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 Ultra-High Data Speeds

 Ultra-Low Latency

« Massive Device Connectivity

« High Reliability and Availability

 Edge Computing and Decentralized
Processing

* Energy Efficiency

 Security and Privacy

 Flexible, programmable networks
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Taxonomy of AI/Machine Learning
Techniques

* Supervised learning involves techniques
that are trained by explicit labels
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Al in PHY-MAC Layers

Witeless PHY/MAC layer destgns (Perfomnance)
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— chamnel estimation. || — spectrum and access
— (S feedback management

— modulation recognition | | — User assoctation
. beam management

*Signal Processing & Channel Estimation:
Machine Learning algorithms to predict and
compensate for noise, interference, and fading in
wireless channels

*Techniques like deep learning can improve channel
estimation, ensuring higher data rates and better
signal quality

*Adaptive Modulation & Coding: Al-based
algorithms dynamically adapt the modulation
schemes and error-correcting codes based on
network conditions

*Interference Management: Machine learning
models can identify interference patterns and
implement solutions such as beamforming,
interference cancellation, or power control to
minimize signal degradation and maximize
coverage



MAC Layer Performance

*Power Allocation and Energy Management:

Al Technique Used

Reason and Benefits

Deep Reinforcement
Learning (DRL)

Helps secondary users predict primary
users’ power allocation 1n cognitive
radio networks, improving spectrum
efficiency

Deep Q-Network (DQN)

Optimizes mobile network sleeping
rules by learning traffic patterns,
reducing energy consumption and

improving adaptability




MAC Layer Performance

*Spectrum and Access Management:

Al Technique Used

Reason and Benefits

Multi-Task Deep Learning for
NOMA

Enhances non-orthogonal multiple
access (NOMA) by modulating,
spreading symbols, and detecting
efficiently, enabling better signal
decomposition in SG/NextG networks

Multi-Agent Deep Reinforcement
Learning (DRL)

Optimizes dynamic spectrum access by
learning the best timeslots for
transmission, maximizing data rates
and 1mproving overall network

efficiency




Al 1in Network and Transport Layers |

Wireless network layer and above designs

’

Network/Transport layers

?{ Performance

— routing and traffic
engineering

— data aggregation

— congestion control

& Security

— denial-of-service
— loophole
 anomaly detection

\.

N/

Application layer

Q Performance

— context-aware applications

— caching

— application functionality
and management

— computational resource
management

& Security

— phishing and malware
— location privacy

—cross-layer defenses )
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*In the context of next-generation wireless
networks, the network layer plays a crucial
role in providing connectivity, managing
traffic, and ensuring efficient use of
resources

*As these networks become more complex,
Al (Artificial Intelligence) i1s expected to
play an increasingly central role in
automating, optimizing, and securing the
network infrastructure

*Al can address the challenges posed by the

dynamic nature of these networks, including
high traffic volumes, mobility, ultra-low
latency requirements, and the need for
seamless integration of a diverse set of
services



Al 1in Network and Transport Layers |
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*How AI will be utilized in the network layer of next-generation
wireless networks:

* Al-based Routing: Al can be used to manage traffic more
efficiently in real-time

* For example, machine learning algorithms can predict congestion
and reroute traffic dynamically to less congested paths

*This is particularly important in high-density environments like
urban areas, where traffic can be unpredictable

* Predictive Load Balancing: Al can predict shifts in user demand
and adjust network load balancing strategies to ensure smooth
service delivery

*It can dynamically shift traffic across base stations, backhaul
networks, and other resources to optimize overall performance

* Fault Tolerance
* Localization and Positioning
* Quality of Service (QoS)

* Congestion Control



Al for Performance at Network Laye

Scope

Al Technique Used

Advantages

Routing & Traffic Engineering
(IeT/WSN Networks)

Deep Reinforcement Learning (DRL)

Efficiently schedules HVFT
applications to avoid conflicts with
time-sensitive applications,
147% datal

transmission without degradation

enabling more

Congestion Control (Mobile/WSN
Networks)

Reinforcement Learning

Optimizes congestion control by
learning dynamic link bandwidth
variations, using Kanerva coding to
speed up learning and improve
network throughput

Data Aggregation in Mobile
Vehicular Networks (VANET)

Reinforcement Learning with
Distributed Markov Decision Process
(MDP)

Optimizes data aggregation by
learning from nearby vehicles’
actions, reducing redundant data
while maintaining an efficient

delay-redundancy
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Al for Fault Tolerance Data Routing &/

Fault-free Sensor Node

B

Monitoring Area

Internet

Control Centre

Wireless sensor networks (WSNs) have become one

of the essential components of the Internet of Things
(IoT)

A high-performance intelligent WSNs is essential for
any loT-based application

Faulty nodes and broken links affect the reliability of
the IoT-enabled WSNs

In this work, a Mult objective-deep reinforcement-
learning (DRL)- based algorithm is proposed for fault
tolerance in IoT-enabled WSNs

The main objective of this work is to detect the faulty
nodes with high accuracy and less overhead

Furthermore, this work focuses on reliable data
transmission after fault detection

Finally, a mobile sink (MS) 1s used for energy-
efficient data gathering that significantly improves
the network lifetime
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In WSNs, fault tolerance can be classified
into four categories:

Energy management: energy-
management-based fault-tolerance
mechanism deals with the energy
consumption of smart SNs to prevent
premature death of the networks

It also prevents network partitioning and
significantly improves the reliability of the
networks

Flow management: The flow-
management-based fault-tolerance
mechanism ensures continuous connectivity
in case of any node/link failure

It also governs the optimal flow of data
within the networks that significantly
improves the overall performance of the
networks



 Data management: Data-management-based fault-tolerance mechanism
deals with collecting and aggregating data by the SN or cluster head (CH) to
mitigate the effect of any fault within the networks

* CH 1s responsible for collecting and aggregating the data from their members
and finally transmits it to the BS. It can also help to decrease the overall
energy consumption of the networks

* Coverage/connectivity-management-based fault tolerance: coverage
management- based fault-tolerance mechanism deals with the coverage issues
where active SNs preserve the maximum number of alternative paths with
maximum coverage

* In this mechanism, the maximum packet delivery to the BS 1s guided by
selecting the alternative paths



* The proposed scheme is divided into four phases

* Optimal Rendezvous Points (RPs) selection

* Cluster formation phase

* Intelligent fault detection using Multi-Objective Deep Reinforcement
Learning (MO-DRL)

» Efficient data gathering using a Mobile Sink (MS)

* Phase I: Optimal Rendezvous Points (RPs) selection

* The proposed work uses heterogeneous types of sensor nodes (Normal
Sensor Nodes (NSNs) and Special Sensor Nodes (SSNs)) in terms of
initial energy

* Initially, the NSNs are deployed randomly in a square-shaped
monitoring field

* Maximum coverage location problem (MCLP) identifies the best
optimal locations for SSNs placement



Rendezvous Point Normal Sensor

for SSN placement Node

Coverage R;[ge of
SSN

* The MCLP aims to find p locations
for n candidates by ensuring the
maximum coverage of candidates by
minimizing the distance between all
the locations and candidates

In the proposed work, this algorithm
1s used to identify the optimal position
for SSNs placement based on the total
number of SNs deployed in an
environment

* These SSNs become the CH for each

group



» MCLP-based optimal RPs selection is described as follows:

o Sets and Indices:

i € I = Set of sensors
j € J = Set of RPs
Nj={i €l|dij <r}

* Parameters:
hj = total weight at RPj
dij = distance between sensor i and RP j

r = maximum range of RP

Decision Variables:

a sensor 1s sited at location 1

otherwise

RP j is assigned to a sensor
otherwise.
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Al for Fault Tolerance Data Routin

Objective Function:

Maximize Z hJf
jel

Constraints:

Y vi=p

vi.X; € {0, 1} VielVjel.



* Phase II: Cluster formation phase

After deploying the SSNs to their optimal positions, they broadcast a REQTOJOIN
message with their IDs, location, and residual energy within its range

If any NSN receives a REQTOJOIN message, then it sends a RESPONSESSN message to
the corresponding SSN

RESPONSESSN message contains the 1D, location, and residual energy of NSN. After this
process, all the NSNs are joined with their nearest SSNs

If some nodes will be left to join any SSN, these NSNs are treated as Isolated Sensor Nodes
(ISNs)

Each ISN broadcasts a HELP message to all other NSNs in their communication range

If any NSN receives a help message, then NSNs reply with a RESPONSENSN message
with their IDs, location, and residual energy

Finally, the ISN joins the nearest NSN with high residual energy and the least distance

The SSN aggregates the collected data from its members and transmits the data to the MS
when it comes to data collection
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* Phase III: Fault detection phase using Multi-
Objective Deep Reinforcement Learning (MO-
DRL)
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If a fault occurs in any SN, then an intelligent MO-
DRL-based algorithm 1s used to detect the fault in
the SNs

In the fault detection phase, the SNs act as
agents to detect any fault in the network

The first objective is to minimize the message
overhead during the fault detection phase

The second objective 1s to minimize the
communication delay, and the third objective is
set to maximize the network throughput

Since all the objectives are contradictory with
each other thus, the problem is solved using
MO-DRL based on the Pareto optimal policy
set
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Deployed SNs act as agents and maximize the
overall performance by optimizing the
multiple conflicting objectives

The agent deals with multiple objectives, such
as minimizing the message overhead and
communication delay

Furthermore, agents also maximize the
throughput by timely detection of faulty nodes

In the proposed work, many wireless SNs with
large state space in the MDP framework are
considered

Therefore, a double deep Q-network (DDQN)
1s used mm the MO-DRL algorithm for
optimizing the Q-values, which gives the
highest rewards by minimizing the over
estimations

The DDQN consists of two 1dentical deep
neural networks (DNNSs)



» The ISNs transmit their data via NSNs to the nearest SSN. After receiving the
data, the NSN sends an acknowledgment message to the ISN

 The acknowledgment message contains node ID, location information, and
residual energy

e If NSN did not respond within a threshold time, the ISN declares the non-
responding NSN as a faulty node and immediately joins the new NSN

» The new NSN is selected based on the least distance and highest residual energy
* Phase IV: Efficient data gathering using a Mobile Sink (MS)
* The MS uses the information stored by the BS during the data gathering process

» Before starting the data-gathering tour, MS collects the optimal path information
from the BS.

* BS computes shortest data gathering path using TSP with christofides heuristics

« The MS starts its journey from the BS, visits each SSN for data collection and
finally offloads the collected data to the BS



Data gathering using a MS



Validation and Evaluation

 The results of the proposed scheme are compared with existing state-of-the-art
algorithms like LSTM, GS-PSO, and HFDP

« Extensive simulations have shown the effectiveness of the proposed scheme in terms
of Fault Detection Accuracy (FDA), False Alarm Rate (FAR), False Positive Rate
(FPR), Average Energy Consumption, and Throughput
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Comparison of Performance Metrics

Performance comparison of Proposed Scheme with LSTM, GS-PSO, and HFDP

Number  of | Performance Improvement  over | Improvement  over | Improvement  over
Nodes metrics LSTM GS-PSO HFDP
FDA increased by 16.5% | increased by 22.4% | increased by 31.5%
FAR decreased by 17.40% | decreased by 24.5% | decreased by 29.3%
100 Nodes FPR decreased by 15.4% | decreased by 23.7% | decreased by 32.5%
Average Energy | reduced by 24.03% | reduced by 32.70% | reduced by 41.74%
Consumption
Throughput increased by 22.16% | increased by 31.04% | increased by 43.65%
FDA increased by 18.4% | increased by 24.9% | increased by 34.1%
FAR decreased by 16.50% | decreased by 23.5% | decreased by 27.3%
200 Nodes FPR decreased by 18.4% | decreased by 22.5% | decreased by 34.7%
Average Energy | reduced by 22.3% reduced by 29.70% | reduced by 39.24%
Consumption
Throughput increased by 21.5% | increased by 33.6% | increased by 44.6%




Indoor Emergency Evacuation Syste

Emergency Evacuation System for
Dynamic Fire Regions

Over the years, various evacuation
techniques have been proposed for
a fire emergency

Many existing techniques consider ;
only the current fire hazard & g
situation during evacuation path e
design 8 |
They do not consider the dynamic B
spread of fire with time while
designing an evacuation path

It may cause severe detours and
even trap individuals in hazardous
regions

Hence, it is important to consider
the dynamic fire spread while
designing an evacuation path




Indoor Emergency Evacuation Syste

* The proposed scheme is divided into five

phases:

Real-time data collection phase
Optimal path initialization using
reinforcement learning

Formation of safety layers around the
danger zone

Optimal path planning mechanism
using a multi-objective grey wolf
optimization algorithm

Guiding evacuees to the nearest exit

* Phase I: Real-time data collection phase

Initially, the hardware modules are
uniformly deployed in the industrial
environment

Each hardware module is equipped
with different sensors like smoke,
gas, temperature, fire, and Passive
InfraRed (PIR), an alarm device, a
microcontroller, and LEDs

LED Q

| N

Panel ./ &) .
" PIR

Alarming
Device .
S
Sensor
Smoke/Fire
Sensor

(Gateway
Node




Indoor Emergency Evacuation Syste

Phase I1:

The sensors equipped in the hardware module sense the monitoring
environment periodically

During an emergency, the hardware modules collect real-time data and
transmit it to the BS for further processing

Optimal path initialization using reinforcement learning

After the deployment of the hardware modules and connection with the
gateway node, the optimal paths are identified using Reinforcement
Learning (RL)

This work uses Q-Learning, which is a value-based RL algorithm. The
basic principle of any RL algorithm is to maximize the reward by taking a
series of actions at various states

In the proposed scheme, the hardware modules are considered as agents,
and exit locations are their rewards

During an emergency, the optimal paths are identified based on the current
input scenario

If there is any change in the network topology, then the optimal paths are
updated accordingly



Indoor Emergency Evacuation Syste

* Phase III: Formation of safety layers around the danger zone
« After receiving the data from the hardware modules, safety layers are formed
around the danger zone using the Transferred POOling Layers with Breadth-
First Search (TPOOL-BFS) emulations

 The BS converted the data into a source matrix of sizer X ¢

« Each cell of the source matrix contains different values like danger zone value,
human presence value, and exit values

 The BS also has a monitoring environment map in the form of an environment
matrix of size r X ¢, which contains walls/obstacles and free space

* Both these maps are combined to form safety layers near the danger zone using
TPOOL-BFS

« TPOOL-BFS takes both the matrices as input and transforms them to form the
safety layers around the danger zone

 The process of forming safety layers based on the hazardous input scenario
using TPOOL-BFS



Indoor Emergency Evacuation Syste
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Formation of safety layers using TPOOL-BFS




Indoor Emergency Evacuation Syste

* Phase IV: Optimal path planning mechanism using a multi-objective grey wolf
optimization algorithm

After forming the safety layers around the danger zone, the proposed
scheme identifies the optimal path for each individual from their location
to the nearest and safest exit

The proposed scheme uses the Multi-Objective Grey Wolf Optimization
(MO-GWO) algorithm for optimal path planning

In the proposed scheme, the evacuees play the role of grey wolves, and the
exit locations are their prey

The primary objective is to find the shortest and safest path for each
evacuee to the nearest exit

For this purpose, multiple objectives have been considered, such as safety
layers, load balancing, and distance to the nearest exit



Indoor Emergency Evacuation Syste

* Phase V: Guiding evacuees to the nearest exit
« After the identification of the optimal path for each individual by the BS,
the details of optimal paths for various people are sent back to the
hardware module to guide them to the nearest exit

« The LEDs equipped in each hardware module guides the evacuees by
showing the correct direction to follow

* In case of a power cut or a smoky environment, the LED helps to show the
direction clearly

* The people follow the direction shown by the LEDs and finally reach the
nearest safe exit



Validation and Evaluation

The performance of the proposed scheme is compared with the existing state-of-the-
art algorithms like EESBIM, CISM, and ESAIoT

Extensive simulations have shown the effectiveness of the proposed scheme in terms
of average distance travelled and the average time required during evacuation



Simulations Performed
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Result Analysis
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Performance comparison of Proposed Scheme with EESBIM, CISM, and ESAIoT

Different Sce-
narios

Performance
metrics

Improvement

EESBIM

over

Improvement

CISM

over

Improvement

ESAloT

Scenario 1

Average Distance

reduced by 12.65%

reduced by 25.25%

reduced by 37.9%

Average Evacua-
tion Time

reduced by 15.25%%

reduced by 28.70%

reduced by 38.45%

Scenario 2

Average Distance

reduced by 12.35%

reduced by 24.75%

reduced by 36.5%

Average Evacua-
tion Time

reduced by 15.75%%

reduced by 27.50%

reduced by 36.25%

Scenario 3

Average Distance

reduced by 13.45%

reduced by 25.85%

reduced by 37.4%

Average Evacua-
tion Time

reduced by 14.65%%

reduced by 28.50%

reduced by 38.25%

Scenario 4

Average Distance

reduced by 14.25%

reduced by 26.45%

reduced by 37.2%

Average Evacua-
tion Time

reduced by 14.75%%

reduced by 27.80%

reduced by 37.45%

over




AT for Performance at Application Layet( ) )

* Caching:
* Intelligent Base Station Caching: Uses a double-coded caching
technique to optimize delay and power consumption
* Deep Reinforcement Learning for Optimization: Models the
network as an MDP with unknown transitions, optimizing
scheduling and transmission efficiency

* Application Functionality and Management:

*Al for Traffic Classification (Atlas System): Uses mobile agents to
collect network logs, solving the challenge of training dataset scarcity in
traffic classification

*Al-Driven Network Function Virtualization (NFV) in SDN: Multi-
agent deep reinforcement learning optimizes device selection, routing, and
power allocation in IoT networks

*SDN for Mobile Edge Cloud Management: Uses deep reinforcement
learning to optimize video quality, transcoding, caching, bandwidth
allocation, and power consumption in SDN-based video streaming



Al for Security at Network Layer

* DoS Attacks

*Deep Learning for DoS Attack Detection in 5G: Identifies DoS attacks by
analyzing packet features (flow duration, IP addresses, ports etc) while
managing traffic

* Loophole Attacks:

* Deep Learning for Detection: Uses traffic features (rank, topology
inconsistency, rerouting procedures) to train a deep learning model,
achieving 90%+ accuracy in detecting loophole attacks

*Anomaly Detection:

*Support Vector Machine (SVM)
*Decision Tree

*Random Forest

*K-Means Clustering



Al for Security at Application Layer \

* Phishing and Malware:

*A neural network-based fuzzy detector analyzes URL and web features
for phishing detection, while Q-learning is used for malware detection in
mobile and [oT networks

* DDoS Detection:

* A deep learning framework analyzes network traffic features to detect
silent call attacks, message spamming, and signaling attacks across the
PHY and application layers

* Location Privacy

 K-means clustering anonymizes spatiotemporal trajectory data,
protecting user location privacy while minimizing information loss



Challenges moving forward

Al models in wireless networks lack interpretability; selecting key
features for better accuracy needs more research

Neural networks are complex and costly for IoT; balancing Al with
conventional methods ensures efficiency

Al 1n wireless networks faces security risks from adversarial attacks;
robust defenses are needed
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