
Group Testing:
Something old, Something new, Something borrowed

Nikhil Karamchandani

IIT Bombay

CNI Seminar Series, IISc

Feb. 18, 2025

Group Testing



Group testing: origin

First studied by Robert Dorfman

in US in the 1940s for syphilis

testing amongst soldiers.

Img. source: https://www.cartoonstock.com/



Group testing: origin

First studied by Robert Dorfman

in US in the 1940s for syphilis

testing amongst soldiers.

Can do individual testing,

inefficient since most tests will

be negative.

Img. source: https://www.cartoonstock.com/



Group testing: origin

First studied by Robert Dorfman

in US in the 1940s for syphilis

testing amongst soldiers.

Can do individual testing,

inefficient since most tests will

be negative.

Key idea: ‘pool’ samples from

many soldiers and test it

Img. source: https://www.cartoonstock.com/



Group testing: origin

First studied by Robert Dorfman

in US in the 1940s for syphilis

testing amongst soldiers.

Can do individual testing,

inefficient since most tests will

be negative.

Key idea: ‘pool’ samples from
many soldiers and test it
◮ Negative test: all in the pool

are uninfected
◮ Positive test: at least one

soldier is infected

Img. source: https://www.cartoonstock.com/



Group testing: origin

First studied by Robert Dorfman

in US in the 1940s for syphilis

testing amongst soldiers.

Can do individual testing,

inefficient since most tests will

be negative.

Key idea: ‘pool’ samples from
many soldiers and test it
◮ Negative test: all in the pool

are uninfected
◮ Positive test: at least one

soldier is infected

Goal: design pooling strategies

to minimize number of tests.

Img. source: https://www.cartoonstock.com/



Group testing: applications

Imgs: online sources



Group testing: applications

Imgs: online sources



Model

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019



Model

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Each test t can be represented by x ∈ {0,1}n.
◮ xt

i = 1 if item i included in test.

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019



Model

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Each test t can be represented by x ∈ {0,1}n.
◮ xt

i = 1 if item i included in test.

Outcome yt =
∨

i∈K

xt
i .

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019



Problem

Test design X ∈ {0,1}T×n, output y =
∨

i∈K

Xi .

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019



Problem

Testing design X ∈ {0,1}T×n, output y =
∨

i∈K

Xi .

X is feasible if we can recover any K from y, |K| ≤ k .

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019



Problem

Testing design X ∈ {0,1}T×n, output y =
∨

i∈K

Xi .

X is feasible if we can recover any K from y, |K| ≤ k .

Goal : Given n, k , find feasible testing designs of minimum size.

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019



Problem

Testing design X ∈ {0,1}T×n, output y =
∨

i∈K

Xi .

X is feasible if we can recover any K from y, |K| ≤ k .

Goal : Given n, k , find feasible testing designs of minimum size.
◮ Explicit constructions, efficient decoding rules

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019



Lower bound

Feasible testing design =⇒ ∃ injective function from set of

possible defective sets to the set of possible outputs



Lower bound

Feasible testing design =⇒ ∃ injective function from set of

possible defective sets to the set of possible outputs

2T ≥
k

∑

i=0

(

n

i

)



Lower bound

Feasible testing design =⇒ ∃ injective function from set of

possible defective sets to the set of possible outputs

2T ≥
k

∑

i=0

(

n

i

)

=⇒ T ≥ Ω
(

k log
n

k

)



Achievable strategies: adaptive testing

Sequential design of tests



Achievable strategies: adaptive testing

Sequential design of tests

k = 1



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search.



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search. Needs at most ⌈log n⌉ tests.



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search. Needs at most ⌈log n⌉ tests.

k > 1
◮ Repeat above process, removing one defective in each round.



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search. Needs at most ⌈log n⌉ tests.

k > 1
◮ Repeat above process, removing one defective in each round.

◮ Needs at most O (k logn) tests.



Achievable strategies: adaptive testing

Sequential design of tests

k = 1
◮ Conduct binary search. Needs at most ⌈log n⌉ tests.

k > 1
◮ Repeat above process, removing one defective in each round.

◮ Needs at most O (k logn) tests.

◮ More sophisticated algorithms achieve O
(

k log n
k

)

tests.

Order-optimal w.r.t lower bound.



Group testing: bounds

Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k

)



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























t-disjunct matrix : Union of any t columns does not contain any

other single column.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Not 3-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Not 3-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Say k = 2, X is k-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Say k = 2, X is k-disjunct

K = {1, 2}, O/p is
∨

i∈[1:2]Xi

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Say k = 2, X is k-disjunct

K = {1, 2}, O/p is
∨

i∈[1:2]Xi

X3 �
∨

i∈[1:2]Xi

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Say k = 2, X is k-disjunct

K = {1, 2}, O/p is
∨

i∈[1:2]Xi

X3 �
∨

i∈[1:2]Xi

=⇒ ∃ witness test for item 3

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Say k = 2, X is k-disjunct

K = {1, 2}, O/p is
∨

i∈[1:2]Xi

X4 �
∨

i∈[1:2]Xi

=⇒ ∃ witness test for item 4

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Say k = 2, X is k-disjunct

K = {1, 2}, O/p is
∨

i∈[1:2]Xi

X4 �
∨

i∈[1:2]Xi

=⇒ ∃ witness test for item 4

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct

Simple decoding algorithm: if all tests involving an item o/p

positive, mark defective.



Non-adaptive testing: bounds

Lower bound : Ω(k2 logk n) tests; connection to k-cover

families [D’yachkov & Rykov’82, Furedi’96]



Non-adaptive testing: bounds

Lower bound : Ω(k2 logk n) tests; connection to k-cover

families [D’yachkov & Rykov’82, Furedi’96]

Random construction: O
(

k2 log n
k

)

tests; choose each entry

i.i.d. ∼ Ber(1/(k + 1)).



Non-adaptive testing: bounds

Lower bound : Ω(k2 logk n) tests; connection to k-cover

families [D’yachkov & Rykov’82, Furedi’96]

Random construction: O
(

k2 log n
k

)

tests; choose each entry

i.i.d. ∼ Ber(1/(k + 1)).

Explicit construction: O
(

k2 min{log2
k n, log n}

)

tests; based on

a concatenated code construction [Kautz & Singleton’64, Porat

& Rotschild’08]



Group testing: bounds

Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k

)

Non-adaptive k2 logk n k2 min{log2
k n, log n}



Cascaded Group Testing

with Waqar Mirza and Niranjan Balachandran

Information Theory Workshop (ITW), Nov. 2024

https://arxiv.org/abs/2405.17917



Motivation



Motivation

Network tomography 1

2 3

4

5

7

9



Motivation

Network tomography 1

2 3

4

5

7

9

Recommendation systems
[Img. source: “On Recommendation Systems in a
Sequential Context", Frederic Guillou]



Motivation

Network tomography 1

2 3

4

5

7

9

Recommendation systems
[Img. source: “On Recommendation Systems in a
Sequential Context", Frederic Guillou]

Cascading bandits / OLTR



Model

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n



Model

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Each test t is associated with an ordered subset of items

(i1, i2, . . . , iItI).



Model

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Each test t is associated with an ordered subset of items

(i1, i2, . . . , iItI).

Test t returns first defective item in the sequence.



Model

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

t2 1 2 3 4 5 6 2

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Each test t is associated with an ordered subset of items

(i1, i2, . . . , iItI).

Test t returns first defective item in the sequence.



Model

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

t2 1 2 3 4 5 6 2

t3 1 3 4 6 7 0

n items V, unknown subset K of defectives with size at most k .
◮ k ≪ n

Each test t is associated with an ordered subset of items

(i1, i2, . . . , iItI).

Test t returns first defective item in the sequence.
◮ 0 if no defective in test.



Problem

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

t2 1 2 3 4 5 6 2

t3 1 3 4 6 7 0

t4 6 3 4 7 0

t5 7 5 4 6 5

Testing design X = {t1, t2, ..., tT }, output y = (y1, y2, . . . , yT )



Problem

1

?

2

?

3

?

4

?

5

?

6

?

7

? V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

t2 1 2 3 4 5 6 2

t3 1 3 4 6 7 0

t4 6 3 4 7 0

t5 7 5 4 6 5

Testing design X = {t1, t2, ..., tT }, output y = (y1, y2, . . . , yT )

X is feasible if we can recover any K from y, |K| ≤ k .



Problem

1

?

2

?

3

?

4

?

5

?

6

?

7

? V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

t2 1 2 3 4 5 6 2

t3 1 3 4 6 7 0

t4 6 3 4 7 0

t5 7 5 4 6 5

Testing design X = {t1, t2, ..., tT }, output y = (y1, y2, . . . , yT )

X is feasible if we can recover any K from y, |K| ≤ k .

Goal : Given n, k , find feasible testing designs of minimum size.



Problem

1

?

2

?

3

?

4

?

5

?

6

?

7

? V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

t2 1 2 3 4 5 6 2

t3 1 3 4 6 7 0

t4 6 3 4 7 0

t5 7 5 4 6 5

Testing design X = {t1, t2, ..., tT }, output y = (y1, y2, . . . , yT )

X is feasible if we can recover any K from y, |K| ≤ k .

Goal : Given n, k , find feasible testing designs of minimum size.
◮ Explicit constructions, efficient decoding rules



Cascaded GT vs Binary GT

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 3 1 5 7 5

t2 1 2 3 4 5 6 2

t3 1 3 4 6 7 0

t4 6 3 4 7 0

t5 7 5 4 6 5



Cascaded GT vs Binary GT

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

outcome
BGT

t1 3 1 5 7 5 Yes

t2 1 2 3 4 5 6 2 Yes

t3 1 3 4 6 7 0 No

t4 6 3 4 7 0 No

t5 7 5 4 6 5 Yes



Cascaded GT vs Binary GT

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

outcome
BGT

t1 3 1 5 7 5 Yes

t2 1 2 3 4 5 6 2 Yes

t3 1 3 4 6 7 0 No

t4 6 3 4 7 0 No

t5 7 5 4 6 5 Yes

CGT test provides at least as much information as BGT test.



Cascaded GT vs Binary GT

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

outcome
BGT

t1 3 1 5 7 5 Yes

t2 1 2 3 4 5 6 2 Yes

t3 1 3 4 6 7 0 No

t4 6 3 4 7 0 No

t5 7 5 4 6 5 Yes

CGT test provides at least as much information as BGT test.

Feasible design under BGT =⇒ Feasible design under CGT



Cascaded GT vs Binary GT

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

outcome
BGT

t1 3 1 5 7 5 Yes

t2 1 2 3 4 5 6 2 Yes

t3 1 3 4 6 7 0 No

t4 6 3 4 7 0 No

t5 7 5 4 6 5 Yes

CGT test provides at least as much information as BGT test.

Feasible design under BGT =⇒ Feasible design under CGT
◮ Upper bounds for BGT are also upper bounds for CGT



Cascaded GT vs Binary GT

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

outcome
BGT

t1 3 1 5 7 5 Yes

t2 1 2 3 4 5 6 2 Yes

t3 1 3 4 6 7 0 No

t4 6 3 4 7 0 No

t5 7 5 4 6 5 Yes

CGT test provides at least as much information as BGT test.

Feasible design under BGT =⇒ Feasible design under CGT
◮ Upper bounds for BGT are also upper bounds for CGT

How much can the additional information help?



Cascaded GT vs Binary GT: bounds

BGT Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k

)

Non-adaptive k2 logk n k2 min{log2
k n, log n}



Cascaded GT vs Binary GT: bounds

BGT Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k

)

Non-adaptive k2 logk n k2 min{log2
k n, log n}

CGT Lower bound Upper bound

Adaptive k log
(

n
k

)

Non-adaptive k2 min{log2
k n, log n}



Adaptive testing

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Sequential design of tests



Adaptive testing

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Sequential design of tests

Initialise V = {1,2, . . . ,n}, K̂ ← ∅, i ← 1 and run the loop:

1 Run a test with items in V\K̂ in an arbitrary order.

2 If the test returns 0, terminate and return K̂.

3 If the test returns v , then update K̂ ← K̂ ∪ {v}.

4 Update i ← i + 1. If i > k , terminate and return K̂.



Adaptive testing

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 1 2 3 4 5 6 7

Sequential design of tests

Initialise V = {1,2, . . . ,n}, K̂ ← ∅, i ← 1 and run the loop:

1 Run a test with items in V\K̂ in an arbitrary order.

2 If the test returns 0, terminate and return K̂.

3 If the test returns v , then update K̂ ← K̂ ∪ {v}.

4 Update i ← i + 1. If i > k , terminate and return K̂.



Adaptive testing

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 1 2 3 4 5 6 7 2

Sequential design of tests

Initialise V = {1,2, . . . ,n}, K̂ ← ∅, i ← 1 and run the loop:

1 Run a test with items in V\K̂ in an arbitrary order.

2 If the test returns 0, terminate and return K̂.

3 If the test returns v , then update K̂ ← K̂ ∪ {v}.

4 Update i ← i + 1. If i > k , terminate and return K̂.



Adaptive testing

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 1 2 3 4 5 6 7 2

t2 1 3 4 5 6 7 5

Sequential design of tests

Initialise V = {1,2, . . . ,n}, K̂ ← ∅, i ← 1 and run the loop:

1 Run a test with items in V\K̂ in an arbitrary order.

2 If the test returns 0, terminate and return K̂.

3 If the test returns v , then update K̂ ← K̂ ∪ {v}.

4 Update i ← i + 1. If i > k , terminate and return K̂.



Adaptive testing

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 1 2 3 4 5 6 7 2

t2 1 3 4 5 6 7 5

Sequential design of tests

Initialise V = {1,2, . . . ,n}, K̂ ← ∅, i ← 1 and run the loop:

1 Run a test with items in V\K̂ in an arbitrary order.

2 If the test returns 0, terminate and return K̂.

3 If the test returns v , then update K̂ ← K̂ ∪ {v}.

4 Update i ← i + 1. If i > k , terminate and return K̂.

Needs at most k tests,



Adaptive testing

1 2 3 4 5 6 7

V = {1, 2, . . . , 7},K = {2, 5}

Test outcome
CGT

t1 1 2 3 4 5 6 7 2

t2 1 3 4 5 6 7 5

Sequential design of tests

Initialise V = {1,2, . . . ,n}, K̂ ← ∅, i ← 1 and run the loop:

1 Run a test with items in V\K̂ in an arbitrary order.

2 If the test returns 0, terminate and return K̂.

3 If the test returns v , then update K̂ ← K̂ ∪ {v}.

4 Update i ← i + 1. If i > k , terminate and return K̂.

Needs at most k tests, optimal in the worst-case.



Cascaded group testing: bounds

BGT Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k

)

Non-adaptive k2 logk n k2 min{log2
k n, log n}

CGT Lower bound Upper bound

Adaptive k k

Non-adaptive k2 min{log2
k n, log n}



Non-adaptive testing

Testing design matrix has to be specified beforehand.



Non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1:



Non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1: one test suffices, t1 = (1,2, ...,n)



Non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1: one test suffices, t1 = (1,2, ...,n)

k = 2:



Non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1: one test suffices, t1 = (1,2, ...,n)

k = 2: two tests suffice,

t1 = (1,2, ...,n), t2 = (n,n − 1, ...,1)



Non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1: one test suffices, t1 = (1,2, ...,n)

k = 2: two tests suffice,

t1 = (1,2, ...,n), t2 = (n,n − 1, ...,1)

Optimal for k = 1,2.



Non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1: one test suffices, t1 = (1,2, ...,n)

k = 2: two tests suffice,

t1 = (1,2, ...,n), t2 = (n,n − 1, ...,1)

Optimal for k = 1,2. BGT would need Ω(log n) tests.



Non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1: one test suffices, t1 = (1,2, ...,n)

k = 2: two tests suffice,

t1 = (1,2, ...,n), t2 = (n,n − 1, ...,1)

Optimal for k = 1,2. BGT would need Ω(log n) tests.

What about larger k?



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6

Testing design X is feasible if we can recover K from y.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test outcome
CGT

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6

Testing design X is feasible if we can recover K from y.

Distinct outputs for each K1 6= K2, s.t. |K1|, |K2| ≤ k .



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

K1 = {1, 2, 3}

Test outcome
CGT

t1 3 1 5 7 3

t2 1 2 3 4 5 6 1

t3 1 3 4 6 7 1

t4 6 3 4 7 3

t5 7 5 4 6 0

Testing design X is feasible if we can recover K from y.

Distinct outputs for each K1 6= K2, s.t. |K1|, |K2| ≤ k .



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

K1 = {1, 2, 3}

K2 = {1, 3}Test outcome
CGT

t1 3 1 5 7 3

t2 1 2 3 4 5 6 1

t3 1 3 4 6 7 1

t4 6 3 4 7 3

t5 7 5 4 6 0

Testing design X is feasible if we can recover K from y.

Distinct outputs for each K1 6= K2, s.t. |K1|, |K2| ≤ k .



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

K1 = {1, 2, 3}

K2 = {1, 3}Test outcome
CGT

t1 3 1 5 7 3

t2 1 2 3 4 5 6 1

t3 1 3 4 6 7 1

t4 6 3 4 7 3

t5 7 5 4 6 0

Testing design X is feasible if we can recover K from y.

Distinct outputs for each K1 6= K2, s.t. |K1|, |K2| ≤ k .

Analogue of disjunctness property under BGT.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

K = {1, 2, 3}

v = 1

v = 2

v = 3

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

K = {1, 2, 3}

v = 1

v = 2

v = 3

X

X

×

t1 3 1 5 7

t2 1 2 3 4 5 6

t3 1 3 4 6 7

t4 6 3 4 7

t5 7 5 4 6

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 1 5 6 7

t2 2 6 5 7

t3 3 7 5 6

t4 4 7 6 5

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 1 5 6 7

t2 2 6 5 7

t3 3 7 5 6

t4 4 7 6 5

K = {1, 2, 3}

v = 1

v = 2

v = 3

X

X

X

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 1 5 6 7

t2 2 6 5 7

t3 3 7 5 6

t4 4 7 6 5

K = {2, 5, 7}

v = 2

v = 5

v = 7

X

X

X

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 1 5 6 7

t2 2 6 5 7

t3 3 7 5 6

t4 4 7 6 5

K = {3, 4, 6}

v = 3

v = 4

v = 6

X

X

X

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test

t1 1 5 6 7

t2 2 6 5 7

t3 3 7 5 6

t4 4 7 6 5

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test outcome
CGT

t1
K = {3, 4, 6}

1 5 6 7 6

t2 2 6 5 7 6

t3 3 7 5 6 3

t4 4 7 6 5 4

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.

Reconstruction: K̂ = {yi : i ∈ [T ], yi 6= 0}



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test outcome
CGT

t1
K = {3, 4, 6}

1 5 6 7 6

t2 2 6 5 7 6

t3 3 7 5 6 3

t4 4 7 6 5 4

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.

Reconstruction: K̂ = {yi : i ∈ [T ], yi 6= 0}

Lower bound : Any feasible design has at least ⌊k+1
2
⌋⌈k+1

2
⌉ tests.



Non-adaptive testing: feasibility

1 2 3 4 5 6 7

V = {1, 2, . . . , 7}, k = |K| = 3

Test outcome
CGT

t1
K = {3, 4, 6}

1 5 6 7 6

t2 2 6 5 7 6

t3 3 7 5 6 3

t4 4 7 6 5 4

Feasibility condition: ∀ K ⊂ V with |K| = k , and for every v ∈ K,

∃ test t ∈ X where v appears before every other item in K.

Reconstruction: K̂ = {yi : i ∈ [T ], yi 6= 0}

Lower bound : Any feasible design has at least ⌊k+1
2
⌋⌈k+1

2
⌉ tests.

Erdős-Szekeres theorem gives ⌊log2 log2(n − 1)⌋ lower bound.



Cascaded group testing: bounds

BGT Lower bound Upper bound

Adaptive k log
(

n
k

)

k log
(

n
k

)

Non-adaptive k2 logk n k2 min{log2
k n, log n}

CGT Lower bound Upper bound

Adaptive k k

Non-adaptive max{k2, log log n} k2 min{log2
k n, log n}



Non-adaptive testing: k = 3



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

Use feasible design X1 for a items to create feasible design X2

for a2 items.



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

1 2 3A1

4 5 6A2

7 8 9A3

Use feasible design X1 for a items to create feasible design X2

for a2 items.

Partition a2 items into disjoint sets A1,A2, . . . ,Aa of size a each.



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3, s1 = (2, 3, 1), s2 = (1, 3, 2)

1 2 3A1

4 5 6A2

7 8 9A3

Given permutations s1, s2 on a items, permutation s3 = s1 ◦ s2

on a2 items is given by:



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3, s1 = (2, 3, 1), s2 = (1, 3, 2)

1 2 3A1

4 5 6A2

7 8 9A3

1 3 2
s2

4 6 5
s2

7 9 8
s2

h1

h2

h3

Given permutations s1, s2 on a items, permutation s3 = s1 ◦ s2

on a2 items is given by:
◮ For each i, arrange items of Ai according to s2. Call result hi .



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3, s1 = (2, 3, 1), s2 = (1, 3, 2)

1 2 3A1

4 5 6A2

7 8 9A3

1 3 2
s2

4 6 5
s2

7 9 8
s2

h1

h2

h3

s1 4 6 5 7 9 8 1 3 2

Given permutations s1, s2 on a items, permutation s3 = s1 ◦ s2

on a2 items is given by:
◮ For each i, arrange items of Ai according to s2. Call result hi .

◮ Arrange h1, h2, ..., ha according to s1 to obtain s3



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3, s1 = (2, 3, 1), s2 = (1, 3, 2)

1 2 3A1

4 5 6A2

7 8 9A3

1 3 2
s2

4 6 5
s2

7 9 8
s2

h1

h2

h3

s1 4 6 5 7 9 8 1 3 2

s3 = s1 ◦ s2 = (4, 6, 5, 7, 9, 8, 1, 3, 2)

Given permutations s1, s2 on a items, permutation s3 = s1 ◦ s2

on a2 items is given by:
◮ For each i, arrange items of Ai according to s2. Call result hi .

◮ Arrange h1, h2, ..., ha according to s1 to obtain s3



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.

Consider F := {ti ◦ ti : i ∈ [|X1|]}.



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.

Consider F := {ti ◦ ti : i ∈ [|X1|]}.

Take g1 = (1,2, ...,a) and g2 = (a,a − 1, ...,1).



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.

Consider F := {ti ◦ ti : i ∈ [|X1|]}.

Take g1 = (1,2, ...,a) and g2 = (a,a − 1, ...,1). Consider

H := {gi ◦ gj : i , j ∈ [2]}.



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

Start with feasible design X1 = {t1, t2, . . . , t|X1|} for a items.

Consider F := {ti ◦ ti : i ∈ [|X1|]}.

Take g1 = (1,2, ...,a) and g2 = (a,a − 1, ...,1). Consider

H := {gi ◦ gj : i , j ∈ [2]}.

Finally, design for a2 items given by X2 := F ∪H.



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design;



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design; |X2| ≤ |X1|+ 4



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design; |X2| ≤ |X1|+ 4

Recursive design for n items,



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design; |X2| ≤ |X1|+ 4

Recursive design for n items, with at most O(log log n) tests.



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design; |X2| ≤ |X1|+ 4

Recursive design for n items, with at most O(log log n) tests.

Idea generalizes to any constant k ,



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design; |X2| ≤ |X1|+ 4

Recursive design for n items, with at most O(log log n) tests.

Idea generalizes to any constant k , with at most O((log log n)ck )
tests, where ck = 2(k−2) − 1.



Non-adaptive testing: k = 3

1 2 3 4 5 6 7 8 9

a = 3

X1

t1 1 2 3

t2 2 1 3

t3 3 2 1

F

t1 ◦ t1 1 2 3 4 5 6 7 8 9

t2 ◦ t2 5 4 6 2 1 3 8 7 9

t3 ◦ t3 9 8 7 6 5 4 3 2 1

g1 = (1, 2, 3)

g2 = (3, 2, 1)

H

g1 ◦ g1 1 2 3 4 5 6 7 8 9

g1 ◦ g2 3 2 1 6 5 4 9 8 7

g2 ◦ g1 7 8 9 4 5 6 1 2 3

g2 ◦ g2 9 8 7 6 5 4 3 2 1

X2 is a feasible design; |X2| ≤ |X1|+ 4

Recursive design for n items, with at most O(log log n) tests.

Idea generalizes to any constant k , with at most O((log log n)ck )
tests, where ck = 2(k−2) − 1.

Can be much smaller than BGT which needs Ω(k2 logk n) tests.



Cascaded group testing: bounds for k = O(1)

BGT Lower bound Upper bound

Adaptive k log n k log n

Non-adaptive k2 log n k2 log n

CGT Lower bound Upper bound

Adaptive k k

Non-adaptive max{k2, log log n} min{(log log n)ck , k2 log n}



Summary

New variant of group testing



Summary

New variant of group testing

Derived bounds under adaptive and non adaptive testing



Summary

New variant of group testing

Derived bounds under adaptive and non adaptive testing

Further directions:



Summary

New variant of group testing

Derived bounds under adaptive and non adaptive testing

Further directions:

◮ General achievable strategies for any k

◮ Close gap between upper and lower bounds

◮ Noisy and constrained testing



Thanks

https://sites.google.com/site/nikhilkaram/



Non-adaptive testing: disjunct testing matrix



























1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1
1 0 0 1
0 1 1 0



























2-disjunct

Not 3-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 0 1
1 0 1 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1



























2-disjunct

Not 3-disjunct

Say k = 4, X not (k − 1)-disjunct

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 0 1
1 0 1 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1



























2-disjunct

Not 3-disjunct

Say k = 4, X not (k − 1)-disjunct

X1 �
∨

i∈[2:4]Xi =⇒
∨

i∈[2:4]Xi =
∨

i∈[1:4]Xi

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: disjunct testing matrix



























1 0 0 1
1 0 1 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 1



























2-disjunct

Not 3-disjunct

Say k = 4, X not (k − 1)-disjunct

X1 �
∨

i∈[2:4]Xi =⇒
∨

i∈[2:4]Xi =
∨

i∈[1:4]Xi

O/p for K = {2, 3, 4} same as for K = {1, 2, 3, 4}

=⇒ X not feasible for k = 4.

t-disjunct matrix : Union of any t columns does not contain any

other single column.

With at most k defectives,

Feasible testing design matrix

{

=⇒ (k − 1)-disjunct

⇐= k-disjunct



Non-adaptive testing: bounds

Lower bound : Ω(k2 logk n) tests; connection to k-cover

families [D’yachkov & Rykov’82, Furedi’96]

Random construction: O
(

k2 log n
k

)

tests; choose each entry

i.i.d. ∼ Ber(1/(k + 1)).

Explicit construction: O
(

k2 min{log2
k n, log n}

)

tests; based on

a concatenated code construction [Kautz & Singleton’64, Porat

& Rotschild’08]

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1

◮ For m ≥ 1, parity check matrix H

of a binary Hamming code has

dimension m × 2m − 1.









1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1









H3,7



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1

◮ For m ≥ 1, parity check matrix H

of a binary Hamming code has

dimension m × 2m − 1.

◮ All columns are distinct non-zero

binary vectors.









1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1









H3,7



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1

◮ For m ≥ 1, parity check matrix H

of a binary Hamming code has

dimension m × 2m − 1.

◮ All columns are distinct non-zero

binary vectors.

◮ Item j defective⇒ output

y =
∨

i∈K

Hi = Hj









1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1









H3,7



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1

◮ For m ≥ 1, parity check matrix H

of a binary Hamming code has

dimension m × 2m − 1.

◮ All columns are distinct non-zero

binary vectors.

◮ Item j defective⇒ output y = Hj









1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1









H3,7

H5 j = 5



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1

◮ For m ≥ 1, parity check matrix H

of a binary Hamming code has

dimension m × 2m − 1.

◮ All columns are distinct non-zero

binary vectors.

◮ Item j defective⇒ output y = Hj

=⇒ H is a feasible testing design.









1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1









H3,7

H5 j = 5



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1

◮ For m ≥ 1, parity check matrix H

of a binary Hamming code has

dimension m × 2m − 1.

◮ All columns are distinct non-zero

binary vectors.

◮ Item j defective⇒ output y = Hj

=⇒ H is a feasible testing design.

◮ Works for m s.t. 2m − 1 ≥ n =⇒
needs ⌈log(n + 1)⌉ tests.









1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1









H3,7

H5 j = 5



Achievable strategies: non-adaptive testing

Testing design matrix has to be specified beforehand.

k = 1

◮ For m ≥ 1, parity check matrix H

of a binary Hamming code has

dimension m × 2m − 1.

◮ All columns are distinct non-zero

binary vectors.

◮ Item j defective⇒ output y = Hj

=⇒ H is a feasible testing design.

◮ Works for m s.t. 2m − 1 ≥ n =⇒
needs ⌈log(n + 1)⌉ tests.

◮ Near-optimal for k = 1.









1 0 0 1 1 0 1
0 1 0 0 1 1 1
0 0 1 1 0 1 1









H3,7

H5 j = 5



Extensions and variants



Extensions and variants

Decoding criterion: small error probability, partial recovery



Extensions and variants

Decoding criterion: small error probability, partial recovery

Defectives prior : combinatorial, i.i.d., bursty



Extensions and variants

Decoding criterion: small error probability, partial recovery

Defectives prior : combinatorial, i.i.d., bursty

Noise model : symmetric, Z channel, dilution, erasure



Extensions and variants

Decoding criterion: small error probability, partial recovery

Defectives prior : combinatorial, i.i.d., bursty

Noise model : symmetric, Z channel, dilution, erasure

Testing model : threshold, quantitative, concomitant, tropical,

graph-constrained



Cascaded group testing: lower bound



Cascaded group testing: lower bound

For k ≥ 3, any feasible design has more than ⌊log2 log2(n − 1)⌋
tests.



Cascaded group testing: lower bound

For k ≥ 3, any feasible design has more than ⌊log2 log2(n − 1)⌋
tests.

Erdős-Szekeres theorem: For any sequence of length a2 + 1,

there is a monotone subsequence of length a + 1.



Cascaded group testing: lower bound

For k ≥ 3, any feasible design has more than ⌊log2 log2(n − 1)⌋
tests.

Erdős-Szekeres theorem: For any sequence of length a2 + 1,

there is a monotone subsequence of length a + 1.

Say k = 3, n = 22r
+ 1; and we have a feasible design with

T ≤ r = log2 log2(n − 1) tests.



Cascaded group testing: lower bound

For k ≥ 3, any feasible design has more than ⌊log2 log2(n − 1)⌋
tests.

Erdős-Szekeres theorem: For any sequence of length a2 + 1,

there is a monotone subsequence of length a + 1.

Say k = 3, n = 22r
+ 1; and we have a feasible design with

T ≤ r = log2 log2(n − 1) tests.

∃ a subset of n1 = 22(r−1)
+ 1 items whose relative ordering in t1

is monotone.



Cascaded group testing: lower bound

For k ≥ 3, any feasible design has more than ⌊log2 log2(n − 1)⌋
tests.

Erdős-Szekeres theorem: For any sequence of length a2 + 1,

there is a monotone subsequence of length a + 1.

Say k = 3, n = 22r
+ 1; and we have a feasible design with

T ≤ r = log2 log2(n − 1) tests.

∃ a subset of n1 = 22(r−1)
+ 1 items whose relative ordering in t1

is monotone.

Amongst these, ∃ a monotone subsequence of size

n2 = 22(r−2)
+ 1 in t2.



Cascaded group testing: lower bound

For k ≥ 3, any feasible design has more than ⌊log2 log2(n − 1)⌋
tests.

Erdős-Szekeres theorem: For any sequence of length a2 + 1,

there is a monotone subsequence of length a + 1.

Say k = 3, n = 22r
+ 1; and we have a feasible design with

T ≤ r = log2 log2(n − 1) tests.

∃ a subset of n1 = 22(r−1)
+ 1 items whose relative ordering in t1

is monotone.

Amongst these, ∃ a monotone subsequence of size

n2 = 22(r−2)
+ 1 in t2.

Proceeding inductively, we get nT = 22(r−T )
+ 1 ≥ 3 items, such

that in each ti they appear in increasing or decreasing order.



Cascaded group testing: lower bound

For k ≥ 3, any feasible design has more than ⌊log2 log2(n − 1)⌋
tests.

Erdős-Szekeres theorem: For any sequence of length a2 + 1,

there is a monotone subsequence of length a + 1.

Say k = 3, n = 22r
+ 1; and we have a feasible design with

T ≤ r = log2 log2(n − 1) tests.

∃ a subset of n1 = 22(r−1)
+ 1 items whose relative ordering in t1

is monotone.

Amongst these, ∃ a monotone subsequence of size

n2 = 22(r−2)
+ 1 in t2.

Proceeding inductively, we get nT = 22(r−T )
+ 1 ≥ 3 items, such

that in each ti they appear in increasing or decreasing order.

Feasibility condition not satisfied =⇒ T > r = log2 log2(n − 1).


