
⌉ tests.

Erdős-Szekeres theorem gives ⌊log2 log2(n − 1)⌋ lower bound.



Cascaded group testing: bounds

BGT Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k

)

Non-adaptive k2 logk n k2 min{log2
k n, log n}

CGT Lower bound Upper bound

Adaptive k k

Non-adaptive max{k2, log log n} k2 min{log2
k n, log n}
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Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

1 2 3A1

4 5 6A2

7 8 9A3

Use feasible design X1 for a items to create feasible design X2

for a2 items.

Partition a2 items into disjoint sets A1,A2, . . . ,Aa of size a each.
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1 2 3A1

4 5 6A2

7 8 9A3

Given permutations s1, s2 on a items, permutation s3 = s1 ◦ s2

on a2 items is given by:
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Given permutations s1, s2 on a items, permutation s3 = s1 ◦ s2

on a2 items is given by:
◮ For each i, arrange items of Ai according to s2. Call result hi .
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1 2 3 4 5 6 7 8 9

a = 3, s1 = (2, 3, 1), s2 = (1, 3, 2)

1 2 3A1

4 5 6A2

7 8 9A3

1 3 2
s2

4 6 5
s2

7 9 8
s2

h1

h2

h3

s1 4 6 5 7 9 8 1 3 2

Given permutations s1, s2 on a items, permutation s3 = s1 ◦ s2

on a2 items is given by:
◮ For each i, arrange items of Ai according to s2. Call result hi .

◮ Arrange h1, h2, ..., ha according to s1 to obtain s3
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1 2 3 4 5 6 7 8 9

a = 3, s1 = (2, 3, 1), s2 = (1, 3, 2)

1 2 3A1

4 5 6A2

7 8 9A3

1 3 2
s2

4 6 5
s2

7 9 8
s2

h1

h2

h3

s1 4 6 5 7 9 8 1 3 2

s3 = s1 ◦ s2 = (4, 6, 5, 7, 9, 8, 1, 3, 2)

Given permutations s1, s2 on a items, permutation s3 = s1 ◦ s2

on a2 items is given by:
◮ For each i, arrange items of Ai according to s2. Call result hi .

◮ Arrange h1, h2, ..., ha according to s1 to obtain s3
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Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.
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t3 ◦ t3 9 8 7 6 5 4 3 2 1

Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.

Consider F := {ti ◦ ti : i ∈ [|X1|]}.
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Consider F := {ti ◦ ti : i ∈ [|X1|]}.

Take g1 = (1,2, ...,a) and g2 = (a,a − 1, ...,1).
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X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9
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g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.

Consider F := {ti ◦ ti : i ∈ [|X1|]}.

Take g1 = (1,2, ...,a) and g2 = (a,a − 1, ...,1). Consider

H := {gi ◦ gj : i , j ∈ [2]}.
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1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9
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H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.

Consider F := {ti ◦ ti : i ∈ [|X1|]}.

Take g1 = (1,2, ...,a) and g2 = (a,a − 1, ...,1). Consider

H := {gi ◦ gj : i , j ∈ [2]}.

Finally, design for a2 items given by X2 := F ∪H.
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X2 is a feasible design;
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1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design; |X2| ≤ |X1|+ 4

Recursive design for n items, with at most O(log log n) tests.
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X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9
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1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design; |X2| ≤ |X1|+ 4

Recursive design for n items, with at most O(log log n) tests.

Idea generalizes to any constant k , with at most O((log log n)ck )
tests, where ck = 2(k−2) − 1.

Can be much smaller than BGT which needs Ω(k2 logk n) tests.



Cascaded group testing: bounds for k = O(1)

BGT Lower bound Upper bound

Adaptive k log n k log n

Non-adaptive k2 log n k2 log n

CGT Lower bound Upper bound

Adaptive k k

Non-adaptive max{k2, log log n} min{(log log n)ck , k2 log n}
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Summary

New variant of group testing

Derived bounds under adaptive and non adaptive testing

Further directions:

◮ General achievable strategies for any k

◮ Close gap between upper and lower bounds

◮ Noisy and constrained testing



Thanks

https://sites.google.com/site/nikhilkaram/
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

























1 0 0 1
1 0 1 0
0 1 1 0
0 1 0 0
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
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





















2-disjunct

Not 3-disjunct

Say k = 4, X not (k − 1)-disjunct

X1 �
∨

i∈[2:4]Xi =⇒
∨

i∈[2:4]Xi =
∨

i∈[1:4]Xi

O/p for K = {2, 3, 4} same as for K = {1, 2, 3, 4}

=⇒ X not feasible for k = 4.

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: bounds

Lower bound : Ω(k2 logk n) tests; connection to k-cover

families [D’yachkov & Rykov’82, Furedi’96]

Random construction: O
(

k2 log n
k

)

tests; choose each entry

i.i.d. ∼ Ber(1/(k + 1)).

Explicit construction: O
(

k2 min{log2
k n, log n}

)

tests; based on

a concatenated code construction [Kautz & Singleton’64, Porat

& Rotschild’08]

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019
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Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1

◮ For m ≥ 1, parity check matrix H

of a binary Hamming code has

dimension m × 2m − 1.

◮ All columns are distinct non-zero

binary vectors.

◮ Item j defective⇒ output y = Hj

=⇒ H is a feasible testing design.

◮ Works for m s.t. 2m − 1 ≥ n =⇒
needs ⌈log(n + 1)⌉ tests.

◮ Near-optimal for k = 1.









1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1









H3,7

H5 j = 5
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Extensions and variants

Decoding criterion: small error probability, partial recovery

Defectives prior : combinatorial, i.i.d., bursty

Noise model : symmetric, Z channel, dilution, erasure

Testing model : threshold, quantitative, concomitant, tropical,

graph-constrained
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Cascaded group testing: lower bound

For k ≥ 3, any feasible design has more than ⌊log2 log2(n − 1)⌋
tests.

Erdős-Szekeres theorem: For any sequence of length a2 + 1,

there is a monotone subsequence of length a + 1.

Say k = 3, n = 22r
+ 1; and we have a feasible design with

T ≤ r = log2 log2(n − 1) tests.

∃ a subset of n1 = 22(r−1)
+ 1 items whose relative ordering in t1

is monotone.

Amongst these, ∃ a monotone subsequence of size

n2 = 22(r−2)
+ 1 in t2.

Proceeding inductively, we get nT = 22(r−T )
+ 1 ≥ 3 items, such

that in each ti they appear in increasing or decreasing order.

Feasibility condition not satisfied =⇒ T > r = log2 log2(n − 1).


