

Group Testing: Something old, Something new, Something borrowed

Nikhil Karamchandani
IIT Bombay

CNI Seminar Series, IISc

Feb. 18, 2025

Group testing: origin

- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.

"BY THE WAY, WHAT ARE WE IN LINE FOR?"

Group testing: origin

- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.
- Can do individual testing, inefficient since most tests will be negative.

"BY THE WAY, WHAT ARE WE IN LINE FOR?"

Group testing: origin

- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.
- Can do individual testing, inefficient since most tests will be negative.
- **Key idea:** 'pool' samples from many soldiers and test it

"BY THE WAY, WHAT ARE WE IN LINE FOR?"

Group testing: origin

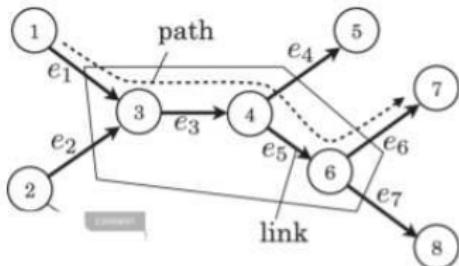
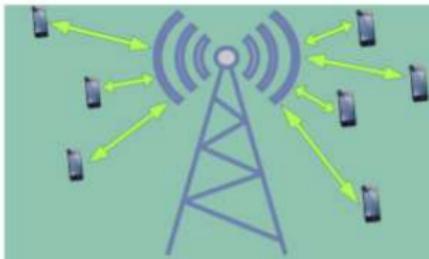
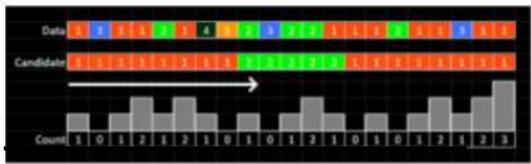
- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.
- Can do individual testing, inefficient since most tests will be negative.
- **Key idea:** 'pool' samples from many soldiers and test it
 - ▶ *Negative test:* all in the pool are uninfected
 - ▶ *Positive test:* at least one soldier is infected

Group testing: origin

- First studied by Robert Dorfman in US in the 1940s for syphilis testing amongst soldiers.
- Can do individual testing, inefficient since most tests will be negative.
- **Key idea:** 'pool' samples from many soldiers and test it
 - ▶ *Negative test:* all in the pool are uninfected
 - ▶ *Positive test:* at least one soldier is infected
- **Goal:** design pooling strategies to minimize number of tests.

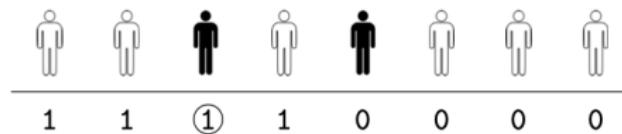
Group testing: applications

Group testing: applications



Imgs: online sources

- n items \mathcal{V} , unknown subset \mathcal{K} of defectives with size at most k .
 - ▶ $k \ll n$



- n items \mathcal{V} , unknown subset \mathcal{K} of defectives with size at most k .
 - ▶ $k \ll n$
- Each test t can be represented by $\mathbf{x} \in \{0, 1\}^n$.
 - ▶ $\mathbf{x}_i^t = 1$ if item i included in test.

	1	1	①	1	0	0	0	0	Outcome
	1	1	0	1	0	0	0	0	Positive

- n items \mathcal{V} , unknown subset \mathcal{K} of defectives with size at most k .
 - ▶ $k \ll n$
- Each test t can be represented by $\mathbf{x} \in \{0, 1\}^n$.
 - ▶ $\mathbf{x}_i^t = 1$ if item i included in test.
- Outcome $y_t = \bigvee_{i \in \mathcal{K}} \mathbf{x}_i^t$.

Problem

								Outcome
1	1	①	1	0	0	0	0	Positive
0	0	0	0	①	1	1	1	Positive
1	1	0	0	0	0	0	0	Negative
0	0	①	0	0	0	0	0	Positive
0	0	①	0	①	1	0	0	Positive
0	0	0	0	①	0	0	0	Positive

- Test design $\mathbf{X} \in \{0, 1\}^{T \times n}$, output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{X}_i$.

Problem

?	?	?	?	?	?	?	?	y
1	1	1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Testing design $\mathbf{X} \in \{0, 1\}^{T \times n}$, output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{X}_i$.
- \mathbf{X} is *feasible* if we can recover any \mathcal{K} from \mathbf{y} , $|\mathcal{K}| \leq k$.

Problem

?	?	?	?	?	?	?	?	y
1	1	1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Testing design $\mathbf{X} \in \{0, 1\}^{T \times n}$, output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{X}_i$.
- \mathbf{X} is *feasible* if we can recover any \mathcal{K} from \mathbf{y} , $|\mathcal{K}| \leq k$.
- **Goal:** Given n, k , find feasible testing designs of minimum size.

Problem

?	?	?	?	?	?	?	?	y
1	1	1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Testing design $\mathbf{X} \in \{0, 1\}^{T \times n}$, output $\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{X}_i$.
- \mathbf{X} is *feasible* if we can recover any \mathcal{K} from \mathbf{y} , $|\mathcal{K}| \leq k$.
- **Goal:** Given n, k , find feasible testing designs of minimum size.
 - ▶ Explicit constructions, efficient decoding rules

Lower bound

?	?	?	?	?	?	?	?	y
1	1	1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Feasible testing design $\implies \exists$ injective function from set of possible defective sets to the set of possible outputs

Lower bound

?	?	?	?	?	?	?	?	y
1	1	1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Feasible testing design $\implies \exists$ injective function from set of possible defective sets to the set of possible outputs

$$2^T \geq \sum_{i=0}^k \binom{n}{i}$$

Lower bound

?	?	?	?	?	?	?	?	y
1	1	1	1	0	0	0	0	1
0	0	0	0	1	1	1	1	1
1	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	1
0	0	1	0	1	1	0	1	1
0	0	0	0	1	0	0	0	1

- Feasible testing design $\implies \exists$ injective function from set of possible defective sets to the set of possible outputs

$$2^T \geq \sum_{i=0}^k \binom{n}{i} \implies T \geq \Omega\left(k \log \frac{n}{k}\right)$$

Achievable strategies: adaptive testing

- Sequential design of tests

Achievable strategies: adaptive testing

- Sequential design of tests
- $k = 1$

Achievable strategies: adaptive testing

- Sequential design of tests
- $k = 1$
 - ▶ Conduct binary search.

Achievable strategies: adaptive testing

- Sequential design of tests
- $k = 1$
 - ▶ Conduct binary search. Needs at most $\lceil \log n \rceil$ tests.

Achievable strategies: adaptive testing

- Sequential design of tests
- $k = 1$
 - ▶ Conduct binary search. Needs at most $\lceil \log n \rceil$ tests.
- $k > 1$
 - ▶ Repeat above process, removing one defective in each round.

Achievable strategies: adaptive testing

- Sequential design of tests
- $k = 1$
 - ▶ Conduct binary search. Needs at most $\lceil \log n \rceil$ tests.
- $k > 1$
 - ▶ Repeat above process, removing one defective in each round.
 - ▶ Needs at most $O(k \log n)$ tests.

Achievable strategies: adaptive testing

- Sequential design of tests
- $k = 1$
 - ▶ Conduct binary search. Needs at most $\lceil \log n \rceil$ tests.
- $k > 1$
 - ▶ Repeat above process, removing one defective in each round.
 - ▶ Needs at most $O(k \log n)$ tests.
 - ▶ More sophisticated algorithms achieve $O(k \log \frac{n}{k})$ tests.
- Order-optimal w.r.t lower bound.

Group testing: bounds

	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k} \right)$	$k \log \left(\frac{n}{k} \right)$

Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.

Non-adaptive testing: disjunct testing matrix

$$\xrightarrow{\quad} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

↑ ↑ ↑ 2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.

Non-adaptive testing: disjunct testing matrix

$$\xrightarrow{\quad} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

↑ ↑ ↑
2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

Not 3-disjunct

- *t-disjunct matrix*: Union of any *t* columns does not contain any other single column.

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

Not 3-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad \text{Say } k = 2, \mathbf{X} \text{ is } k\text{-disjunct}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad \begin{array}{l} \text{Say } k = 2, \mathbf{X} \text{ is } k\text{-disjunct} \\ \mathcal{K} = \{1, 2\}, \text{ O/p is } \bigvee_{i \in [1:2]} \mathbf{X}_i \\ \uparrow \quad \uparrow \\ 2\text{-disjunct} \end{array}$$

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad \begin{array}{l} \text{Say } k = 2, \mathbf{X} \text{ is } k\text{-disjunct} \\ \mathcal{K} = \{1, 2\}, \text{ O/p is } \bigvee_{i \in [1:2]} \mathbf{X}_i \\ \mathbf{X}_3 \not\in \bigvee_{i \in [1:2]} \mathbf{X}_i \end{array}$$

↑ ↑ ↑

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow \text{ } k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad \begin{array}{l} \text{Say } k = 2, \mathbf{X} \text{ is } k\text{-disjunct} \\ \mathcal{K} = \{1, 2\}, \text{ O/p is } \bigvee_{i \in [1:2]} \mathbf{X}_i \\ \mathbf{X}_3 \not\in \bigvee_{i \in [1:2]} \mathbf{X}_i \\ \implies \exists \text{ witness test for item 3} \end{array}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad \begin{array}{l} \text{Say } k = 2, \mathbf{X} \text{ is } k\text{-disjunct} \\ \mathcal{K} = \{1, 2\}, \text{ O/p is } \bigvee_{i \in [1:2]} \mathbf{X}_i \\ \mathbf{X}_4 \not\in \bigvee_{i \in [1:2]} \mathbf{X}_i \\ \implies \exists \text{ witness test for item 4} \end{array}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} \quad \begin{array}{l} \text{Say } k = 2, \mathbf{X} \text{ is } k\text{-disjunct} \\ \mathcal{K} = \{1, 2\}, \text{ O/p is } \bigvee_{i \in [1:2]} \mathbf{X}_i \\ \mathbf{X}_4 \not\in \bigvee_{i \in [1:2]} \mathbf{X}_i \\ \implies \exists \text{ witness test for item 4} \end{array}$$

2-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

- Simple decoding algorithm: if all tests involving an item o/p positive, mark defective.

Non-adaptive testing: bounds

- *Lower bound:* $\Omega(k^2 \log_k n)$ tests; connection to k -cover families [D'yachkov & Rykov'82, Furedi'96]

Non-adaptive testing: bounds

- *Lower bound:* $\Omega(k^2 \log_k n)$ tests; connection to k -cover families [D'yachkov & Rykov'82, Furedi'96]
- *Random construction:* $O(k^2 \log \frac{n}{k})$ tests; choose each entry i.i.d. $\sim \text{Ber}(1/(k+1))$.

Non-adaptive testing: bounds

- *Lower bound*: $\Omega(k^2 \log_k n)$ tests; connection to k -cover families [D'yachkov & Rykov'82, Furedi'96]
- *Random construction*: $O(k^2 \log \frac{n}{k})$ tests; choose each entry i.i.d. $\sim Ber(1/(k+1))$.
- *Explicit construction*: $O\left(k^2 \min\{\log_k^2 n, \log n\}\right)$ tests; based on a concatenated code construction [Kautz & Singleton'64, Porat & Rotschild'08]

Group testing: bounds

	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k} \right)$	$k \log \left(\frac{n}{k} \right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$

Cascaded Group Testing

with Waqar Mirza and Niranjan Balachandran

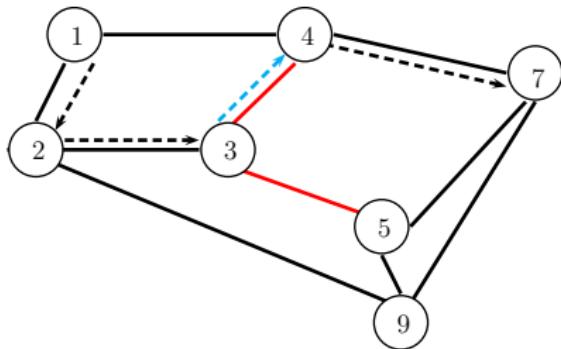
Information Theory Workshop (ITW), Nov. 2024

<https://arxiv.org/abs/2405.17917>

Motivation

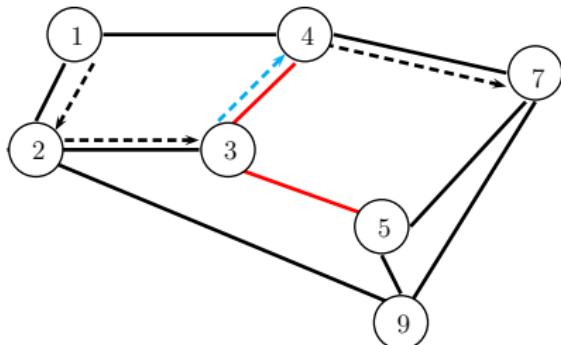
Motivation

- Network tomography



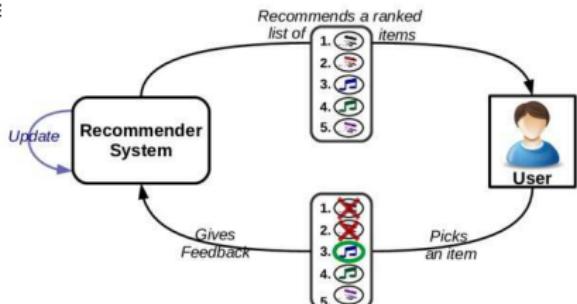
Motivation

- Network tomography



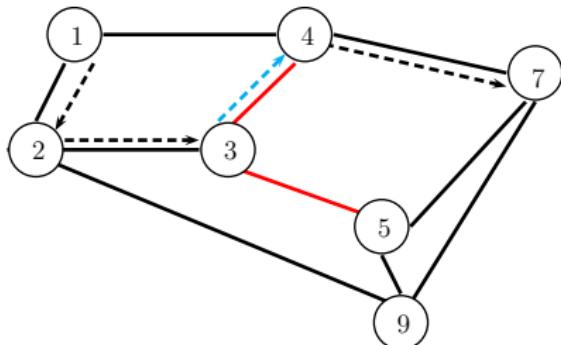
- Recommendation systems

[Img. source: "On Recommendation Systems in a Sequential Context", Frederic Guillou]



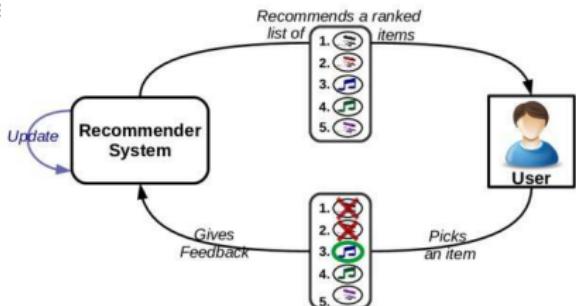
Motivation

- Network tomography



- Recommendation systems

[Img. source: "On Recommendation Systems in a Sequential Context", Frederic Guillou]



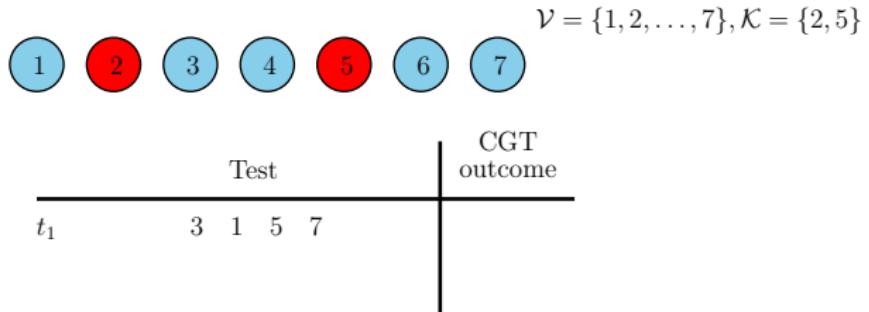
- Cascading bandits / OLTR

Model

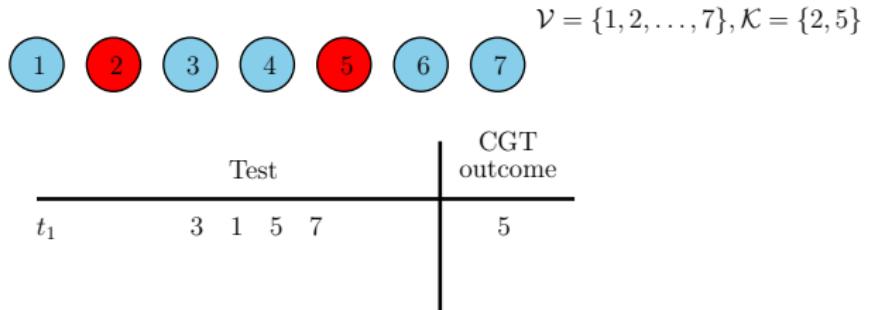
$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

- n items \mathcal{V} , unknown subset \mathcal{K} of defectives with size at most k .
 - ▶ $k \ll n$

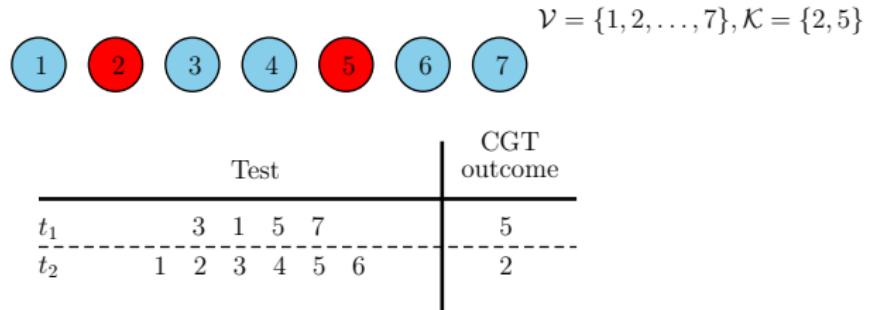
Model



- n items \mathcal{V} , unknown subset \mathcal{K} of defectives with size at most k .
 - ▶ $k \ll n$
- Each test t is associated with an ordered subset of items $(i_1, i_2, \dots, i_{|t|})$.

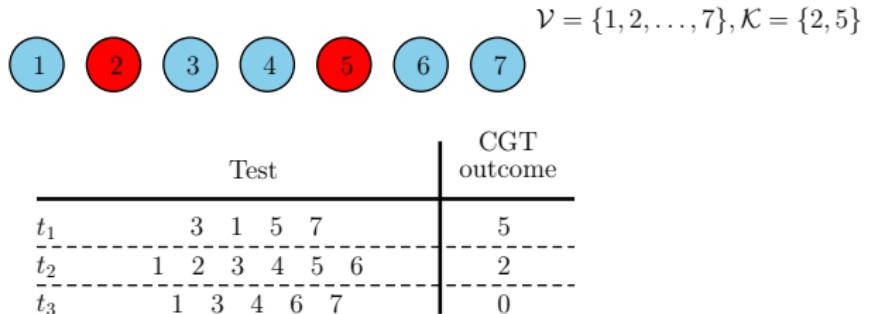


- n items \mathcal{V} , unknown subset \mathcal{K} of defectives with size at most k .
 - ▶ $k \ll n$
- Each test t is associated with an ordered subset of items $(i_1, i_2, \dots, i_{|t|})$.
- Test t returns first defective item in the sequence.



- n items \mathcal{V} , unknown subset \mathcal{K} of defectives with size at most k .
 - ▶ $k \ll n$
- Each test t is associated with an ordered subset of items $(i_1, i_2, \dots, i_{|t|})$.
- Test t returns first defective item in the sequence.

Model



- n items \mathcal{V} , unknown subset \mathcal{K} of defectives with size at most k .
 - ▶ $k \ll n$
- Each test t is associated with an ordered subset of items $(i_1, i_2, \dots, i_{|t|})$.
- Test t returns first defective item in the sequence.
 - ▶ 0 if no defective in test.

Problem

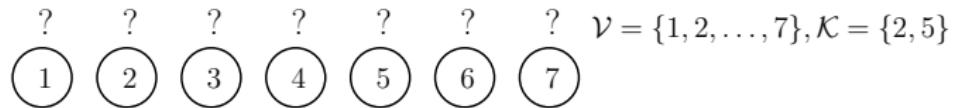
$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

The diagram shows 7 numbered circles (1-7) with 2 and 5 highlighted in red. Below is a table with 5 rows (t_1 to t_5) showing test results and CGT outcomes.

	Test					CGT outcome	
t_1	3	1	5	7		5	
t_2	1	2	3	4	5	6	2
t_3	1	3	4	6	7		0
t_4	6	3	4	7			0
t_5	7	5	4	6			5

- Testing design $\mathbf{X} = \{t_1, t_2, \dots, t_T\}$, output $\mathbf{y} = (y_1, y_2, \dots, y_T)$

Problem



Test	CGT outcome					
t_1	3	1	5	7		5
t_2	1	2	3	4	5	6
t_3	1	3	4	6	7	
t_4	6	3	4	7		
t_5	7	5	4	6		5

- Testing design $\mathbf{X} = \{t_1, t_2, \dots, t_T\}$, output $\mathbf{y} = (y_1, y_2, \dots, y_T)$
- \mathbf{X} is *feasible* if we can recover any \mathcal{K} from \mathbf{y} , $|\mathcal{K}| \leq k$.

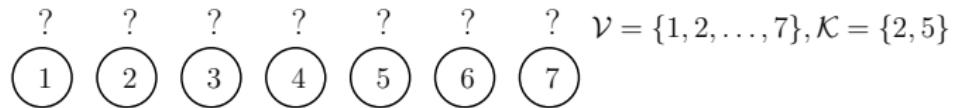
Problem



Test	CGT outcome					
t_1	3	1	5	7		5
t_2	1	2	3	4	5	6
t_3	1	3	4	6	7	
t_4	6	3	4	7		
t_5	7	5	4	6		5

- Testing design $\mathbf{X} = \{t_1, t_2, \dots, t_T\}$, output $\mathbf{y} = (y_1, y_2, \dots, y_T)$
- \mathbf{X} is *feasible* if we can recover any \mathcal{K} from \mathbf{y} , $|\mathcal{K}| \leq k$.
- *Goal*: Given n, k , find feasible testing designs of minimum size.

Problem



Test	CGT outcome					
t_1	3	1	5	7		5
t_2	1	2	3	4	5	6
t_3	1	3	4	6	7	
t_4	6	3	4	7		
t_5	7	5	4	6		5

- Testing design $\mathbf{X} = \{t_1, t_2, \dots, t_T\}$, output $\mathbf{y} = (y_1, y_2, \dots, y_T)$
- \mathbf{X} is *feasible* if we can recover any \mathcal{K} from \mathbf{y} , $|\mathcal{K}| \leq k$.
- **Goal:** Given n, k , find feasible testing designs of minimum size.
 - ▶ Explicit constructions, efficient decoding rules

Cascaded GT vs Binary GT

$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

Test							CGT outcome
t_1	3	1	5	7			5
t_2	1	2	3	4	5	6	2
t_3	1	3	4	6	7		0
t_4	6	3	4	7			0
t_5	7	5	4	6			5

Cascaded GT vs Binary GT

$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

Test							CGT outcome	BGТ outcome
	3	1	5	7	5	6		
t_1							5	Yes
t_2	1	2	3	4	5	6	2	Yes
t_3	1	3	4	6	7		0	No
t_4	6	3	4	7			0	No
t_5	7	5	4	6			5	Yes

Cascaded GT vs Binary GT

$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

Test						CGT outcome	BGD outcome
	3	1	5	7			
t_1						5	Yes
t_2	1	2	3	4	5	6	Yes
t_3	1	3	4	6	7		No
t_4	6	3	4	7			No
t_5	7	5	4	6		5	Yes

- CGT test provides at least as much information as BGT test.

Cascaded GT vs Binary GT

$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

Test						CGT outcome	BGD outcome
	3	1	5	7			
t_1						5	Yes
t_2	1	2	3	4	5	6	Yes
t_3	1	3	4	6	7		No
t_4	6	3	4	7			No
t_5	7	5	4	6		5	Yes

- CGT test provides at least as much information as BGT test.
- Feasible design under BGT \implies Feasible design under CGT

Cascaded GT vs Binary GT

$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

Test	CGT outcome	BGT outcome
t_1 3 1 5 7	5	Yes
t_2 1 2 3 4 5 6	2	Yes
t_3 1 3 4 6 7	0	No
t_4 6 3 4 7	0	No
t_5 7 5 4 6	5	Yes

- CGT test provides at least as much information as BGT test.
- Feasible design under BGT \implies Feasible design under CGT
 - ▶ Upper bounds for BGT are also upper bounds for CGT

Cascaded GT vs Binary GT

$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

Test	CGT outcome					BG ^T outcome	
t_1	3	1	5	7		5	Yes
t_2	1	2	3	4	5	6	Yes
t_3	1	3	4	6	7		No
t_4	6	3	4	7			No
t_5	7	5	4	6		5	Yes

- CGT test provides at least as much information as BGT test.
- Feasible design under BGT \implies Feasible design under CGT
 - ▶ Upper bounds for BGT are also upper bounds for CGT
- How much can the additional information help?

Cascaded GT vs Binary GT: bounds

<i>BGT</i>	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k} \right)$	$k \log \left(\frac{n}{k} \right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$

Cascaded GT vs Binary GT: bounds

<i>BGT</i>	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k}\right)$	$k \log \left(\frac{n}{k}\right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$
<i>CGT</i>	Lower bound	Upper bound
Adaptive		$k \log \left(\frac{n}{k}\right)$
Non-adaptive		$k^2 \min\{\log_k^2 n, \log n\}$

Adaptive testing

$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

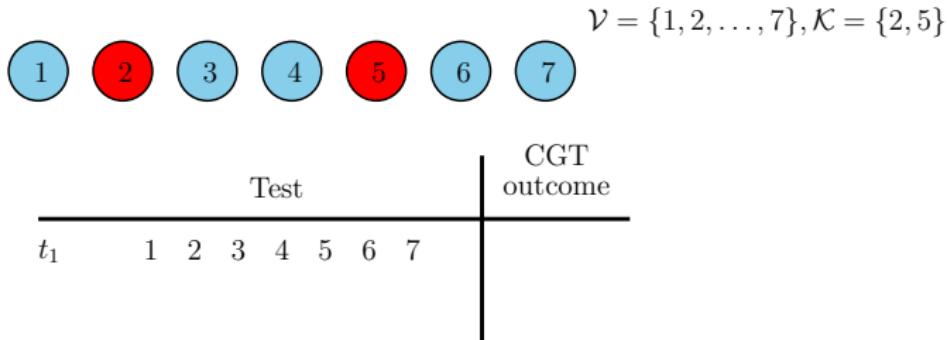
- Sequential design of tests

Adaptive testing

$$\mathcal{V} = \{1, 2, \dots, 7\}, \mathcal{K} = \{2, 5\}$$

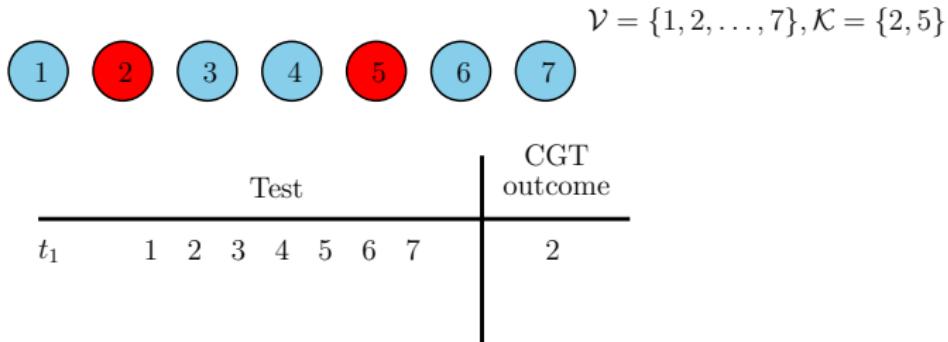
- Sequential design of tests
- Initialise $\mathcal{V} = \{1, 2, \dots, n\}$, $\hat{\mathcal{K}} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - 1 Run a test with items in $\mathcal{V} \setminus \hat{\mathcal{K}}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - 3 If the test returns v , then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If $i > k$, terminate and return $\hat{\mathcal{K}}$.

Adaptive testing



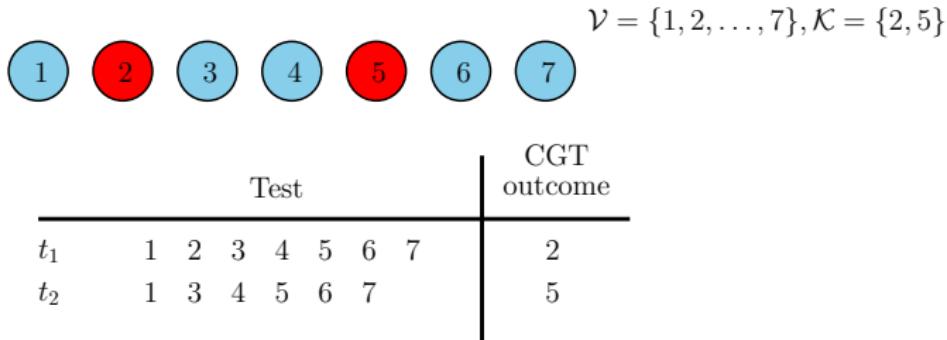
- Sequential design of tests
- Initialise $\mathcal{V} = \{1, 2, \dots, n\}$, $\hat{\mathcal{K}} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - 1 Run a test with items in $\mathcal{V} \setminus \hat{\mathcal{K}}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - 3 If the test returns v , then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If $i > k$, terminate and return $\hat{\mathcal{K}}$.

Adaptive testing



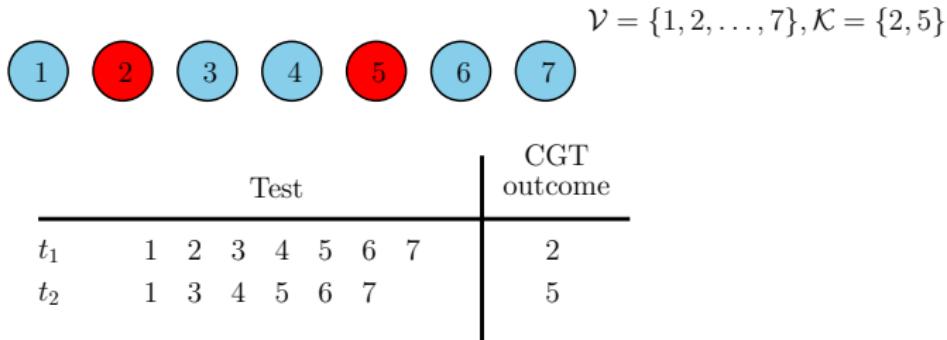
- Sequential design of tests
- Initialise $\mathcal{V} = \{1, 2, \dots, n\}$, $\hat{\mathcal{K}} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - 1 Run a test with items in $\mathcal{V} \setminus \hat{\mathcal{K}}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - 3 If the test returns v , then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If $i > k$, terminate and return $\hat{\mathcal{K}}$.

Adaptive testing



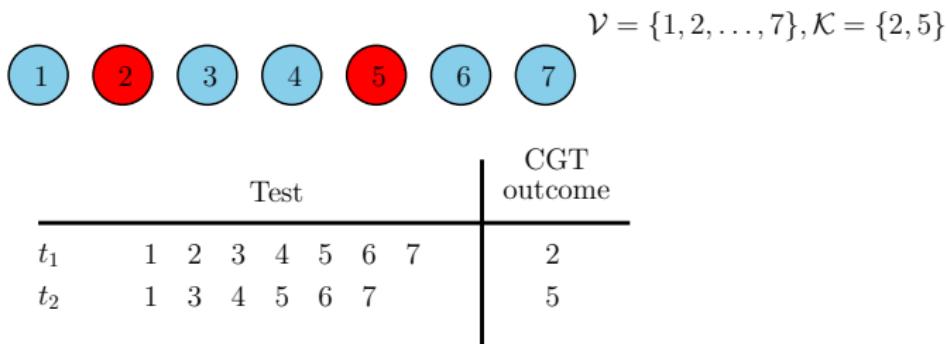
- Sequential design of tests
- Initialise $\mathcal{V} = \{1, 2, \dots, n\}$, $\hat{\mathcal{K}} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - 1 Run a test with items in $\mathcal{V} \setminus \hat{\mathcal{K}}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - 3 If the test returns v , then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If $i > k$, terminate and return $\hat{\mathcal{K}}$.

Adaptive testing



- Sequential design of tests
- Initialise $\mathcal{V} = \{1, 2, \dots, n\}$, $\hat{\mathcal{K}} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - 1 Run a test with items in $\mathcal{V} \setminus \hat{\mathcal{K}}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - 3 If the test returns v , then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If $i > k$, terminate and return $\hat{\mathcal{K}}$.
- Needs at most k tests,

Adaptive testing



- Sequential design of tests
- Initialise $\mathcal{V} = \{1, 2, \dots, n\}$, $\hat{\mathcal{K}} \leftarrow \emptyset$, $i \leftarrow 1$ and run the loop:
 - 1 Run a test with items in $\mathcal{V} \setminus \hat{\mathcal{K}}$ in an arbitrary order.
 - 2 If the test returns 0, terminate and return $\hat{\mathcal{K}}$.
 - 3 If the test returns v , then update $\hat{\mathcal{K}} \leftarrow \hat{\mathcal{K}} \cup \{v\}$.
 - 4 Update $i \leftarrow i + 1$. If $i > k$, terminate and return $\hat{\mathcal{K}}$.
- Needs at most k tests, optimal in the worst-case.

Cascaded group testing: bounds

<i>BGT</i>	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k} \right)$	$k \log \left(\frac{n}{k} \right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$
<i>CGT</i>	Lower bound	Upper bound
Adaptive	k	k
Non-adaptive		$k^2 \min\{\log_k^2 n, \log n\}$

Non-adaptive testing

- Testing design matrix has to be specified beforehand.

Non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$:

Non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$: one test suffices, $t_1 = (1, 2, \dots, n)$

Non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$: one test suffices, $t_1 = (1, 2, \dots, n)$
- $k = 2$:

Non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$: one test suffices, $t_1 = (1, 2, \dots, n)$
- $k = 2$: two tests suffice,

$$t_1 = (1, 2, \dots, n), \quad t_2 = (n, n-1, \dots, 1)$$

Non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$: one test suffices, $t_1 = (1, 2, \dots, n)$
- $k = 2$: two tests suffice,

$$t_1 = (1, 2, \dots, n), \quad t_2 = (n, n-1, \dots, 1)$$

- Optimal for $k = 1, 2$.

Non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$: one test suffices, $t_1 = (1, 2, \dots, n)$
- $k = 2$: two tests suffice,

$$t_1 = (1, 2, \dots, n), \quad t_2 = (n, n-1, \dots, 1)$$

- Optimal for $k = 1, 2$. BGT would need $\Omega(\log n)$ tests.

Non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$: one test suffices, $t_1 = (1, 2, \dots, n)$
- $k = 2$: two tests suffice,

$$t_1 = (1, 2, \dots, n), \quad t_2 = (n, n-1, \dots, 1)$$

- Optimal for $k = 1, 2$. BGT would need $\Omega(\log n)$ tests.
- What about larger k ?

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test					
t_1		3	1	5	7	
t_2		1	2	3	4	5
t_3		1	3	4	6	7
t_4		6	3	4	7	
t_5		7	5	4	6	

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test					
t_1	3	1	5	7		
t_2	1	2	3	4	5	6
t_3	1	3	4	6	7	
t_4	6	3	4	7		
t_5	7	5	4	6		

- Testing design \mathbf{X} is *feasible* if we can recover \mathcal{K} from \mathbf{y} .

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test					CGT outcome
t_1	3	1	5	7		
t_2	1	2	3	4	5	6
t_3	1	3	4	6	7	
t_4	6	3	4	7		
t_5	7	5	4	6		

- Testing design \mathbf{X} is *feasible* if we can recover \mathcal{K} from \mathbf{y} .
- Distinct outputs for each $\mathcal{K}_1 \neq \mathcal{K}_2$, s.t. $|\mathcal{K}_1|, |\mathcal{K}_2| \leq k$.

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test							CGT outcome
	3	1	5	7				
t_1								3
t_2	1	2	3	4	5	6		1
t_3	1	3	4	6	7			1
t_4	6	3	4	7				3
t_5	7	5	4	6				0

$\mathcal{K}_1 = \{1, 2, 3\}$

- Testing design \mathbf{X} is *feasible* if we can recover \mathcal{K} from \mathbf{y} .
- Distinct outputs for each $\mathcal{K}_1 \neq \mathcal{K}_2$, s.t. $|\mathcal{K}_1|, |\mathcal{K}_2| \leq k$.

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test				CGT outcome		
t_1	3	1	5	7	3		
t_2	1	2	3	4	5	6	1
t_3	1	3	4	6	7		1
t_4	6	3	4	7			3
t_5	7	5	4	6			0

- Testing design \mathbf{X} is *feasible* if we can recover \mathcal{K} from \mathbf{y} .
- Distinct outputs for each $\mathcal{K}_1 \neq \mathcal{K}_2$, s.t. $|\mathcal{K}_1|, |\mathcal{K}_2| \leq k$.

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	1	2	3	4	5	6	7	CGT outcome	$\mathcal{K}_1 = \{1, 2, 3\}$	$\mathcal{K}_2 = \{1, 3\}$
t_1			3	1	5	7		3		
t_2		1	2	3	4	5	6		1	
t_3		1	3	4	6	7			1	
t_4		6	3	4	7			3		
t_5		7	5	4	6			0		

- Testing design \mathbf{X} is *feasible* if we can recover \mathcal{K} from \mathbf{y} .
- Distinct outputs for each $\mathcal{K}_1 \neq \mathcal{K}_2$, s.t. $|\mathcal{K}_1|, |\mathcal{K}_2| \leq k$.
- Analogue of disjunctness property under BGT.

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test					
t_1		3	1	5	7	
t_2		1	2	3	4	5
t_3		1	3	4	6	7
t_4		6	3	4	7	
t_5		7	5	4	6	

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test					
t_1	3	1	5	7		
t_2	1	2	3	4	5	6
t_3	1	3	4	6	7	
t_4	6	3	4	7		
t_5	7	5	4	6		

- **Feasibility condition:** $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test					
t_1	3	1	5	7		
t_2	1	2	3	4	5	6
t_3	1	3	4	6	7	
t_4	6	3	4	7		
t_5	7	5	4	6		

$$\mathcal{K} = \{1, 2, 3\}$$

$$v = 1$$

$$v = 2$$

$$v = 3$$

- **Feasibility condition:** $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test							
t_1	3	1	5	7				green arrow
t_2	1	2	3	4	5	6		blue arrow
t_3	1	3	4	6	7			
t_4	6	3	4	7				
t_5	7	5	4	6				

$\mathcal{K} = \{1, 2, 3\}$
 $v = 1 \checkmark$
 $v = 2 \times$
 $v = 3 \checkmark$

- *Feasibility condition:* $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .

Non-adaptive testing: feasibility

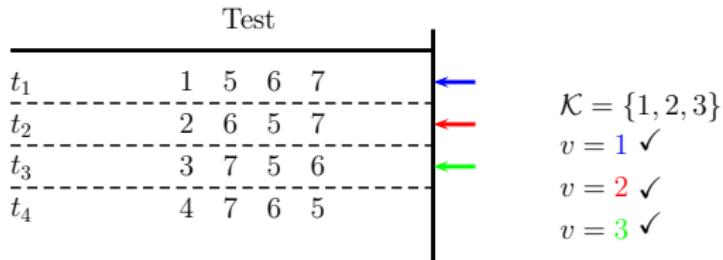
$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test			
t_1	1	5	6	7
t_2	2	6	5	7
t_3	3	7	5	6
t_4	4	7	6	5

- **Feasibility condition:** $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$



- *Feasibility condition:* $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test				
t_1	1	5	6	7	Red arrow
t_2	2	6	5	7	Blue arrow
t_3	3	7	5	6	Green arrow
t_4	4	7	6	5	

$\mathcal{K} = \{2, 5, 7\}$
 $v = 2 \checkmark$
 $v = 5 \checkmark$
 $v = 7 \checkmark$

- *Feasibility condition:* $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test				
t_1	1	5	6	7	
t_2	2	6	5	7	←
t_3	3	7	5	6	←
t_4	4	7	6	5	←

$\mathcal{K} = \{3, 4, 6\}$
 $v = 3 \checkmark$
 $v = 4 \checkmark$
 $v = 6 \checkmark$

- *Feasibility condition:* $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test			
t_1	1	5	6	7
t_2	2	6	5	7
t_3	3	7	5	6
t_4	4	7	6	5

- **Feasibility condition:** $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test				CGT outcome
	1	5	6	7	
t_1					6
t_2	2	6	5	7	6
t_3	3	7	5	6	3
t_4	4	7	6	5	4

$\mathcal{K} = \{3, 4, 6\}$

- *Feasibility condition:* $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$, \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .
- *Reconstruction:* $\hat{\mathcal{K}} = \{y_i : i \in [T], y_i \neq 0\}$

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test				CGT outcome
	1	5	6	7	
t_1					6
t_2	2	6	5	7	6
t_3	3	7	5	6	3
t_4	4	7	6	5	4

$$\mathcal{K} = \{3, 4, 6\}$$

- *Feasibility condition:* $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$.
 \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .
- *Reconstruction:* $\hat{\mathcal{K}} = \{y_i : i \in [T], y_i \neq 0\}$
- *Lower bound:* Any feasible design has at least $\lfloor \frac{k+1}{2} \rfloor \lceil \frac{k+1}{2} \rceil$ tests.

Non-adaptive testing: feasibility

$$\mathcal{V} = \{1, 2, \dots, 7\}, k = |\mathcal{K}| = 3$$

	Test				CGT outcome
	1	5	6	7	
t_1					6
t_2	2	6	5	7	6
t_3	3	7	5	6	3
t_4	4	7	6	5	4

$$\mathcal{K} = \{3, 4, 6\}$$

- *Feasibility condition:* $\forall \mathcal{K} \subset \mathcal{V}$ with $|\mathcal{K}| = k$, and for every $v \in \mathcal{K}$.
 \exists test $t \in \mathbf{X}$ where v appears before every other item in \mathcal{K} .
- *Reconstruction:* $\hat{\mathcal{K}} = \{y_i : i \in [T], y_i \neq 0\}$
- *Lower bound:* Any feasible design has at least $\lfloor \frac{k+1}{2} \rfloor \lceil \frac{k+1}{2} \rceil$ tests.
Erdős-Szekeres theorem gives $\lfloor \log_2 \log_2 (n-1) \rfloor$ lower bound.

Cascaded group testing: bounds

<i>BGT</i>	Lower bound	Upper bound
Adaptive	$k \log \left(\frac{n}{k} \right)$	$k \log \left(\frac{n}{k} \right)$
Non-adaptive	$k^2 \log_k n$	$k^2 \min\{\log_k^2 n, \log n\}$

<i>CGT</i>	Lower bound	Upper bound
Adaptive	k	k
Non-adaptive	$\max\{k^2, \log \log n\}$	$k^2 \min\{\log_k^2 n, \log n\}$

Non-adaptive testing: $k = 3$

Non-adaptive testing: $k = 3$

$a = 3$

- Use feasible design \mathbf{X}_1 for a items to create feasible design \mathbf{X}_2 for a^2 items.

Non-adaptive testing: $k = 3$

$$a = 3$$

A_1 1 2 3

A_2 4 5 6

A_3 7 8 9

- Use feasible design \mathbf{X}_1 for a items to create feasible design \mathbf{X}_2 for a^2 items.
- Partition a^2 items into disjoint sets A_1, A_2, \dots, A_a of size a each.

Non-adaptive testing: $k = 3$

$$a = 3, s_1 = (2, 3, 1), s_2 = (1, 3, 2)$$

A_1
1 2 3

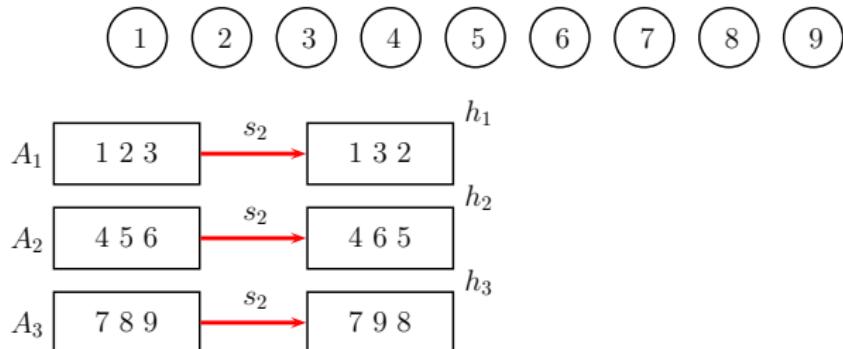
A_2
4 5 6

A_3
7 8 9

- Given permutations s_1, s_2 on a items, permutation $s_3 = s_1 \circ s_2$ on a^2 items is given by:

Non-adaptive testing: $k = 3$

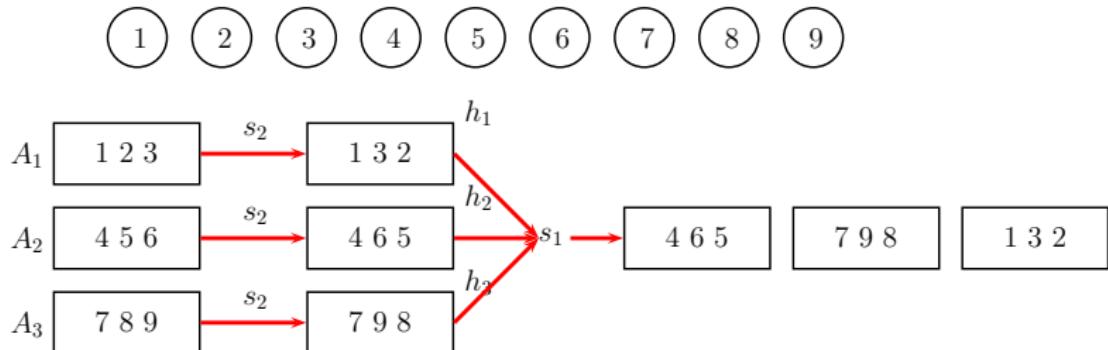
$$a = 3, s_1 = (2, 3, 1), s_2 = (1, 3, 2)$$



- Given permutations s_1, s_2 on a items, permutation $s_3 = s_1 \circ s_2$ on a^2 items is given by:
 - For each i , arrange items of A_i according to s_2 . Call result h_i .

Non-adaptive testing: $k = 3$

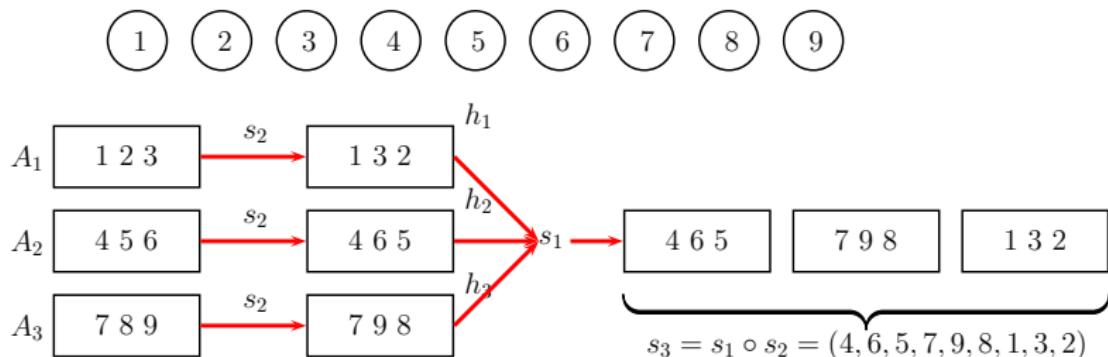
$$a = 3, s_1 = (2, 3, 1), s_2 = (1, 3, 2)$$



- Given permutations s_1, s_2 on a items, permutation $s_3 = s_1 \circ s_2$ on a^2 items is given by:
 - For each i , arrange items of A_i according to s_2 . Call result h_i .
 - Arrange h_1, h_2, \dots, h_a according to s_1 to obtain s_3

Non-adaptive testing: $k = 3$

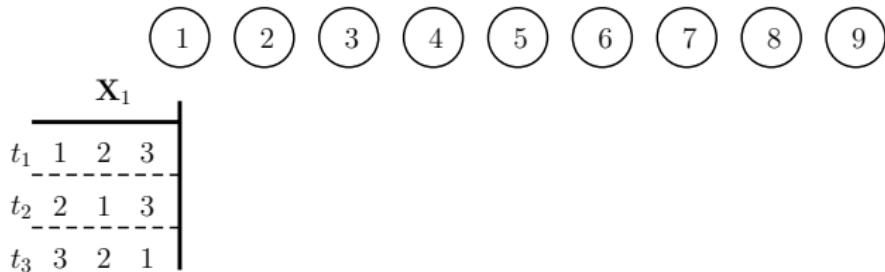
$$a = 3, s_1 = (2, 3, 1), s_2 = (1, 3, 2)$$



- Given permutations s_1, s_2 on a items, permutation $s_3 = s_1 \circ s_2$ on a^2 items is given by:
 - For each i , arrange items of A_i according to s_2 . Call result h_i .
 - Arrange h_1, h_2, \dots, h_a according to s_1 to obtain s_3

Non-adaptive testing: $k = 3$

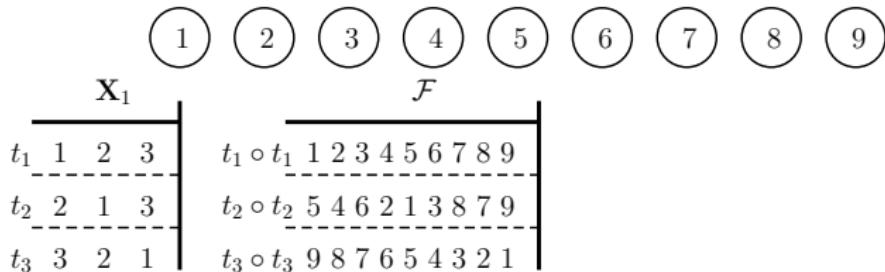
$$a = 3$$



- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.

Non-adaptive testing: $k = 3$

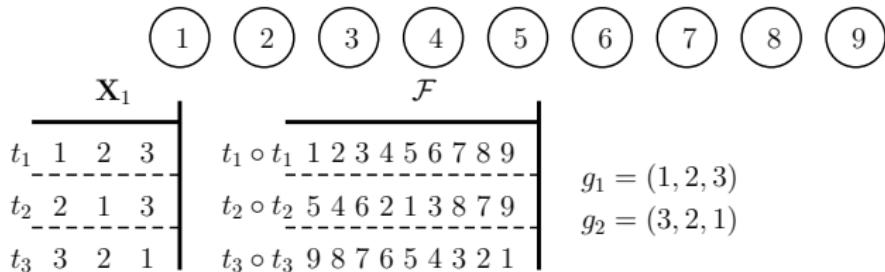
$a = 3$



- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.
- Consider $\mathcal{F} := \{t_i \circ t_i : i \in [|\mathbf{X}_1|]\}$.

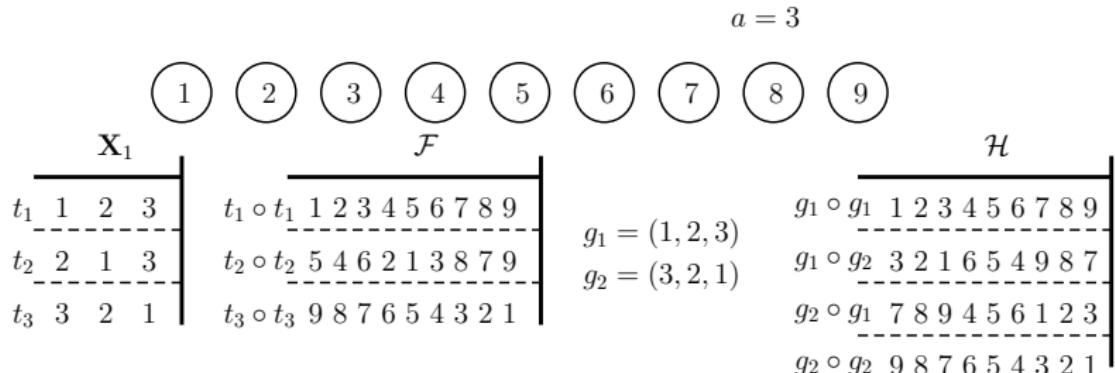
Non-adaptive testing: $k = 3$

$a = 3$



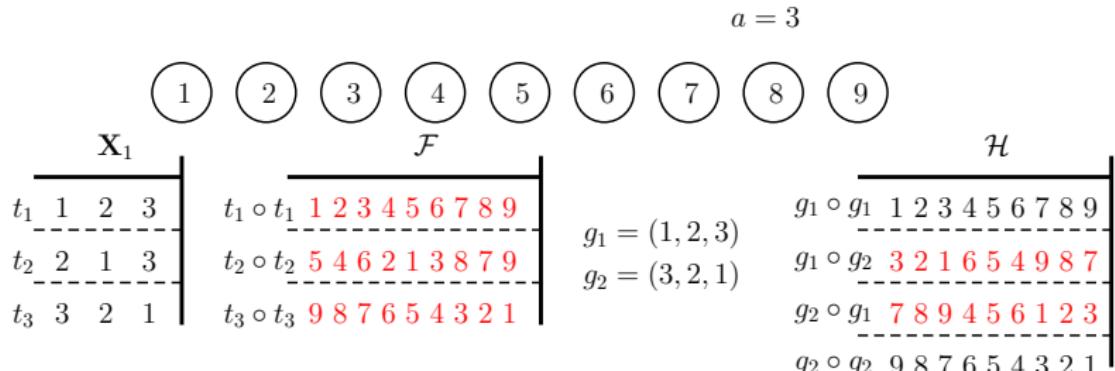
- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.
- Consider $\mathcal{F} := \{t_i \circ t_i : i \in [| \mathbf{X}_1 |]\}$.
- Take $g_1 = (1, 2, \dots, a)$ and $g_2 = (a, a-1, \dots, 1)$.

Non-adaptive testing: $k = 3$



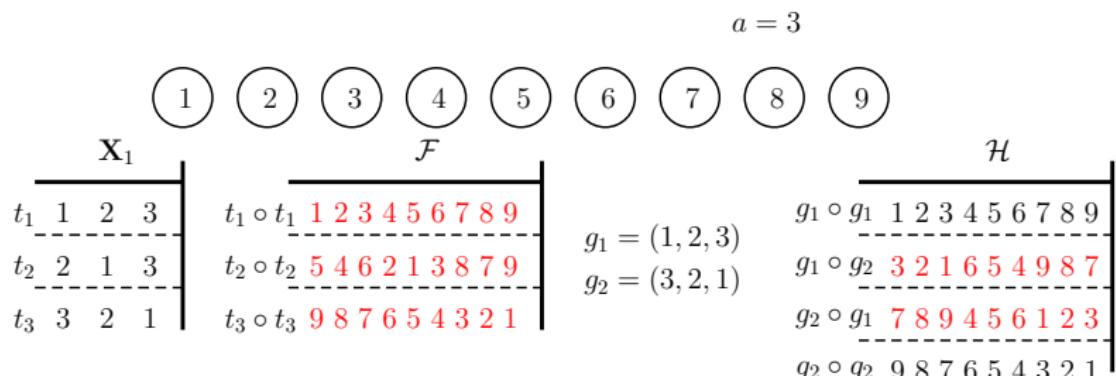
- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.
- Consider $\mathcal{F} := \{t_i \circ t_i : i \in [|\mathbf{X}_1|]\}$.
- Take $g_1 = (1, 2, \dots, a)$ and $g_2 = (a, a-1, \dots, 1)$. Consider $\mathcal{H} := \{g_i \circ g_j : i, j \in [2]\}$.

Non-adaptive testing: $k = 3$



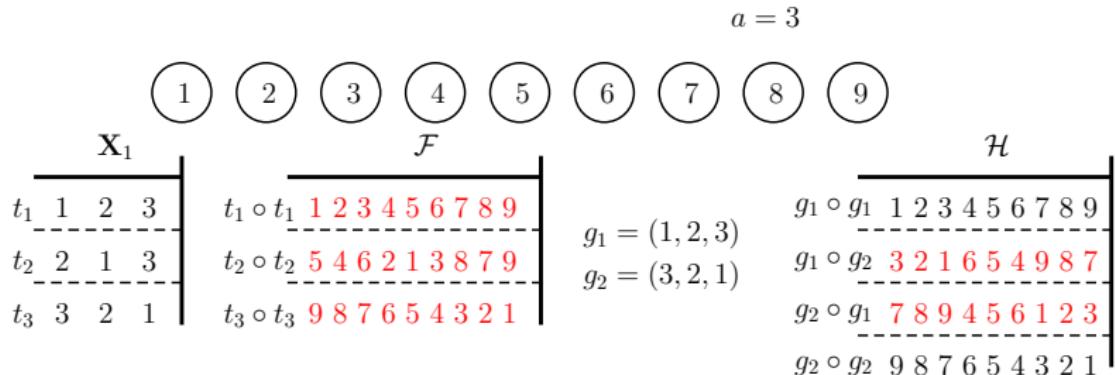
- Start with feasible design $\mathbf{X}_1 = \{t_1, t_2, \dots, t_{|\mathbf{X}_1|}\}$ for a items.
- Consider $\mathcal{F} := \{t_i \circ t_i : i \in [|\mathbf{X}_1|]\}$.
- Take $g_1 = (1, 2, \dots, a)$ and $g_2 = (a, a-1, \dots, 1)$. Consider $\mathcal{H} := \{g_i \circ g_j : i, j \in [2]\}$.
- Finally, design for a^2 items given by $\mathbf{X}_2 := \mathcal{F} \cup \mathcal{H}$.

Non-adaptive testing: $k = 3$



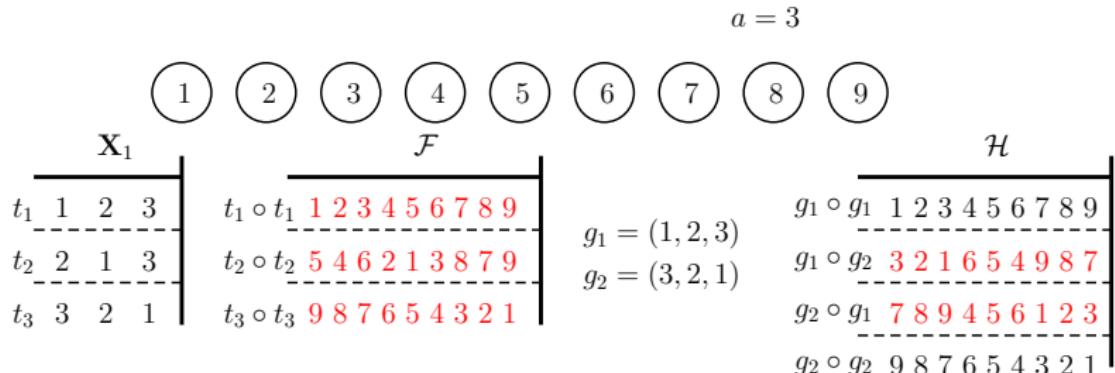
- \mathbf{X}_2 is a feasible design;

Non-adaptive testing: $k = 3$



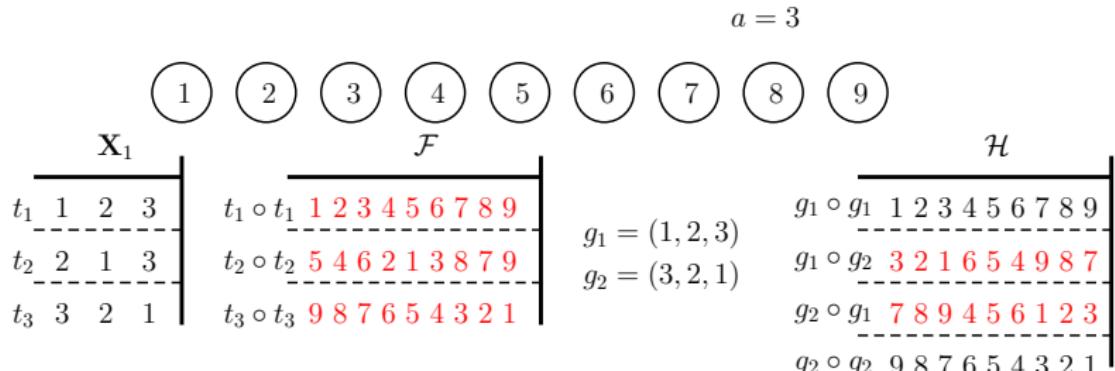
- \mathbf{X}_2 is a feasible design; $|\mathbf{X}_2| \leq |\mathbf{X}_1| + 4$

Non-adaptive testing: $k = 3$



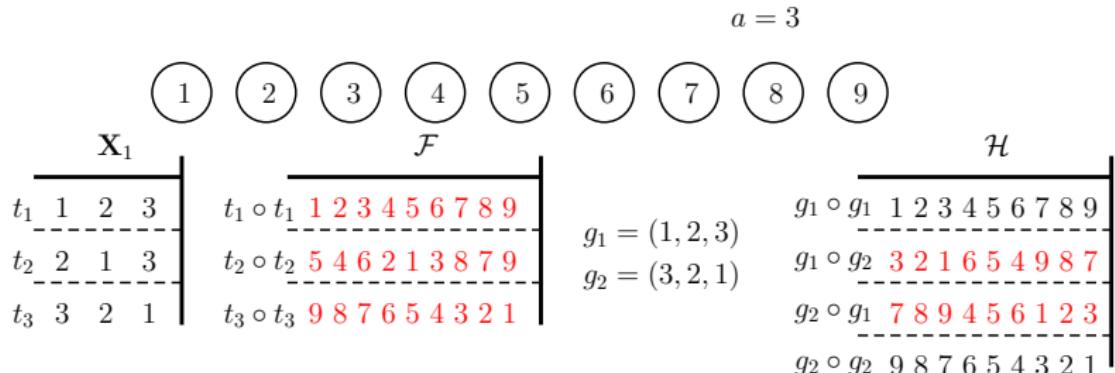
- \mathbf{X}_2 is a feasible design; $|\mathbf{X}_2| \leq |\mathbf{X}_1| + 4$
- Recursive design for n items,

Non-adaptive testing: $k = 3$



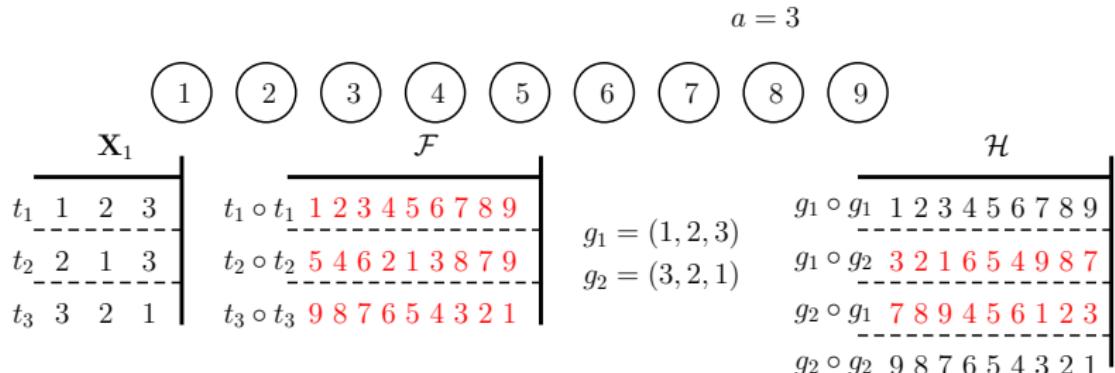
- \mathbf{X}_2 is a feasible design; $|\mathbf{X}_2| \leq |\mathbf{X}_1| + 4$
- Recursive design for n items, with at most $O(\log \log n)$ tests.

Non-adaptive testing: $k = 3$



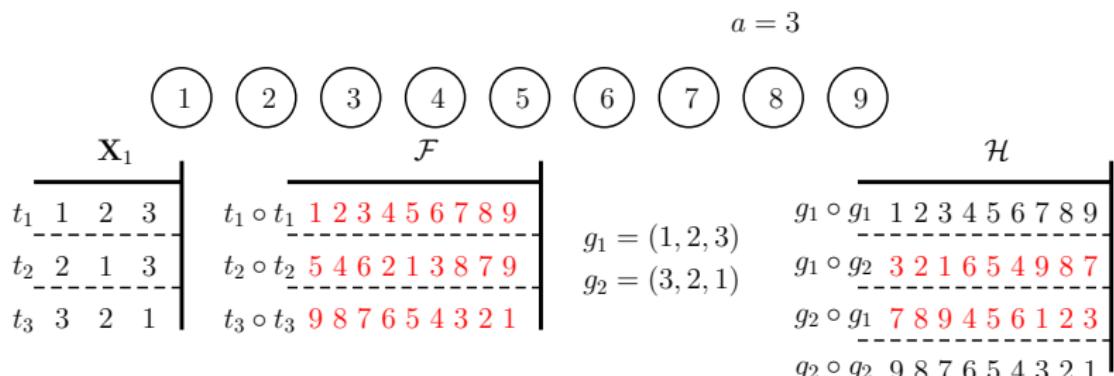
- \mathbf{X}_2 is a feasible design; $|\mathbf{X}_2| \leq |\mathbf{X}_1| + 4$
- Recursive design for n items, with at most $O(\log \log n)$ tests.
- Idea generalizes to any constant k ,

Non-adaptive testing: $k = 3$



- \mathbf{X}_2 is a feasible design; $|\mathbf{X}_2| \leq |\mathbf{X}_1| + 4$
- Recursive design for n items, with at most $O(\log \log n)$ tests.
- Idea generalizes to any constant k , with at most $O((\log \log n)^{c_k})$ tests, where $c_k = 2^{(k-2)} - 1$.

Non-adaptive testing: $k = 3$



- \mathbf{X}_2 is a feasible design; $|\mathbf{X}_2| \leq |\mathbf{X}_1| + 4$
- Recursive design for n items, with at most $O(\log \log n)$ tests.
- Idea generalizes to any constant k , with at most $O((\log \log n)^{c_k})$ tests, where $c_k = 2^{(k-2)} - 1$.
- Can be much smaller than BGT which needs $\Omega(k^2 \log_k n)$ tests.

Cascaded group testing: bounds for $k = O(1)$

<i>BGT</i>	Lower bound	Upper bound
Adaptive	$k \log n$	$k \log n$
Non-adaptive	$k^2 \log n$	$k^2 \log n$

<i>CGT</i>	Lower bound	Upper bound
Adaptive	k	k
Non-adaptive	$\max\{k^2, \log \log n\}$	$\min\{(\log \log n)^{c_k}, k^2 \log n\}$

Summary

- New variant of group testing

Summary

- New variant of group testing
- Derived bounds under adaptive and non adaptive testing

Summary

- New variant of group testing
- Derived bounds under adaptive and non adaptive testing
- Further directions:

Summary

- New variant of group testing
- Derived bounds under adaptive and non adaptive testing
- Further directions:
 - ▶ General achievable strategies for any k
 - ▶ Close gap between upper and lower bounds
 - ▶ Noisy and constrained testing

Thanks

<https://sites.google.com/site/nikhilkaram/>

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

2-disjunct

Not 3-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{Say } k = 4, \mathbf{X} \text{ not } (k-1)\text{-disjunct}$$

2-disjunct

Not 3-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \Rightarrow (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{array}{l} \text{Say } k = 4, \mathbf{X} \text{ not } (k-1)\text{-disjunct} \\ \mathbf{X}_1 \preceq \bigvee_{i \in [2:4]} \mathbf{X}_i \implies \bigvee_{i \in [2:4]} \mathbf{X}_i = \bigvee_{i \in [1:4]} \mathbf{X}_i \end{array}$$

↑ ↑ ↑ ↑

2-disjunct
Not 3-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: disjunct testing matrix

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{array}{l} \text{Say } k = 4, \mathbf{X} \text{ not } (k-1)\text{-disjunct} \\ \mathbf{X}_1 \preceq \bigvee_{i \in [2:4]} \mathbf{X}_i \implies \bigvee_{i \in [2:4]} \mathbf{X}_i = \bigvee_{i \in [1:4]} \mathbf{X}_i \\ \text{O/p for } \mathcal{K} = \{2, 3, 4\} \text{ same as for } \mathcal{K} = \{1, 2, 3, 4\} \\ \implies \mathbf{X} \text{ not feasible for } k = 4. \end{array}$$

↑ ↑ ↑ ↑

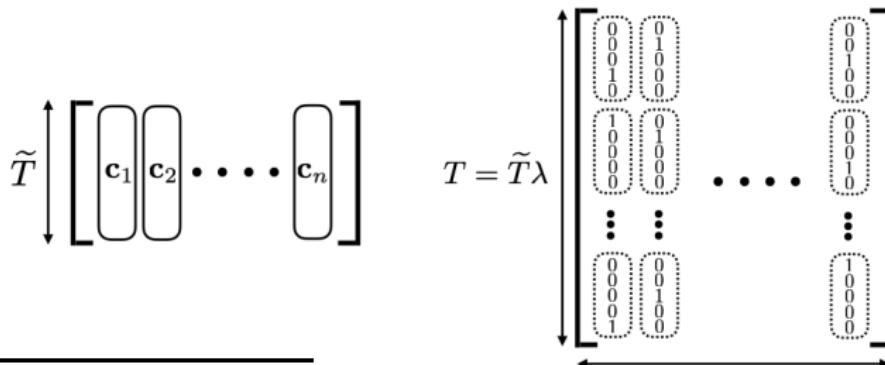
2-disjunct
Not 3-disjunct

- *t-disjunct matrix*: Union of any t columns does not contain any other single column.
- With at most k defectives,

Feasible testing design matrix $\left\{ \begin{array}{l} \implies (k-1)\text{-disjunct} \\ \Leftarrow k\text{-disjunct} \end{array} \right.$

Non-adaptive testing: bounds

- *Lower bound:* $\Omega(k^2 \log_k n)$ tests; connection to k -cover families [D'yachkov & Rykov'82, Füredi'96]
- *Random construction:* $O(k^2 \log \frac{n}{k})$ tests; choose each entry i.i.d. $\sim \text{Ber}(1/(k+1))$.
- *Explicit construction:* $O\left(k^2 \min\{\log_k^2 n, \log n\}\right)$ tests; based on a concatenated code construction [Kautz & Singleton'64, Porat & Rotschild'08]



Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.

Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$

Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$

- ▶ For $m \geq 1$, parity check matrix \mathbf{H} of a binary Hamming code has dimension $m \times 2^m - 1$.

$$\mathbf{H}_{3,7} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$
 - ▶ For $m \geq 1$, parity check matrix \mathbf{H} of a binary Hamming code has dimension $m \times 2^m - 1$.
 - ▶ All columns are distinct non-zero binary vectors.

$\mathbf{H}_{3,7}$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$

- ▶ For $m \geq 1$, parity check matrix \mathbf{H} of a binary Hamming code has dimension $m \times 2^m - 1$.

$$\mathbf{H}_{3,7} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

- ▶ All columns are distinct non-zero binary vectors.

- ▶ Item j defective \Rightarrow output

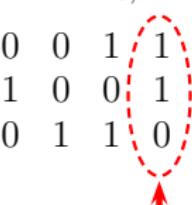
$$\mathbf{y} = \bigvee_{i \in \mathcal{K}} \mathbf{H}_i = \mathbf{H}_j$$

Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$
 - ▶ For $m \geq 1$, parity check matrix \mathbf{H} of a binary Hamming code has dimension $m \times 2^m - 1$.
 - ▶ All columns are distinct non-zero binary vectors.
 - ▶ Item j defective \Rightarrow output $\mathbf{y} = \mathbf{H}_j$

$$\mathbf{H}_{3,7} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$\mathbf{H}_5 \quad j = 5$

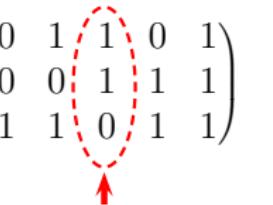


Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$
 - ▶ For $m \geq 1$, parity check matrix \mathbf{H} of a binary Hamming code has dimension $m \times 2^m - 1$.
 - ▶ All columns are distinct non-zero binary vectors.
 - ▶ Item j defective \Rightarrow output $\mathbf{y} = \mathbf{H}_j$
 $\Rightarrow \mathbf{H}$ is a feasible testing design.

$$\mathbf{H}_{3,7} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$\mathbf{H}_5 \quad j = 5$



Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$
 - ▶ For $m \geq 1$, parity check matrix \mathbf{H} of a binary Hamming code has dimension $m \times 2^m - 1$.
 - ▶ All columns are distinct non-zero binary vectors.
 - ▶ Item j defective \Rightarrow output $\mathbf{y} = \mathbf{H}_j$
 $\Rightarrow \mathbf{H}$ is a feasible testing design.
 - ▶ Works for m s.t. $2^m - 1 \geq n \Rightarrow$ needs $\lceil \log(n+1) \rceil$ tests.

$$\mathbf{H}_{3,7} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$\mathbf{H}_5 \quad j = 5$

Achievable strategies: non-adaptive testing

- Testing design matrix has to be specified beforehand.
- $k = 1$
 - ▶ For $m \geq 1$, parity check matrix \mathbf{H} of a binary Hamming code has dimension $m \times 2^m - 1$.
 - ▶ All columns are distinct non-zero binary vectors.
 - ▶ Item j defective \Rightarrow output $\mathbf{y} = \mathbf{H}_j$
 $\Rightarrow \mathbf{H}$ is a feasible testing design.
 - ▶ Works for m s.t. $2^m - 1 \geq n \Rightarrow$ needs $\lceil \log(n+1) \rceil$ tests.
 - ▶ Near-optimal for $k = 1$.

$$\mathbf{H}_{3,7} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

$\mathbf{H}_5 \quad j = 5$

Extensions and variants

Extensions and variants

- *Decoding criterion:* small error probability, partial recovery

Extensions and variants

- *Decoding criterion*: small error probability, partial recovery
- *Defectives prior*: combinatorial, i.i.d., bursty

Extensions and variants

- *Decoding criterion*: small error probability, partial recovery
- *Defectives prior*: combinatorial, i.i.d., bursty
- *Noise model*: symmetric, Z channel, dilution, erasure

Extensions and variants

- *Decoding criterion*: small error probability, partial recovery
- *Defectives prior*: combinatorial, i.i.d., bursty
- *Noise model*: symmetric, Z channel, dilution, erasure
- *Testing model*: threshold, quantitative, concomitant, tropical, graph-constrained

Cascaded group testing: lower bound

Cascaded group testing: lower bound

- For $k \geq 3$, any feasible design has more than $\lfloor \log_2 \log_2(n - 1) \rfloor$ tests.

Cascaded group testing: lower bound

- For $k \geq 3$, any feasible design has more than $\lfloor \log_2 \log_2(n - 1) \rfloor$ tests.
- *Erdős-Szekeres theorem*: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length $a + 1$.

Cascaded group testing: lower bound

- For $k \geq 3$, any feasible design has more than $\lfloor \log_2 \log_2(n - 1) \rfloor$ tests.
- *Erdős-Szekeres theorem*: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length $a + 1$.
- Say $k = 3$, $n = 2^{2^r} + 1$; and we have a feasible design with $T \leq r = \log_2 \log_2(n - 1)$ tests.

Cascaded group testing: lower bound

- For $k \geq 3$, any feasible design has more than $\lfloor \log_2 \log_2(n-1) \rfloor$ tests.
- *Erdős-Szekeres theorem*: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length $a + 1$.
- Say $k = 3$, $n = 2^{2^r} + 1$; and we have a feasible design with $T \leq r = \log_2 \log_2(n-1)$ tests.
- \exists a subset of $n_1 = 2^{2^{(r-1)}} + 1$ items whose relative ordering in t_1 is monotone.

Cascaded group testing: lower bound

- For $k \geq 3$, any feasible design has more than $\lfloor \log_2 \log_2(n-1) \rfloor$ tests.
- *Erdős-Szekeres theorem*: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length $a + 1$.
- Say $k = 3$, $n = 2^{2^r} + 1$; and we have a feasible design with $T \leq r = \log_2 \log_2(n-1)$ tests.
- \exists a subset of $n_1 = 2^{2^{(r-1)}} + 1$ items whose relative ordering in t_1 is monotone.
- Amongst these, \exists a monotone subsequence of size $n_2 = 2^{2^{(r-2)}} + 1$ in t_2 .

Cascaded group testing: lower bound

- For $k \geq 3$, any feasible design has more than $\lfloor \log_2 \log_2(n-1) \rfloor$ tests.
- *Erdős-Szekeres theorem*: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length $a + 1$.
- Say $k = 3$, $n = 2^{2^r} + 1$; and we have a feasible design with $T \leq r = \log_2 \log_2(n-1)$ tests.
- \exists a subset of $n_1 = 2^{2^{(r-1)}} + 1$ items whose relative ordering in t_1 is monotone.
- Amongst these, \exists a monotone subsequence of size $n_2 = 2^{2^{(r-2)}} + 1$ in t_2 .
- Proceeding inductively, we get $n_T = 2^{2^{(r-T)}} + 1 \geq 3$ items, such that in each t_i they appear in increasing or decreasing order.

Cascaded group testing: lower bound

- For $k \geq 3$, any feasible design has more than $\lfloor \log_2 \log_2(n-1) \rfloor$ tests.
- *Erdős-Szekeres theorem*: For any sequence of length $a^2 + 1$, there is a monotone subsequence of length $a + 1$.
- Say $k = 3$, $n = 2^{2^r} + 1$; and we have a feasible design with $T \leq r = \log_2 \log_2(n-1)$ tests.
- \exists a subset of $n_1 = 2^{2^{(r-1)}} + 1$ items whose relative ordering in t_1 is monotone.
- Amongst these, \exists a monotone subsequence of size $n_2 = 2^{2^{(r-2)}} + 1$ in t_2 .
- Proceeding inductively, we get $n_T = 2^{2^{(r-T)}} + 1 \geq 3$ items, such that in each t_i they appear in increasing or decreasing order.
- Feasibility condition not satisfied $\implies T > r = \log_2 \log_2(n-1)$.