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Group testing: origin

@ First studied by Robert Dorfman
in US in the 1940s for syphilis
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Group testing: origin

@ First studied by Robert Dorfman
in US in the 1940s for syphilis
testing amongst soldiers.

@ Can do individual testing,
inefficient since most tests will
be negative.

@ Key idea: ‘pool’ samples from
many soldiers and test it

> Negative test: all in the pool
are uninfected

> Positive test: at least one
soldier is infected "8Y THE WAY, WHAT ARE WE IN LINE FOR™"

@ Goal: design pooling strategies
to minimize number of tests.
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@ nitems V, unknown subset K of defectives with size at most k.
> k<n

Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019
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@ nitems V, unknown subset K of defectives with size at most k.
> k<n

@ Each test t can be represented by x € {0,1}".
» x! =1 if item i included in test.
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@ nitems V, unknown subset K of defectives with size at most k.
> k<n

@ Each test t can be represented by x € {0,1}".
» x! =1 if item i included in test.

t
@ Outcome y; = \/ x/.
ieX
Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019
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@ Testdesign X € {0,1}7*", outputy = \/ X;.
iex
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@ Testing design X € {0,1}7*", outputy = \/ X;.
iek
@ Xis feasible if we can recover any K fromy, |K| < k.
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@ Testing design X € {0,1}7*", outputy = \/ X;.
iek
@ Xis feasible if we can recover any K fromy, |K| < k.

@ Goal: Given n, k, find feasible testing designs of minimum size.
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@ Testing design X € {0,1}7*", outputy = \/ X;.
iek
@ Xis feasible if we can recover any K fromy, |K| < k.

@ Goal: Given n, k, find feasible testing designs of minimum size.
» Explicit constructions, efficient decoding rules
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@ Feasible testing design = 3 injective function from set of
possible defective sets to the set of possible outputs
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@ Feasible testing design = 3 injective function from set of
possible defective sets to the set of possible outputs
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Achievable strategies: adaptive testing

@ Sequential design of tests

@ k=1
» Conduct binary search. Needs at most [log n| tests.

@ k>1
» Repeat above process, removing one defective in each round.

» Needs at most O (k log n) tests.
> More sophisticated algorithms achieve O (k log 7) tests.

@ Order-optimal w.r.t lower bound.
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Achievable strategies: non-adaptive testing

@ Testing design matrix has to be specified beforehand.
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Non-adaptive testing: disjunct testing matrix

1 0 1 0y Sayk=2 X is k-disjunct

0101 )

1.1.0.0 K={1,2}, O/pis Vcpg Xi
10 0 1 1

17070 1 Xy ﬁ Vie[m] X

0110 — 1 witness test for item 4

A A A

2-disjunct

@ t-disjunct matrix: Union of any t columns does not contain any
other single column.

@ With at most k defectives,

= (k — 1)-disjunct

Feasible testing design matrix .
<= k-disjunct

@ Simple decoding algorithm: if all tests involving an item o/p
positive, mark defective.
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Non-adaptive testing: bounds

e Lower bound: Q(k?log n) tests; connection to k-cover
families [D’yachkov & Rykov’82, Furedi’96]

@ Random construction: O (k'2 log ﬁ) tests; choose each entry
iid. ~ Ber(1/(k+1)).

@ Explicit construction: O (k2 min{log2 n, log n}) tests; based on
a concatenated code construction [Kautz & Singleton’64, Porat
& Rotschild’08]




Group testing: bounds

Lower bound Upper bound

Adaptive klog (2) klog (%)

Non-adaptive k2 logy n k? min{log2 n, log n}




Cascaded Group Testing

with Wagar Mirza and Niranjan Balachandran

Information Theory Workshop (ITW), Nov. 2024

https://arxiv.org/abs/2405.17917
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@ Network tomography

@ Recommendation systems
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@ Cascading bandits / OLTR
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@ nitems V, unknown subset K of defectives with size at most k.

> k<n

@ Each test t is associated with an ordered subset of items
(i‘l 5 i27 ceey ilﬂ)'
@ Test t returns first defective item in the sequence.
» 0 if no defective in test.
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@ Testing design X = {ty, to, ..., t}, outputy = (y1,¥2,..., Y1)
@ X s feasible if we can recover any K fromy, |K| < k.

@ Goal: Given n, k, find feasible testing designs of minimum size.
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@ Testing design X = {ty, to, ..., t}, outputy = (y1,¥2,..., Y1)
@ X s feasible if we can recover any K fromy, |K| < k.

@ Goal: Given n, k, find feasible testing designs of minimum size.
» Explicit constructions, efficient decoding rules
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Cascaded GT vs Binary GT

V={12..7.K=1{25}

O JOIOX JOIO

CGT BGT
Test outcome | outcome

t 3 1 5 7 5 Yes
o 123 4° 56 | 2 | Yes
o 13467 | 0 | No
6 3 4 /2N I No
t 7 S T Yes

@ CGT test provides at least as much information as BGT test.

@ Feasible design under BGT — Feasible design under CGT
» Upper bounds for BGT are also upper bounds for CGT

@ How much can the additional information help?
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BGT Lower bound Upper bound
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Non-adaptive k2 logy n k? min{log2 n, log n}

CGT Lower bound Upper bound

Adaptive klog (%)

Non-adaptive k? min{log2 n, log n}
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@ Sequential design of tests

e Initialise V = {1,2,...,n}, K < 0, i + 1 and run the loop:
@ Run a test with items in V\K in an arbitrary order.
@ If the test returns 0, terminate and return K.
@ 1 the test returns v, then update K < K U {v}.

@ Update i « i+ 1. If i > k, terminate and return K.
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Adaptive testing

V={1.2,...,7.K={25)

O JOIOX JOIO

CGT

Test outcome
t 1 2 3 4 5 6 7 2
to 1 3 45 6 7 5

@ Sequential design of tests

e Initialise V = {1,2,...,n}, K < 0, i + 1 and run the loop:
@ Run a test with items in V\K in an arbitrary order.
@ If the test returns 0, terminate and return K.
@ 1 the test returns v, then update K < K U {v}.

@ Update i « i+ 1. If i > k, terminate and return K.

@ Needs at most k tests, optimal in the worst-case.



Cascaded group testing: bounds

BGT Lower bound Upper bound
Adaptive klog (7) klog (7)
Non-adaptive k2 logy n 2 min{log2 n, log n}
CGT Lower bound Upper bound
Adaptive k k

Non-adaptive

2 min{log4 n, log n}
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Non-adaptive testing

@ Testing design matrix has to be specified beforehand.
@ k = 1: one test suffices, t; = (1,2,...,n)

@ k = 2: two tests suffice,

t=(01,2,..,n), b=(nn—-1,..1)

@ Optimal for k = 1,2. BGT would need (log n) tests.

@ What about larger k?
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@ Testing design X is feasible if we can recover KC fromy.
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V={1.2... T k=Kl =3

OOOOWOOO

coT Ky ={1,2,3}
Test | outcome Ky ={1,3}
fl 7 3
t 123 4 56 | 1
5 134607 [ 1
6347 | 3
t 75406 | 0

@ Testing design X is feasible if we can recover KC fromy.

@ Distinct outputs for each Ky # Ko, s.t. |[K4], |K2| < k.




Non-adaptive testing: feasibility

V={1.2... T k=Kl =3

OOOOWOOO

coT Ky ={1,2,3}
Test | outcome Ky ={1,3}
i1 7 3
t 123 4 56 | 1
5 134607 [ 1
6347 | 3
t 7546 | 0

@ Testing design X is feasible if we can recover KC fromy.
@ Distinct outputs for each Ky # Ko, s.t. |[K4], |K2| < k.

@ Analogue of disjunctness property under BGT.
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V={1.2... T k=Kl =3

OOOOWOOO

Test I
L S A
to 1 4 5 6
ts 1 3 46 7
ty 4

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .




Non-adaptive testing: feasibility

V={1.2... T k=Kl =3

OOOOWOOO

Test I
b 3157 1
ty 1 23456 71{,,3}
————————————————————————— v =
s 1737476 7 ’
------------------------- v=2
ty -
————————————————————————— v=23
t5 75 4 6

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .




Non-adaptive testing: feasibility

V={1.2... T k=Kl =3

OOOOWOOO

Test I
R 20 N N - 123)
t, 12345 6 s
_2 ________________________ 1}:1‘/
ts 13 46 7 ‘
WTTTTTE T T V=2
S S S v=23V
t5 75 4 6

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .
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V={1.2... T k=Kl =3

OOOOWOOO

Test I
L . R R
to 2 6 5 7
t3 3 75 6
ty 4 7 6 5

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .




Non-adaptive testing: feasibility

V={1.2... T k=Kl =3

OOOOWOOO

Test I
T R
t. 2 6 5 -
A sl Z —————— 1):1/
ts 3 75 6 .
BT e v=2v¢
4 'U:_")\/

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .
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V={1.2... T k=Kl =3

OOOOWOOO

Test I
b 16T s
i 2 6 IR
b 28T P
ts 3 75 6 -
R FR R S R v=58v¢
! v="7V

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .
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@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .




Non-adaptive testing: feasibility

V={1.2... T k=Kl =3

OOOOWOOO

Test I
L . R R
to 2 6 5 7
t3 3 75 6
ty 4 7 6 5

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .
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V={1,2... 7hk=|Kl=3
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Test outcome

ty 1 5 6 7 6
265 7 | 6 K=1{3,4.6}
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@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .

@ Reconstruction: K = {y; : i € [T],y; # 0}




Non-adaptive testing: feasibility

OOOOWOOO

V={12.. . 7Thk=K =3

CGT

Test outcome

ty 1 5 6 7 6
265 7 | 6 K=1{3,4.6}

5, 3756 | 3

4765 | TTTa

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .

@ Reconstruction: K = {y; : i € [T],y; # 0}

@ Lower bound: Any feasible design has at least | 1 |[41] tests.



Non-adaptive testing: feasibility

OOOOWOOO

V={12.. . 7Thk=K =3

CGT

Test outcome

ty 1 5 6 7 6
265 7 | 6 K=1{3,4.6}

5, 3756 | 3

4765 | TTTa

@ Feasibility condition: ¥V K C V with || = k, and for every v € K,
Jtest t € X where v appears before every other item in .

@ Reconstruction: K = {y; : i € [T],y; # 0}

@ Lower bound: Any feasible design has at least | 1 |[41] tests.
Erdbs-Szekeres theorem gives |log, logo(n — 1) | lower bound.



Cascaded group testing: bounds

BGT Lower bound Upper bound

Adaptive klog (7) klog (7)

Non-adaptive k2 logy n k? min{log2 n, log n}

CGT Lower bound Upper bound

Adaptive k k

Non-adaptive | max{k?, loglog n} | k% min{log4 n, log n}
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Non-adaptive testing: k = 3

ololololololclol0

@ Use feasible design X; for a items to create feasible design X»
for a2 items.

@ Partition a° items into disjoint sets Ay, A, ..., A, of size a each.
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@ Given permutations sq, s, on aitems, permutation s3 = sy 0 S,
on & items is given by:




Non-adaptive testing: k = 3

a=3,5=1(2,3,1),s=(1,3,2)

OOOOOOOOO

S9 hl
Ay 123 |—>| 132

S9 b2
A2| 456 |—>| 465

S2
A3| 789 |—>| 798 |

@ Given permutations sq, s, on aitems, permutation s3 = sy 0 S,
on & items is given by:
» For each i, arrange items of A; according to s,. Call result h;.
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@ Given permutations sq, s, on aitems, permutation s3 = sy 0 S,
on & items is given by:
» For each i, arrange items of A; according to s,. Call result h;.

» Arrange hy, ho, ..., h; according to s; to obtain s3




Non-adaptive testing: k = 3

a=3,5=(2,3,1),5%=(1,3,2)

@@@@@@@0@

A2| 456 |—>| 465 81—>| 465 || 798 || 132 |

J
~
s3=s1089 =(4,6,5,7,9,8,1,3,2)

@ Given permutations sq, s, on aitems, permutation s3 = sy 0 S,
on & items is given by:
» For each i, arrange items of A; according to s,. Call result h;.

» Arrange hy, ho, ..., h; according to s; to obtain s3
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@ Start with feasible design Xy = {t;, &z, . . . , fix, | } for aitems.
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@ Start with feasible design Xy = {t;, &z, . . . , fix, | } for aitems.

@ Consider F :={tio t; : i € [|X1]]}.




Non-adaptive testing: k = 3

a=3
) OO @ OOOOO
hiz23 o
213 (21
ts 3 2 1

@ Start with feasible design Xy = {t;, &z, . . . , fix, | } for aitems.
@ Consider F :={tio t; : i € [|X1]]}.
@ Take g =(1,2,...,a)and g = (g,a—1,...,1).
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@ Start with feasible design Xy = {t;, &z, . . . , fix, | } for aitems.
@ Consider F :={tio t; : i € [|X1]]}.

@ Take g; =(1,2,..,a)and go = (a,a—1,...,1). Consider
H={giog;:ije[2}



Non-adaptive testing: k = 3

a=3

QOO0 LOOOO

91901 123456789

92092 987654321

@ Start with feasible design Xy = {t;, &z, . . . , fix, | } for aitems.

@ Consider F :={tio t; : i € [|X1]]}.

@ Take g; =(1,2,..,a)and go = (a,a—1,...,1). Consider
H={giogj:ije[2]}.

@ Finally, design for a2 items given by X, := F U H.



Non-adaptive testing: k = 3

Jololelolelclolole

91901 123456789

92092 987654321

@ X, is a feasible design;




Non-adaptive testing: k = 3

a=3

QOO0 LOOOO

tpy 1 2 3 g1°91 123456789
213 D029 om 521051957
LIl g2=(321) 2220 2210
ts 3 2 1 920091 789456123

92092 987654321

@ X5 is a feasible design; |Xo| < |X¢]| + 4




Non-adaptive testing: k = 3

a=3

QOO0 LOOOO

tpy 1 2 3 g1°91 123456789
213 a= ) 1654987
LIl g2=(321) 2220
ts 3 2 1 920091 789456123

92092 987654321

@ X, is a feasible design; [Xo| < |X¢| + 4

@ Recursive design for nitems,
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a=3
Xl .7: H
tpy 1 2 3 g1°91 123456789
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92092 987654321

@ X, is a feasible design; [Xo| < |X¢| + 4

@ Recursive design for n items, with at most O(log log n) tests.
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@ X5 is a feasible design; |Xo| < |X¢]| + 4
@ Recursive design for n items, with at most O(log log n) tests.

@ |dea generalizes to any constant k,
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@ X5 is a feasible design; |Xo| < |X¢]| + 4
@ Recursive design for n items, with at most O(log log n) tests.

@ |dea generalizes to any constant k, with at most O((log log n)%)
tests, where ¢, = 2(k=2) — 1,



Non-adaptive testing: k = 3

Jololelolelclolole

91901 123456789

92092 987654321

@ X5 is a feasible design; |Xo| < |X¢]| + 4
@ Recursive design for n items, with at most O(log log n) tests.

@ |dea generalizes to any constant k, with at most O((log log n)%)
tests, where ¢, = 2(k=2) — 1,

@ Can be much smaller than BGT which needs Q(k2 logy n) tests.



Cascaded group testing: bounds for k = O(1)

BGT Lower bound | Upper bound
Adaptive klogn klogn
Non-adaptive k?logn k?log n
CGT Lower bound Upper bound
Adaptive k k
Non-adaptive | max{k?,loglog n} | min{(loglog )% k? log n}
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@ New variant of group testing
@ Derived bounds under adaptive and non adaptive testing

@ Further directions:
» General achievable strategies for any k

» Close gap between upper and lower bounds

> Noisy and constrained testing




Thanks

https://sites.google.com/site/nikhilkaram/




Non-adaptive testing: disjunct testing matrix

10
01
11
00
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A

>— O~ OO0
> O =0 ~O

2-disjunct
.. B . Not 3-disjunct ]
@ t-disjunct matrix: Union of any t columns does not contain any

other single column.

@ With at most k defectives,

= (k — 1)-disjunct

Feasible testing design matrix .
<= k-disjunct
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01
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00
A

Say k =4, X not (k — 1)-disjunct

- O = O = = O
- — O O O O

2-disjunct
L . Not 3-disjunct .
@ t-disjunct matrix: Union of any t columns does not contain any

other single column.
@ With at most k defectives,
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Feasible testing design matrix .
<= k-disjunct
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10
10
01
01
00
00
A

Say k =4, X not (k — 1)-disjunct
X1 2 Vicpg Xi = Viepa Xi = Viepg X

-> O = O~ = O
- — O O O O

2-disjunct
L . _Not 3-disjunct .
@ t-disjunct matrix: Union of any t columns does not contain any

other single column.

@ With at most k defectives,

= (k — 1)-disjunct

Feasible testing design matrix .
<= k-disjunct



Non-adaptive testing: disjunct testing matrix

10
10
01
01
00
00
A

Say k =4, X not (k — 1)-disjunct
X1 2 Viepg Xi = Viepa Xi = Viepg X

O/p for K ={2,3,4} same as for £ = {1,2,3,4}
— X not feasible for k = 4.

- O = O = = O
- — O O O O

2-disjunct
L . . Not 3-disjunct .
@ t-disjunct matrix: Union of any t columns does not contain any

other single column.

@ With at most k defectives,

= (k — 1)-disjunct

Feasible testing design matrix .
<= k-disjunct



Non-adaptive testing: bounds

@ Lower bound: Q(k? log, n) tests; connection to k-cover
families [D’yachkov & Rykov’82, Furedi’96]

@ Random construction: O (k'2 log ’F’) tests; choose each entry
iid. ~ Ber(1/(k+1)).
@ Explicit construction: O (kz min{log4 n, log n}) tests; based on

a concatenated code construction [Kautz & Singleton’64, Porat
& Rotschild’08]
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Img. source: Group Testing: An Information Theory Perspective, Now Publishers, 2019
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» All columns are distinct non-zero
binary vectors.




Achievable strategies: non-adaptive testing

@ Testing design matrix has to be specified beforehand.

@ k=1
» For m > 1, parity check matrix H Hs 7
of a binary Hamming code has 100110 1
dimension m x 2™ — 1. 0100111
0011011

» All columns are distinct non-zero
binary vectors.

> Item j defective = output
y= \/ H = Hj

ek



Achievable strategies: non-adaptive testing

@ Testing design matrix has to be specified beforehand.

@ k=1
» For m > 1, parity check matrix H Hs;
of a binary Hamming code has 100 17150 1
dimension m x 2™ — 1. (O 10 0:’1‘.‘1 1)
» All columns are distinct non-zero 001 100,11
binary vectors. }’
H5 ] = 5

> ltem j defective = output y = H;




Achievable strategies: non-adaptive testing

@ Testing design matrix has to be specified beforehand.

o k=1
» For m > 1, parity check matrix H H;;
of a binary Hamming code has 100 1150 1
dimension m x 2M — 1. (0 10 0:' 1‘.‘1 1)
» All columns are distinct non-zero 001 10,11
binary vectors. 'y
H; j=5

> ltem j defective = output y = H;
— H is a feasible testing design.




Achievable strategies: non-adaptive testing

@ Testing design matrix has to be specified beforehand.

@ k=1

» For m > 1, parity check matrix H H;,

of a binary Hamming code has 100 1/ 1h0 1
. . m 1 \

dimension m x 2™ — 1. (O 10 0 151 1)

» All columns are distinct non-zero 001 110,11
binary vectors. ‘

> ltem j defective = output y = H; H; J=5

— H is a feasible testing design.

» Works for ms.t. 2™ -1 >n—
needs [log(n+ 1)] tests.



Achievable strategies: non-adaptive testing

@ Testing design matrix has to be specified beforehand.

@ k=1
» For m > 1, parity check matrix H H;,
of a binary Hamming code has L o0 1/1N0 1
dimension m x 2™ — 1. (0 10 0:' 1 “. 1 1)
» All columns are distinct non-zero 001 1'\‘ 0 11
binary vectors. ‘
> ltem j defective = output y = H; Hy,  j=5

— H is a feasible testing design.

» Works for ms.t. 2™ -1 >n—
needs [log(n+ 1)] tests.

» Near-optimal for k = 1.



Extensions and variants




Extensions and variants

@ Decoding criterion: small error probability, partial recovery




Extensions and variants

@ Decoding criterion: small error probability, partial recovery

@ Defectives prior: combinatorial, i.i.d., bursty




Extensions and variants

@ Decoding criterion: small error probability, partial recovery

@ Defectives prior: combinatorial, i.i.d., bursty

@ Noise model: symmetric, Z channel, dilution, erasure




Extensions and variants

@ Decoding criterion: small error probability, partial recovery
@ Defectives prior: combinatorial, i.i.d., bursty

@ Noise model: symmetric, Z channel, dilution, erasure

@ Testing model: threshold, quantitative, concomitant, tropical,
graph-constrained
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Cascaded group testing: lower bound

@ For k > 3, any feasible design has more than |log, logs(n — 1) |
tests.

o Erdés-Szekeres theorem: For any sequence of length & + 1,
there is a monotone subsequence of length a+ 1.

@ Say k = 3, n= 22 4+ 1; and we have a feasible design with
T <r =logslogy(n— 1) tests.

@ Jasubsetof n; = 22" + 1 items whose relative ordering in t
is monotone.




Cascaded group testing: lower bound

@ For k > 3, any feasible design has more than |log, logs(n — 1) |
tests.

o Erdés-Szekeres theorem: For any sequence of length & + 1,
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@ For k > 3, any feasible design has more than |log, logs(n — 1) |
tests.

o Erdés-Szekeres theorem: For any sequence of length & + 1,
there is a monotone subsequence of length a+ 1.

@ Say k = 3, n= 22 4+ 1; and we have a feasible design with
T < r=log,logys(n—1) tests.

@ Jasubsetof n; = 22" + 1 items whose relative ordering in t
is monotone.

@ Amongst these, 3 a monotone subsequence of size
no =222 1 {in .

@ Proceeding inductively, we get ny = 22710 L 1>3 items, such
that in each t; they appear in increasing or decreasing order.




Cascaded group testing: lower bound

@ For k > 3, any feasible design has more than |log, logy(n — 1) |
tests.

e Erdés-Szekeres theorem: For any sequence of length & + 1,
there is a monotone subsequence of length a+ 1.

@ Say k = 3, n= 22 4+ 1; and we have a feasible design with
T <r =logslogy(n— 1) tests.

@ Jasubsetof n; = 22" + 1 items whose relative ordering in t
is monotone.

@ Amongst these, 3 a monotone subsequence of size
no =222 1 1int,.

@ Proceeding inductively, we get ny = 22710 L 1>3 items, such
that in each t; they appear in increasing or decreasing order.

@ Feasibility condition not satisfied = T > r = log, logo(n — 1).



