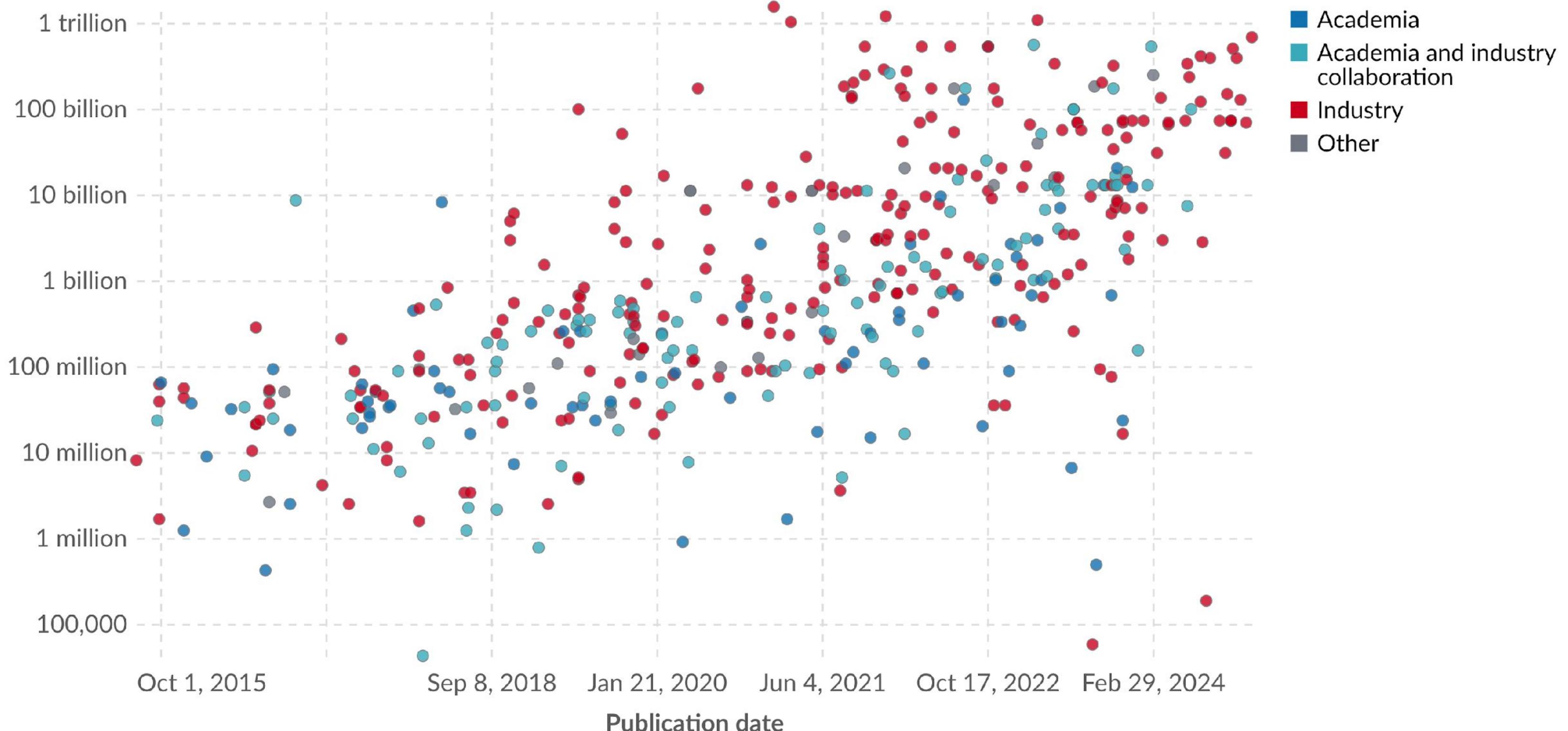


Reinventing the Cache for Generative AI

Subrata Mitra

Senior Research Scientist, Adobe Research

Number of parameters



Data source: Epoch (2024)

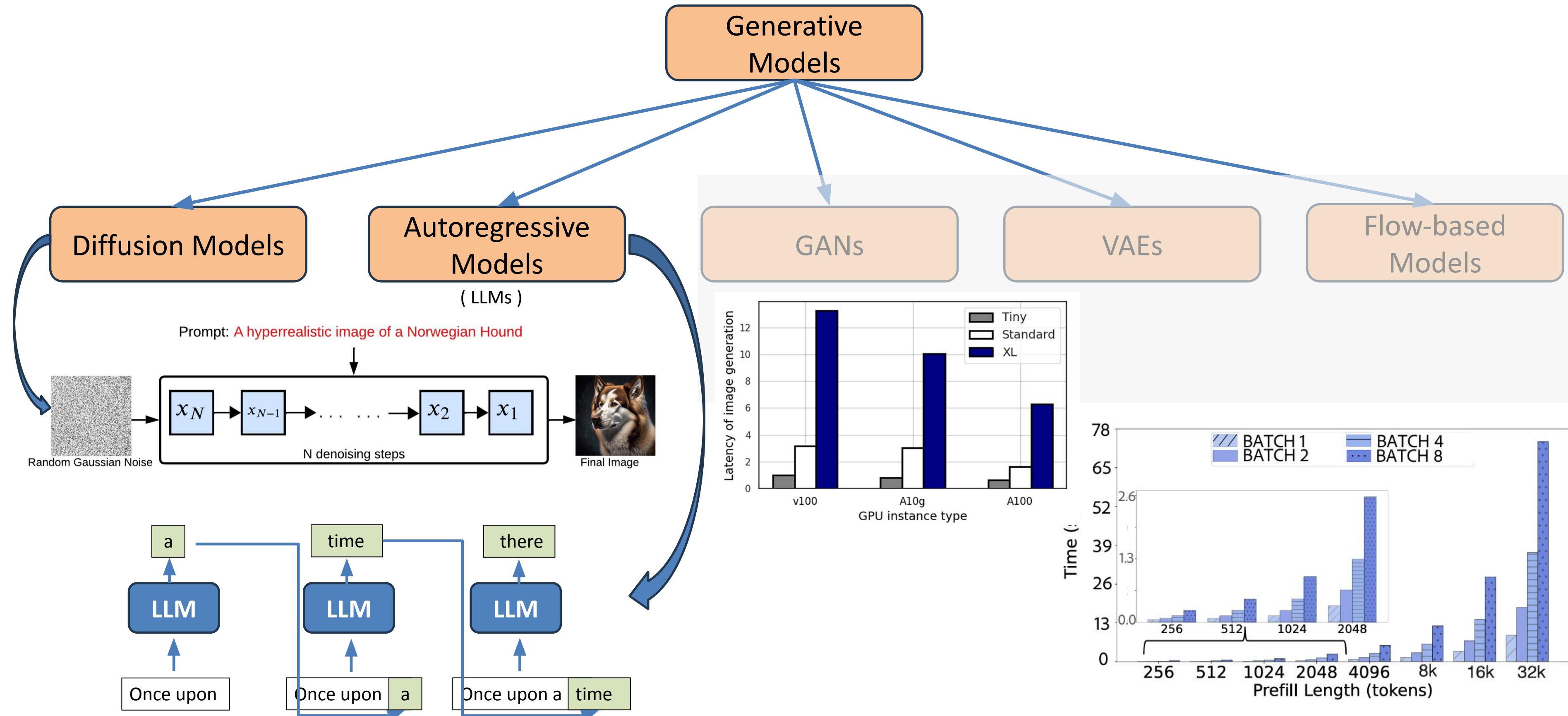
OurWorldinData.org/artificial-intelligence | CC BY

Note: Parameters are estimated based on published results in the AI literature and come with some uncertainty. The authors expect the estimates to be correct within a factor of 10.

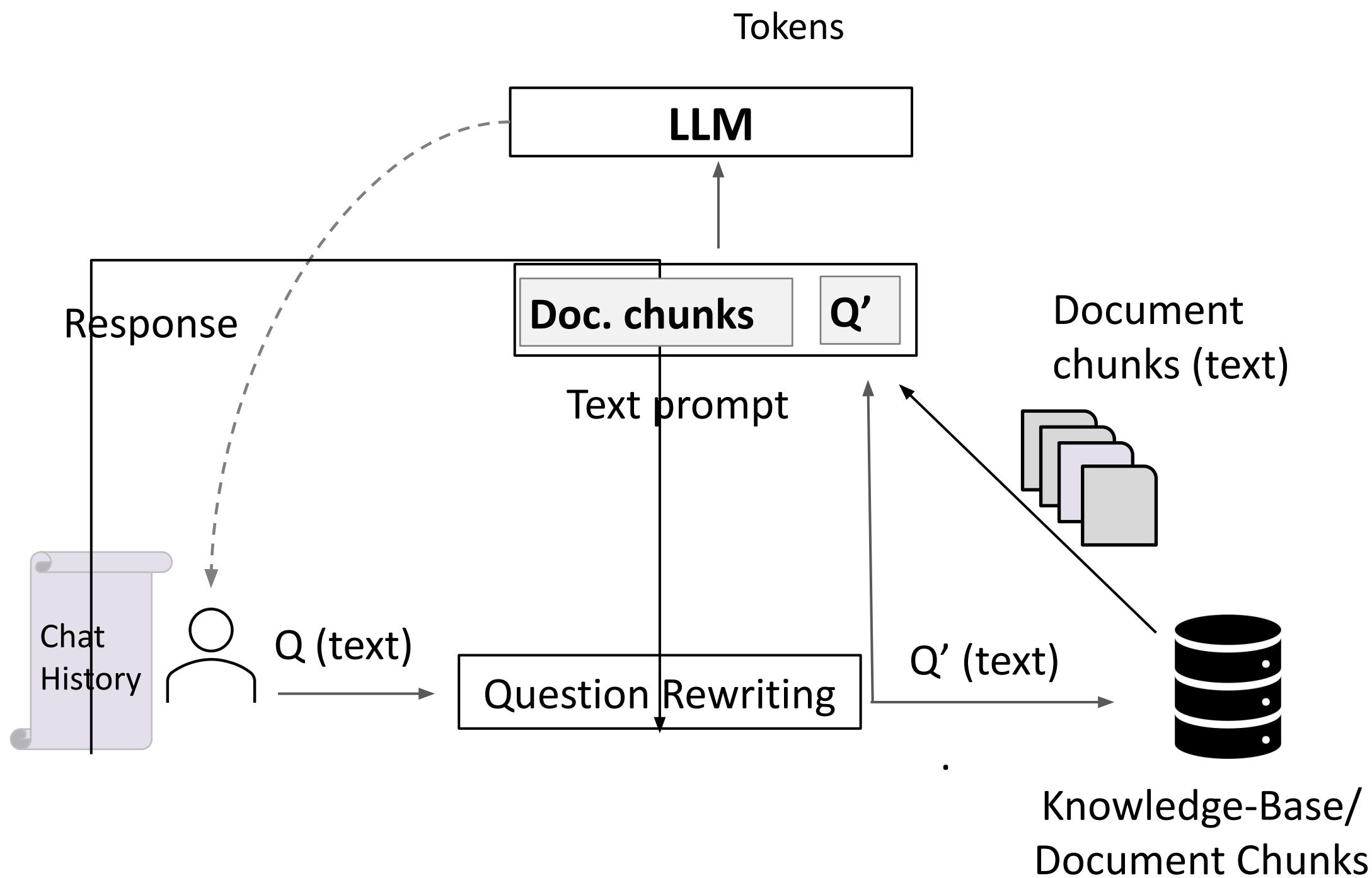
Agenda

- Introduction
 - Overview of Generative AI and its computational challenges
- Why Caching?
- NIRVANA – Approximate caching for diffusion-models
- Cache-Craft – Chunk-caching for Retrieval Augmented Generation
- Future Directions
- Conclusions

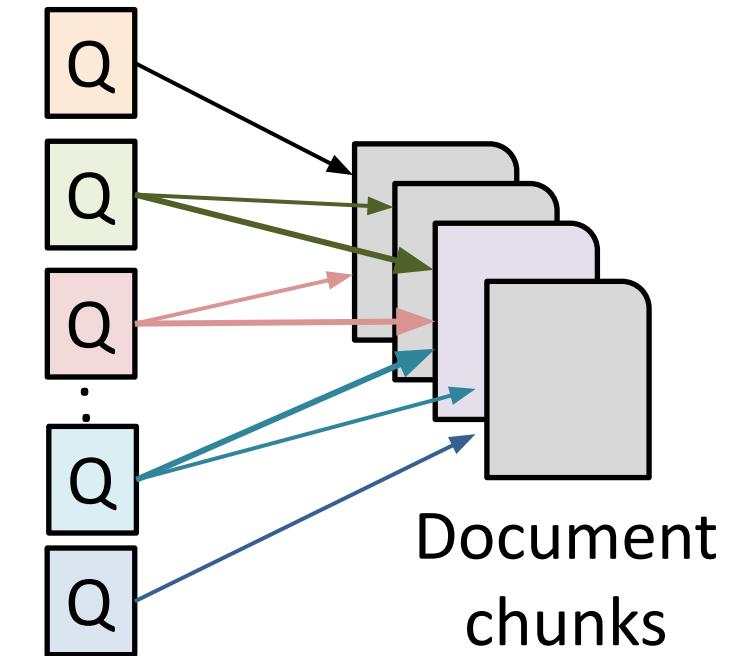
Generative Models



AI Assistants in a Nutshell



Retrieval Augmented Generation (RAG)



For In-Context-Learning (ICL)

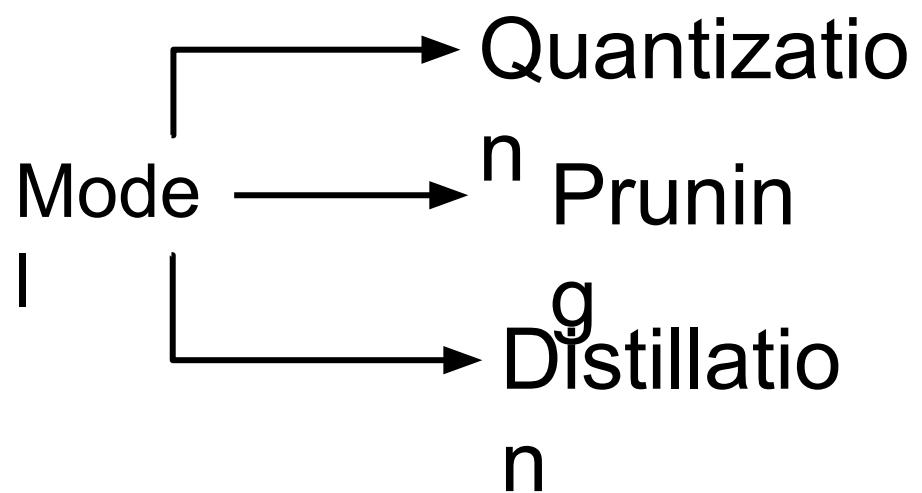
A set of examples are selected and passed based on the question and passed to the LLMs

Diffusion-Models: Inference

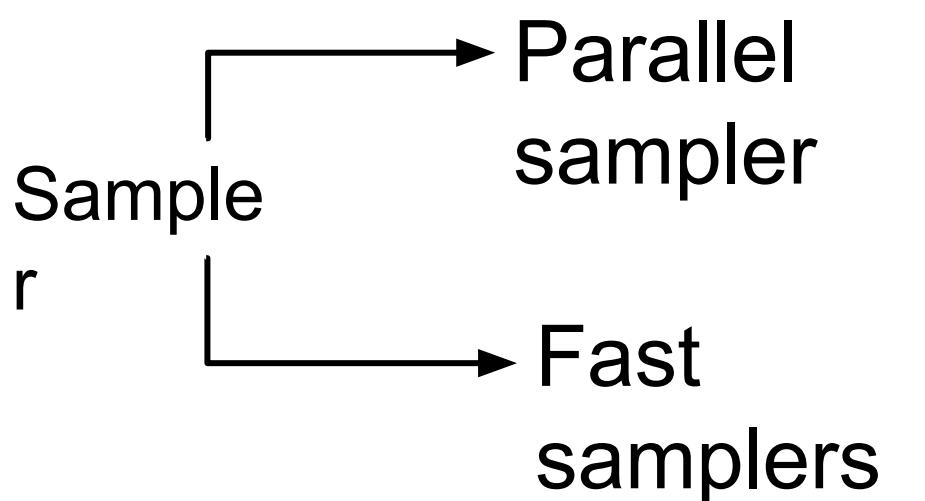
Efficiency

ML Model

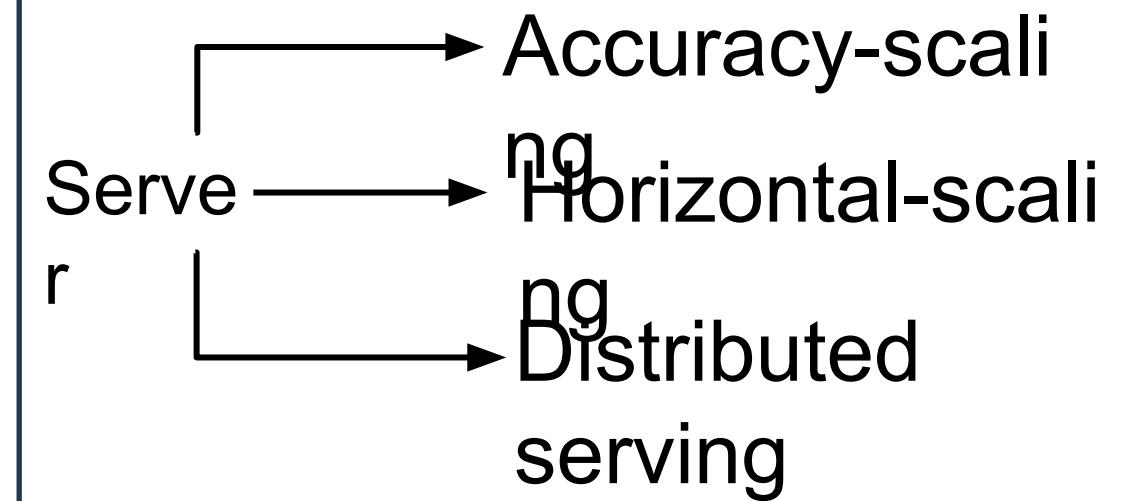
Optimization



Sampling
Optimizations

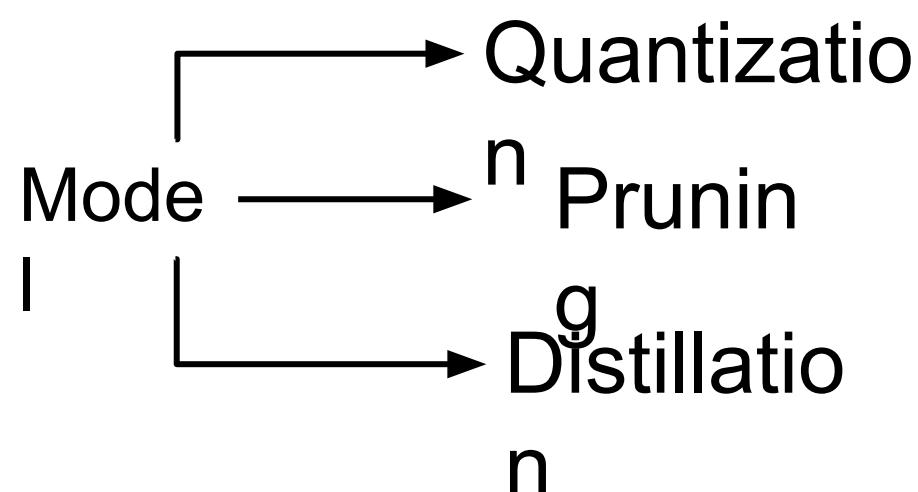


Model serving
in cloud

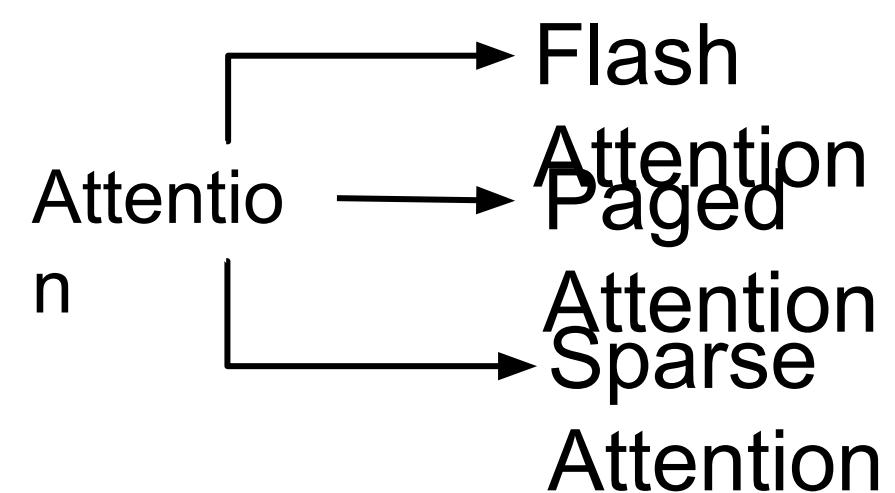


LLMs: Inference Efficiency

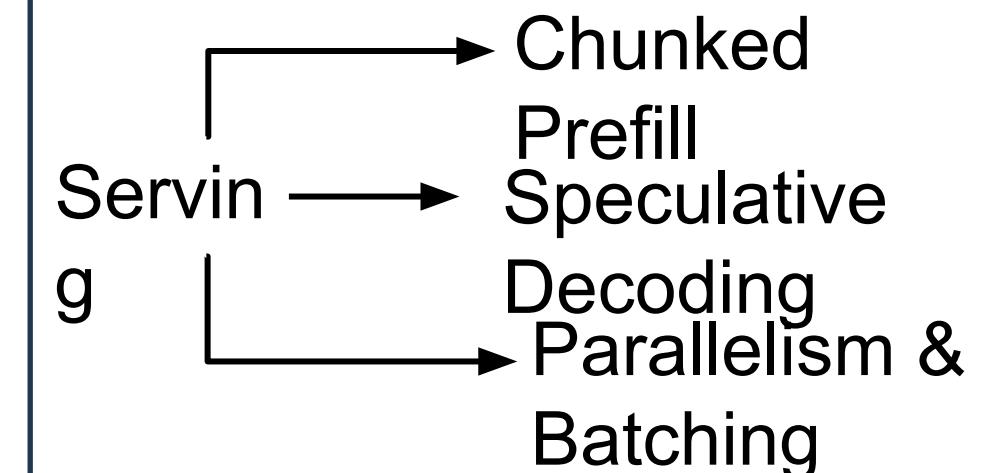
ML Model Optimization



Attention Optimizations



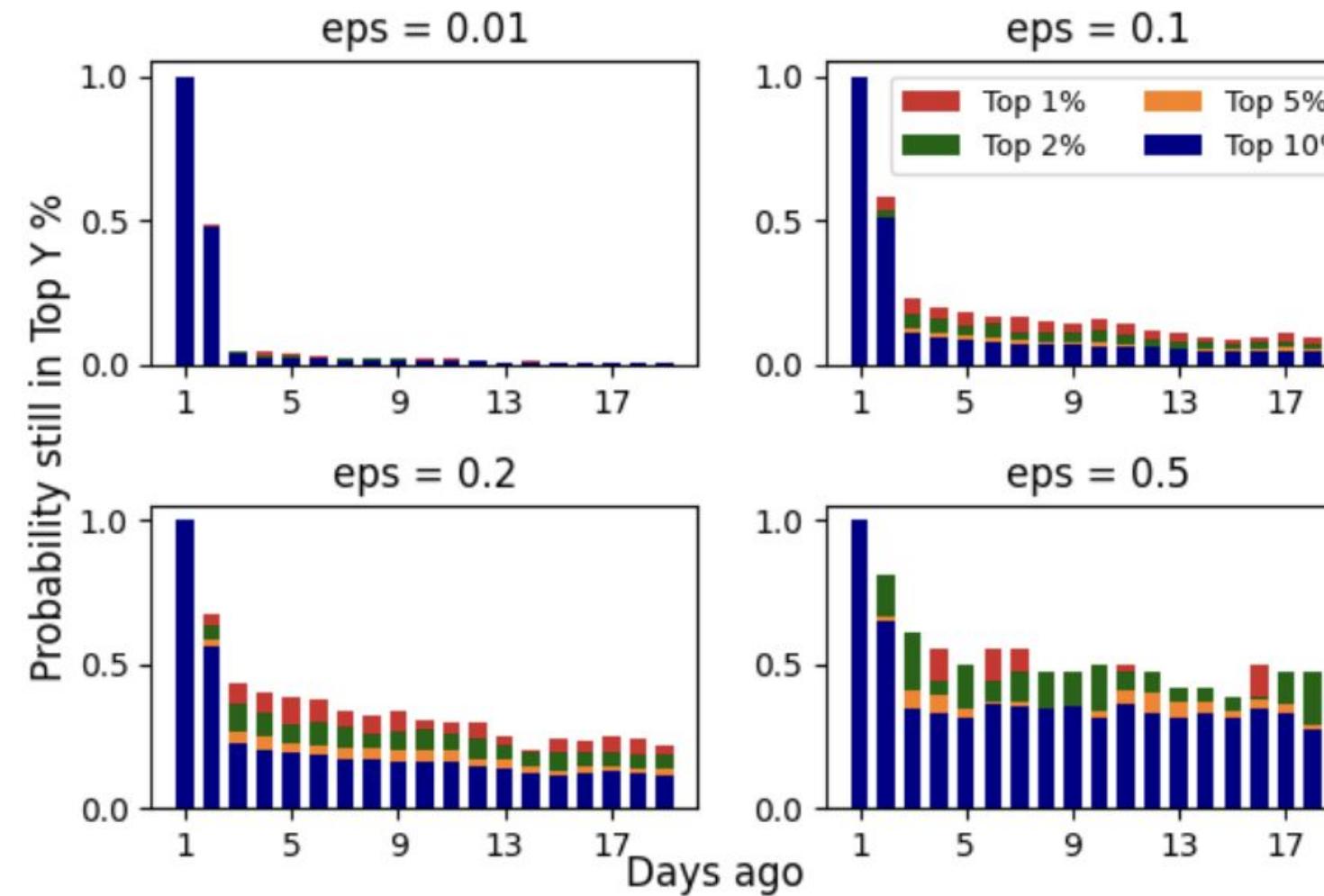
LLM serving



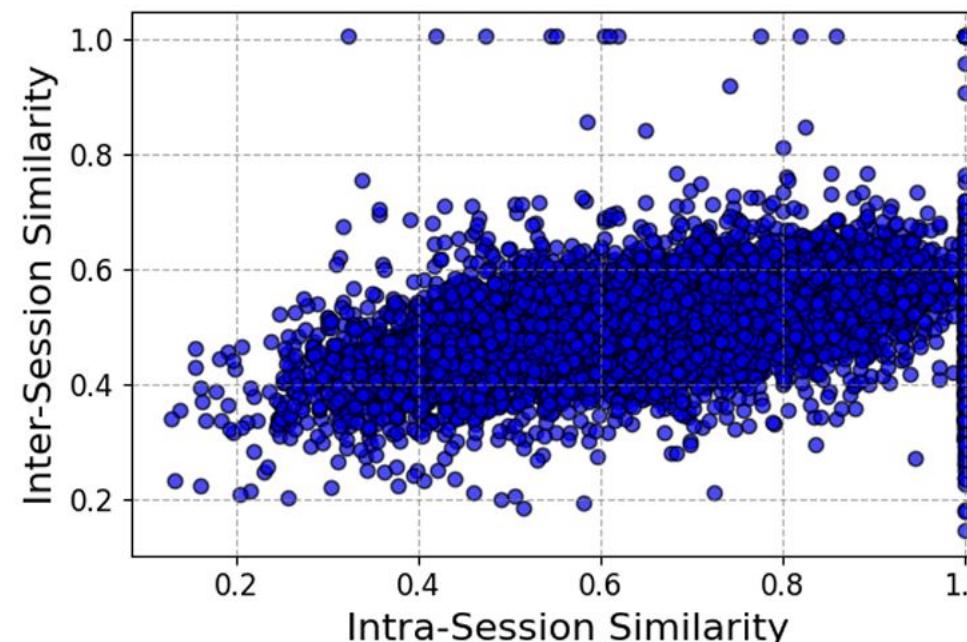
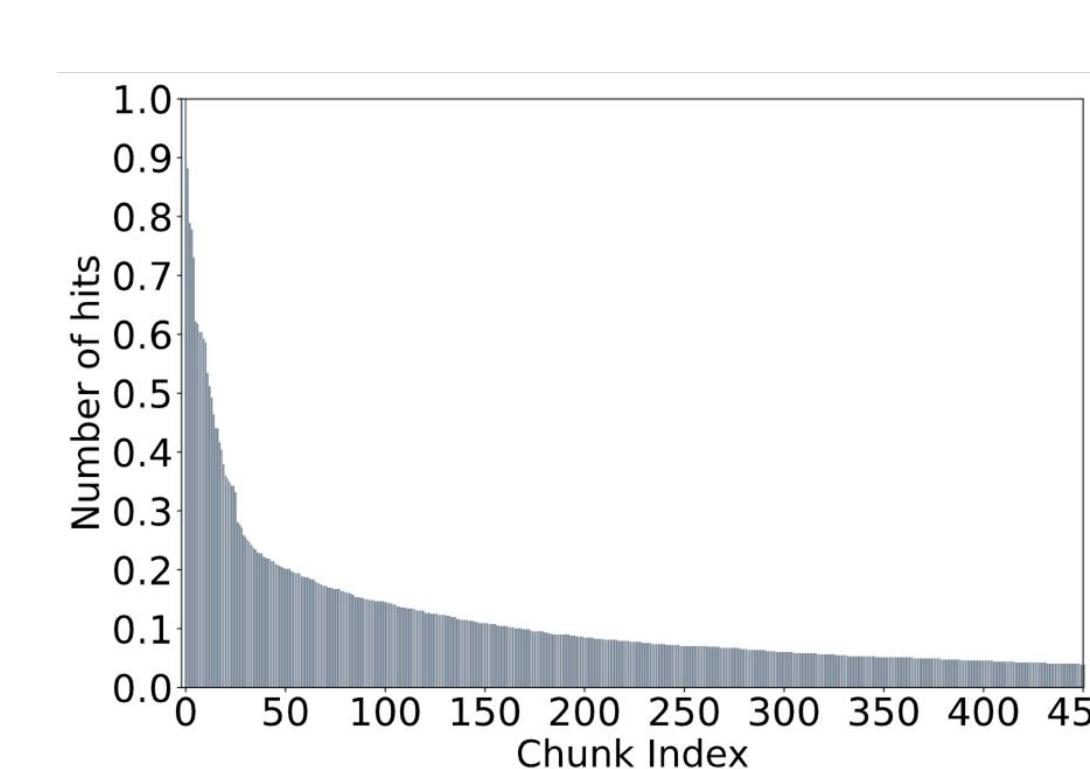
vLLM – is the open-source library where most of these optimizations are available

<https://github.com/vllm-project/vllm>

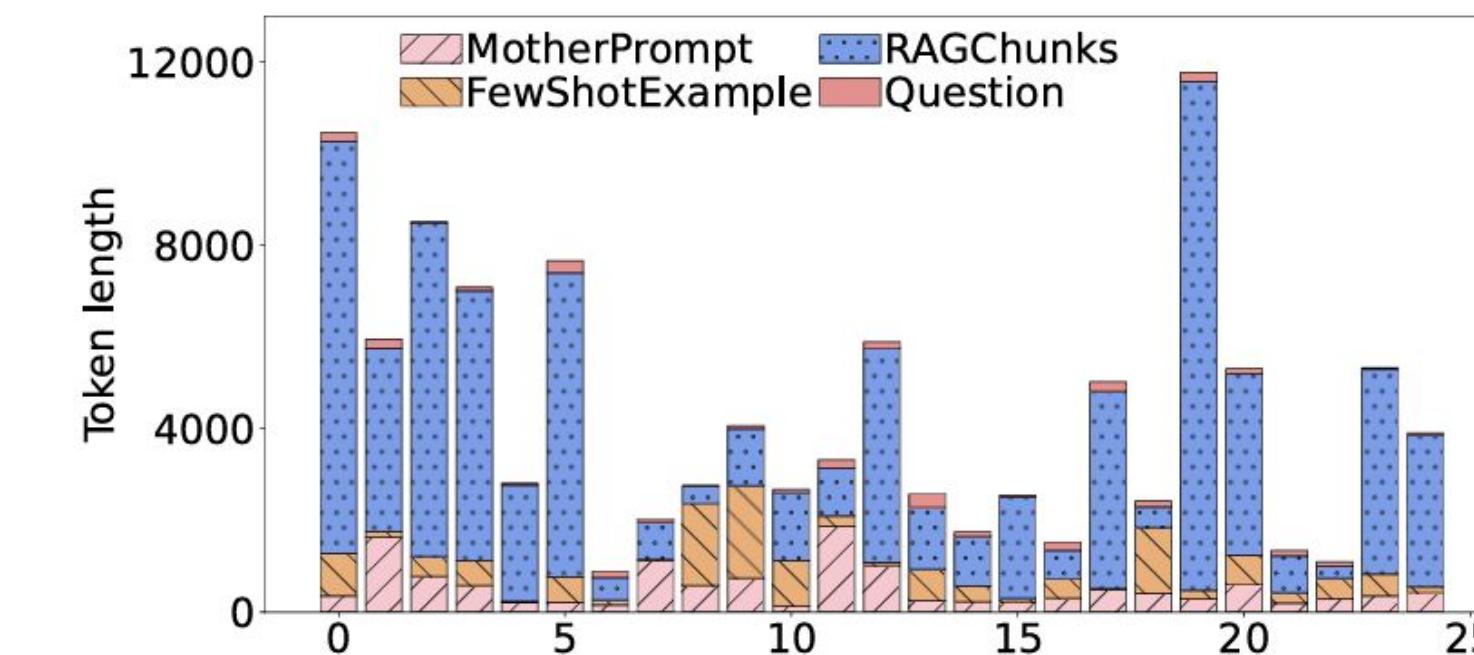
Motivation for Caching



Top Prompt Clusters' Popularity Over



Top 5% chunks are accessed by 60% of the requests



APPROXIMATE CACHING FOR EFFICIENTLY SERVING TEXT-TO-IMAGE DIFFUSION MODELS

Shubham Agarwal¹, Subrata Mitra,¹ Sarthak Chakraborty ,²
Srikrishna Karanam¹, Koyel Mukherjee, ¹Shiv K. Saini¹

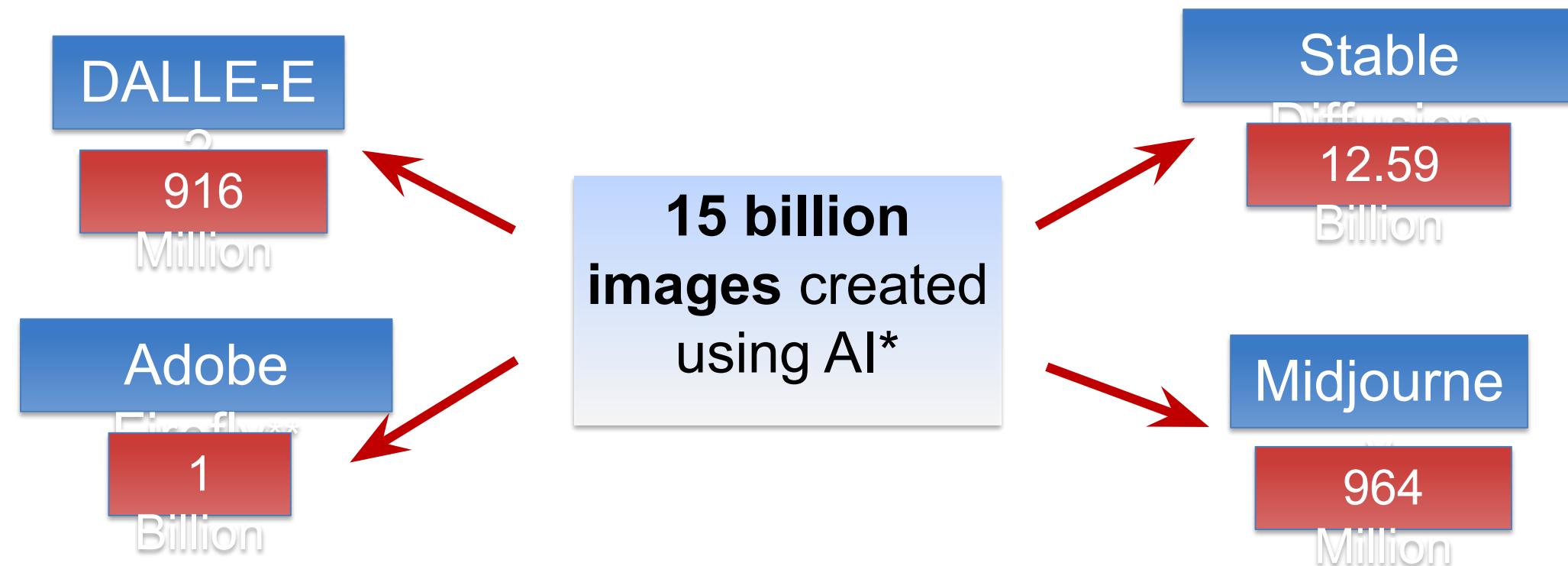
1 2

Adobe Research, UIUC

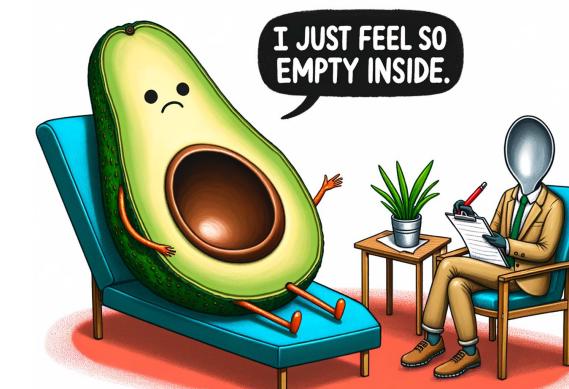
Networked Systems Design and Implementation
(NSDI 2024)

Popularity of Text-to-Image

AI Has Already Created As Many Images As Photographers Have Taken in 150 Years. Statistics for 2023*



Text Art



Cartoon

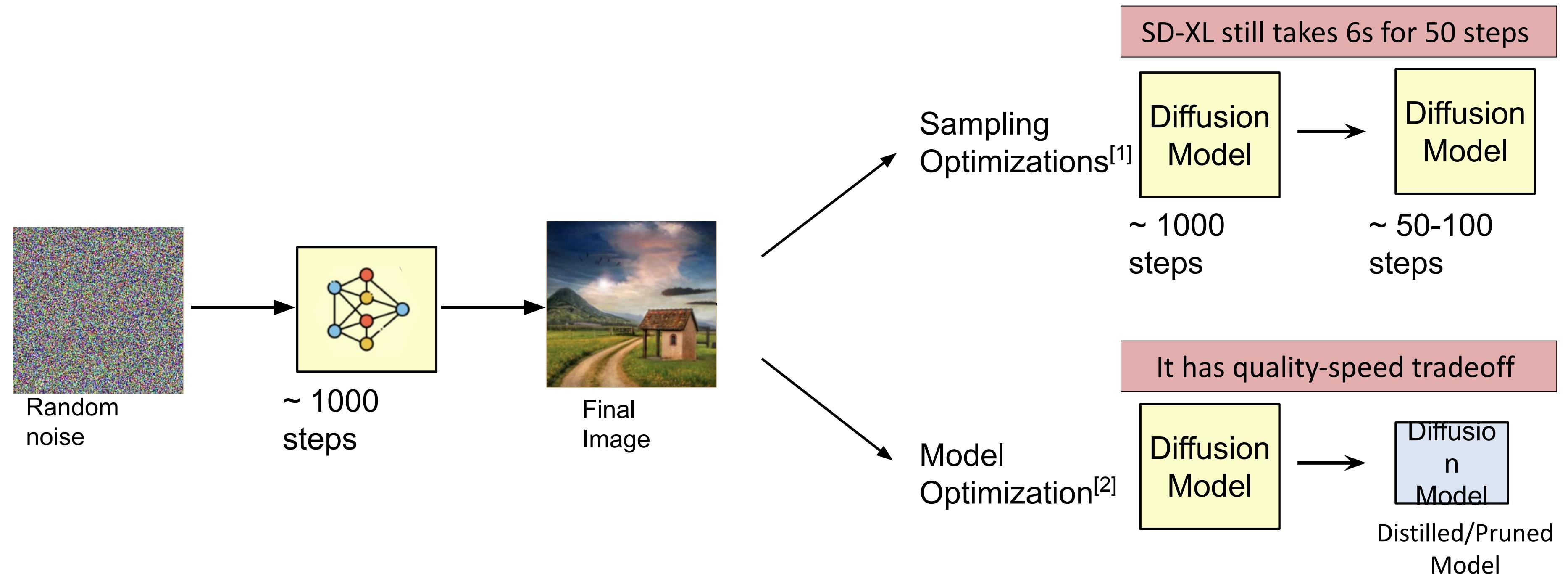
Abstract Arts

Flyers and templates

* As of Aug 2023, [\[https://journal.everypixel.com/ai-image-statistics\]](https://journal.everypixel.com/ai-image-statistics)

** To date, Firefly generated over 6.5 billion images and

Efficiency of Diffusion Models

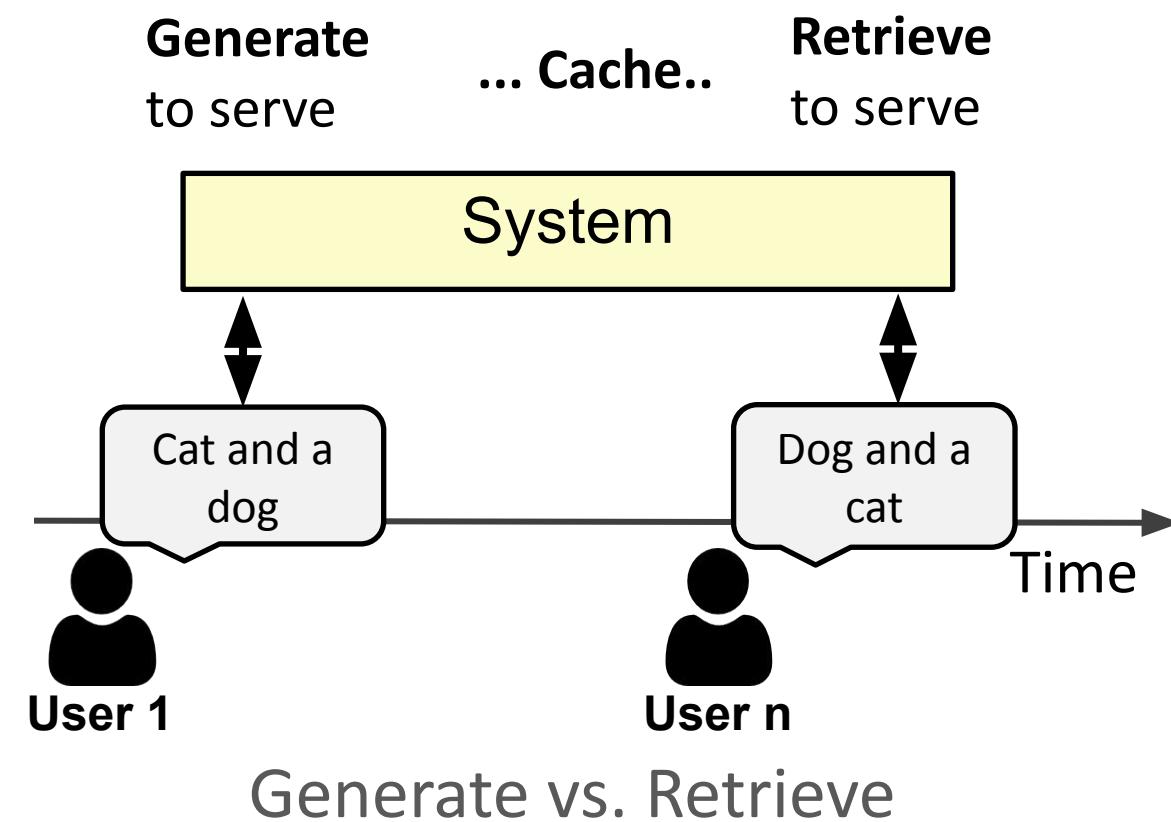


[1] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast sampling of diffusion models via operator learning. In ICML 2023.

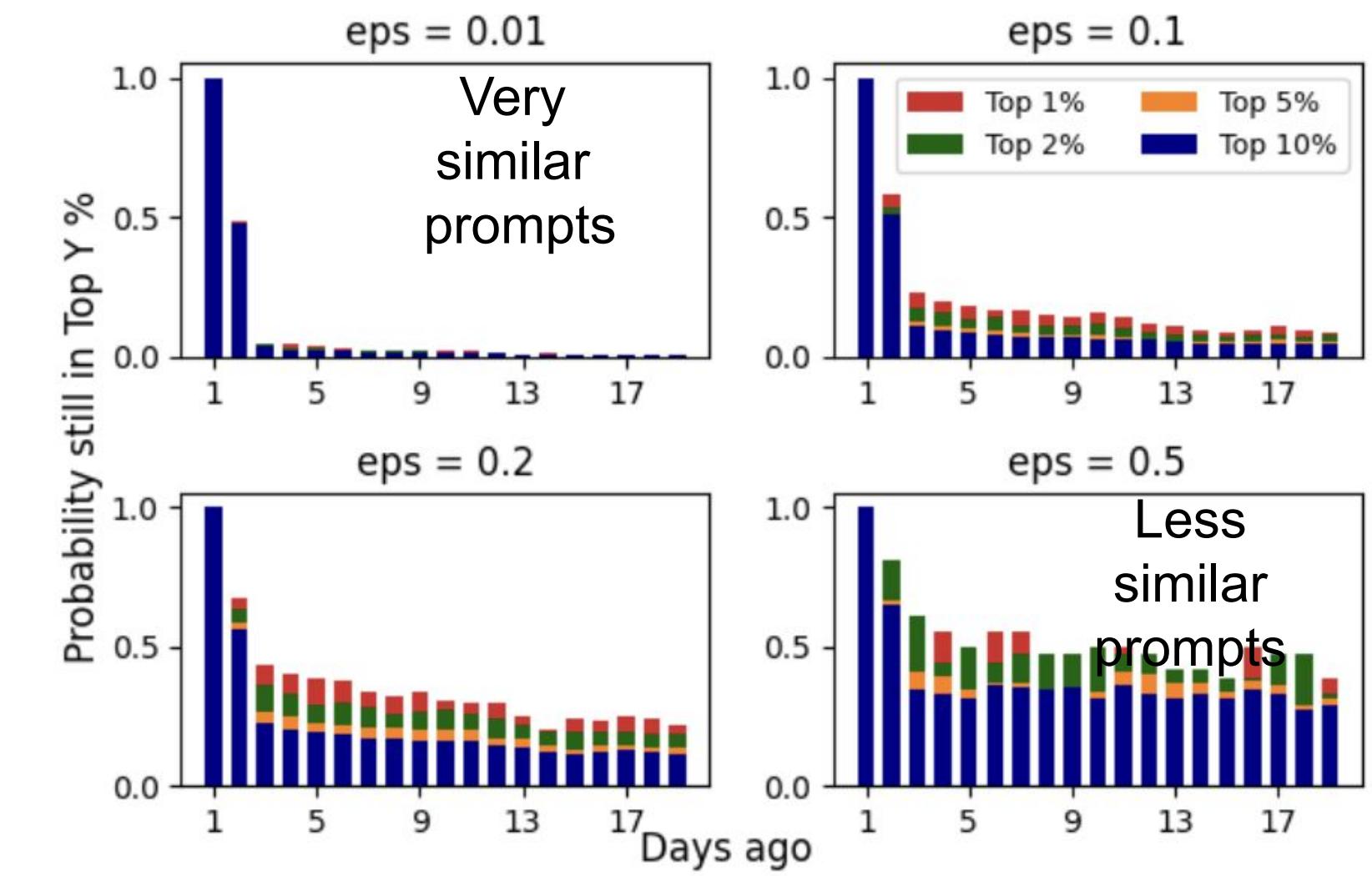
[2] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On distillation of guided diffusion models. In CVPR, 2023.

Exact Match vs. Similar Prompts

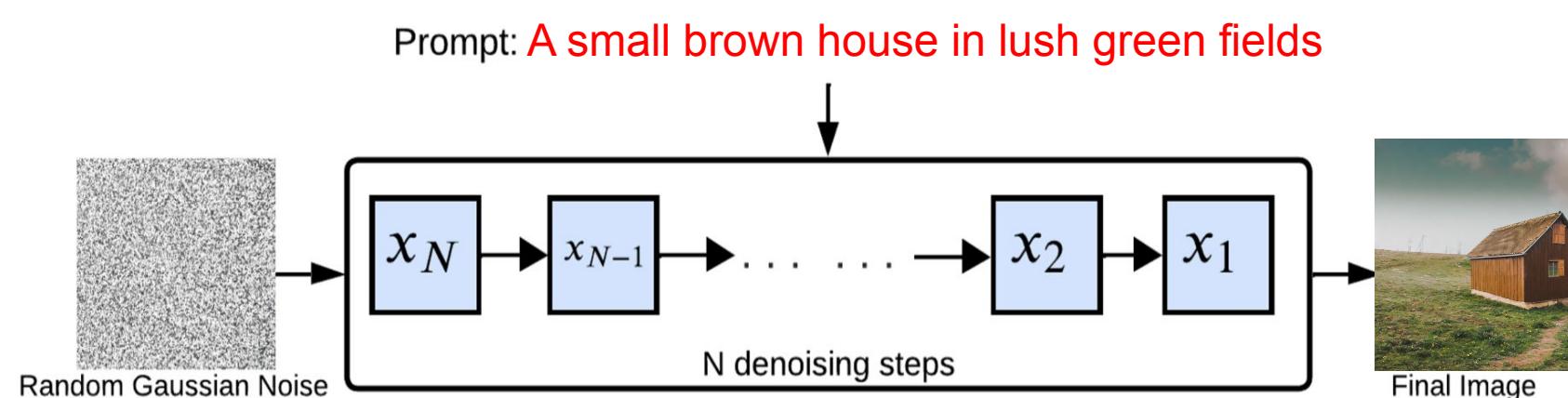
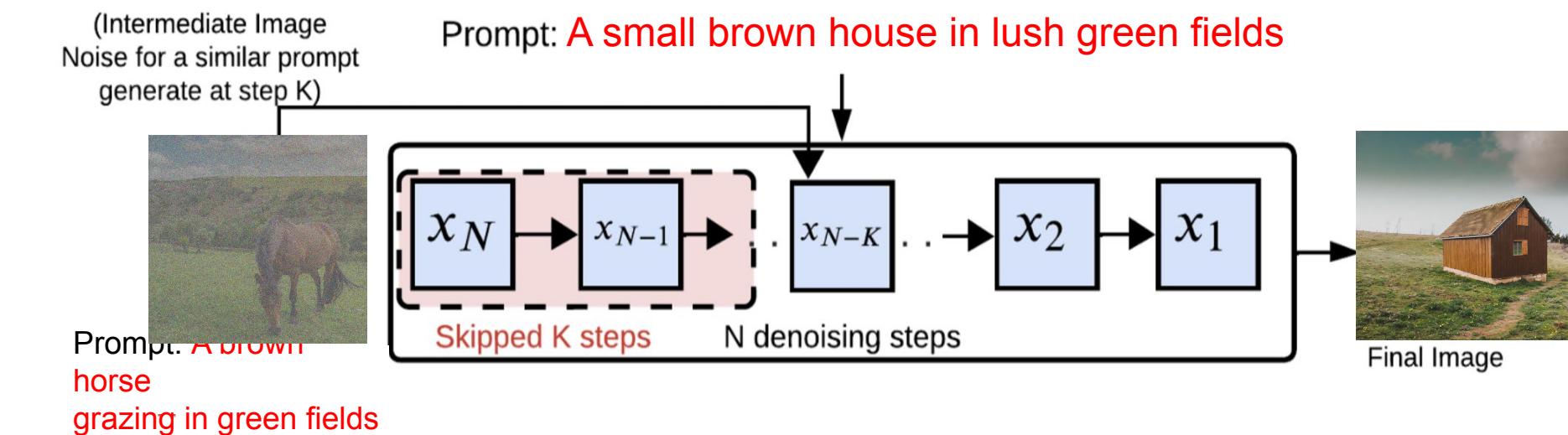
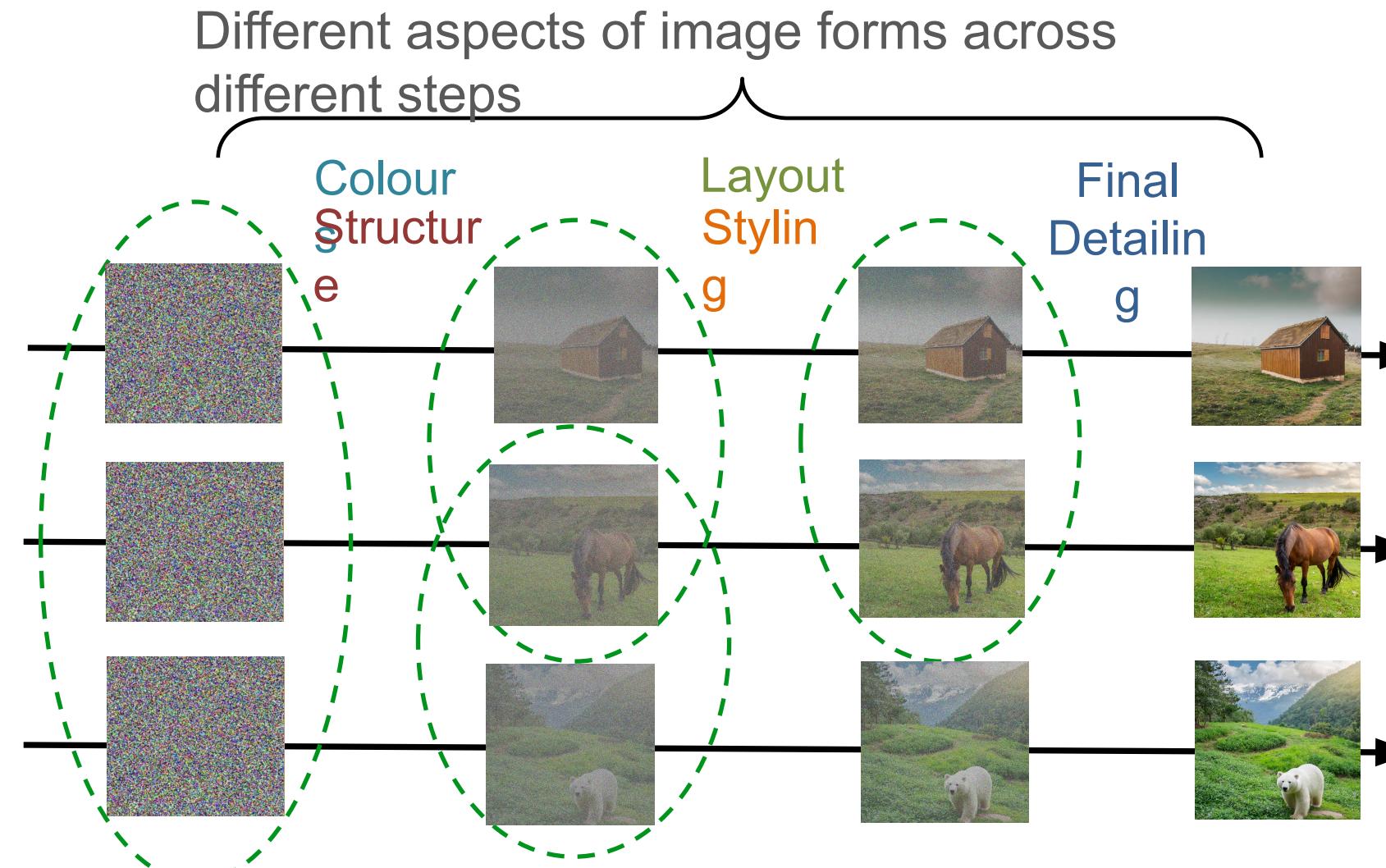
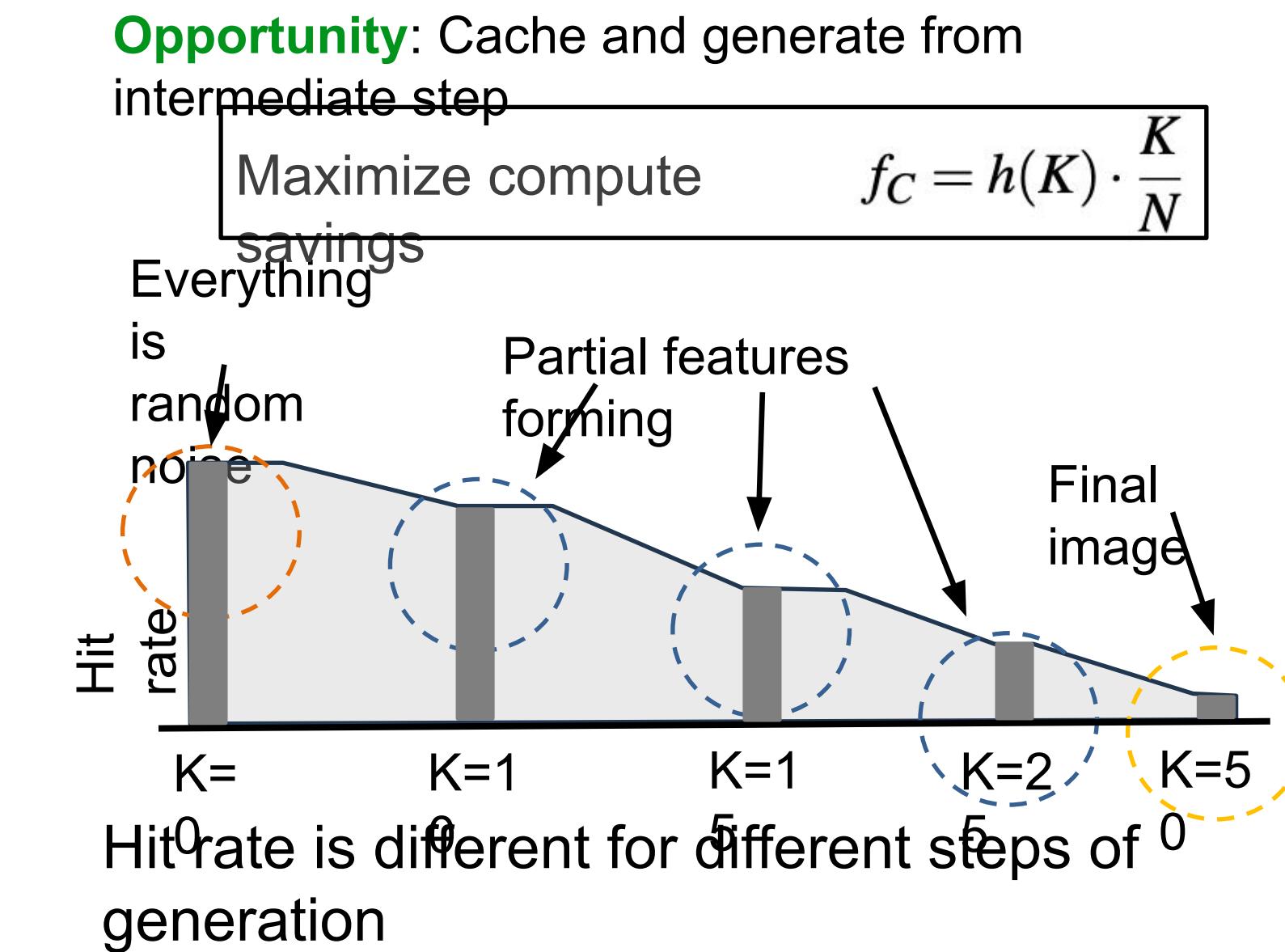
Previous works have overlooked the use of text-to-image systems across multiple generations



In this work, we reduce the generation time by using a simple-yet-novel approach of **caching**



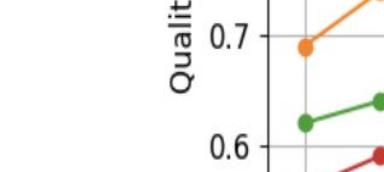
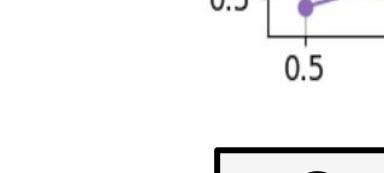
Proposed Approximate Caching



Cache Selection

Cache
Selector
Heuristic

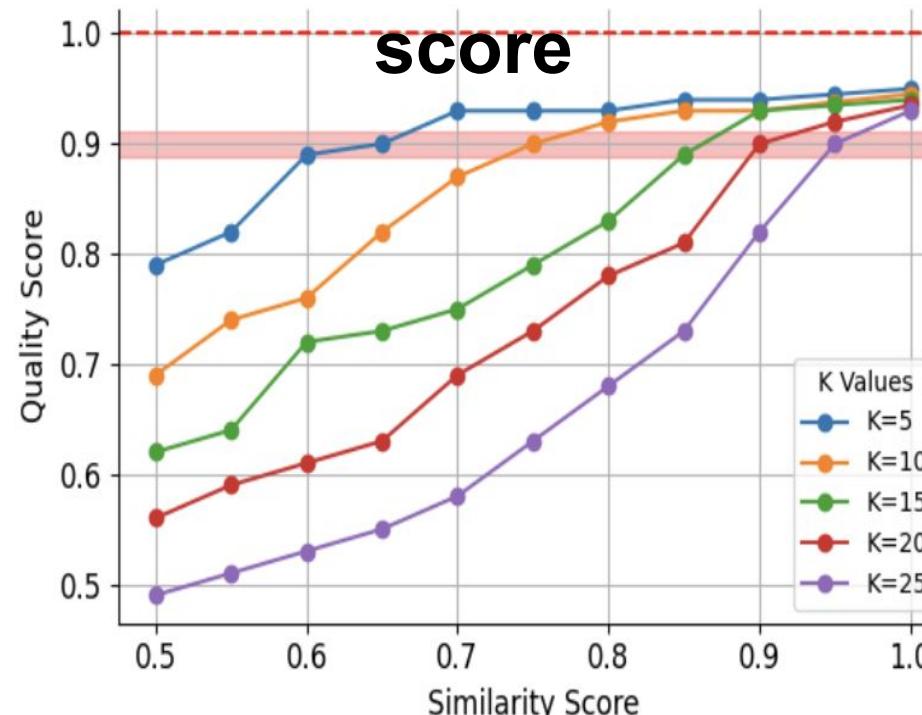
Hypothesis – More steps can be skipped for a prompt if its cache is more similar

Retrieved prompt: A brown horse grazing in a green field				
"A white horse grazing in a green field"		"A brown horse running in a green field"	"A brown bear grazing in a green field"	
				
Worked	K = 10	K = 10	K = 20	
Did not work				
	K = 15	K = 15	K = 25	K = 25

K is Determined by Prompt-Cache Similarity:

Noise from a Brown Horse Transforms into
Different Prompts, Limited by K

Determine K in terms of Similarity



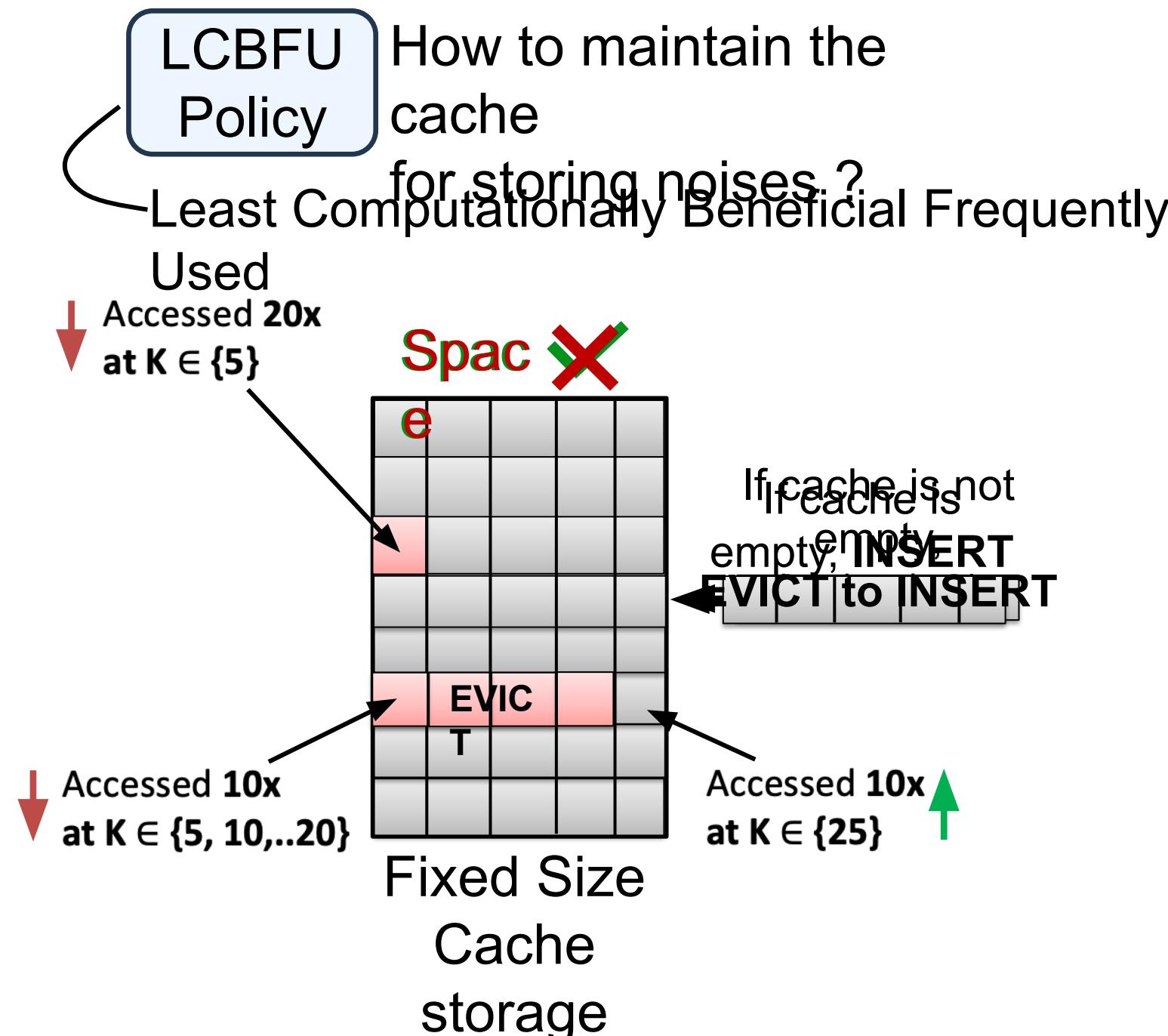
Example
output

```
1 def cache_selector(s):  
2     if s > 0.95: k = 25  
3     elif s > 0.9: k = 20  
4     elif s > 0.85: k =  
5         15  
6     elif s > 0.75: k =  
7         10  
8     elif s > 0.65: k = 5  
9     else: k = 0  
10    return k
```

- Generate Images for queries at different K values
- Profile Image Quality at different K values for different Prompt-Cache similarity levels

- Map from similarity score to the max K that can be skipped

Cache Management

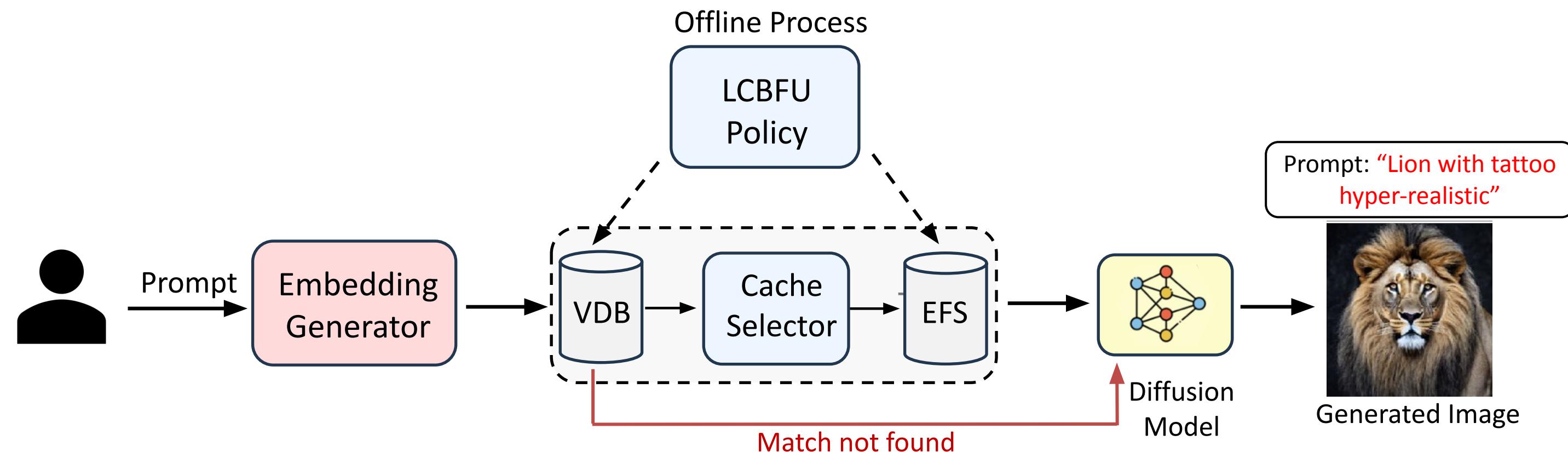


Cache Size(GB)	#noises in cache	FIFO	LRU	LFU	LCBFU
1GB	1500	0.11	0.12	0.12	0.12
10GB	15000	0.13	0.14	0.14	0.15
100GB	150000	0.14	0.16	0.16	0.18
1000GB	1500000	0.17	0.20	0.19	0.23

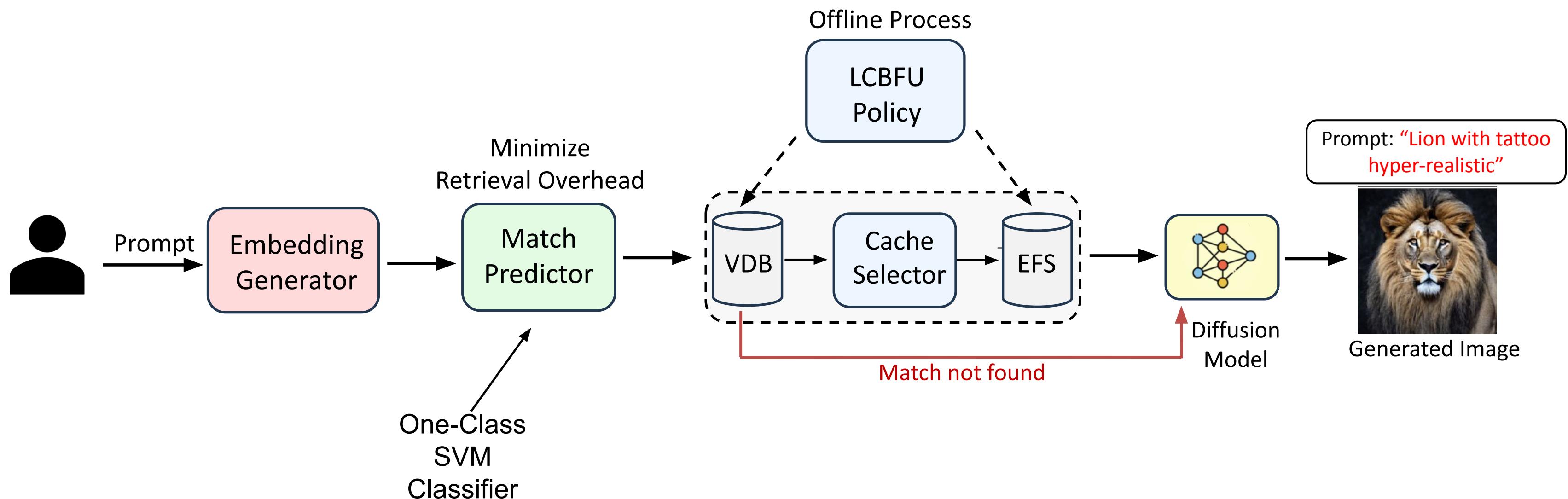
Compute Savings facilitated by LCBFU compared to other eviction techniques

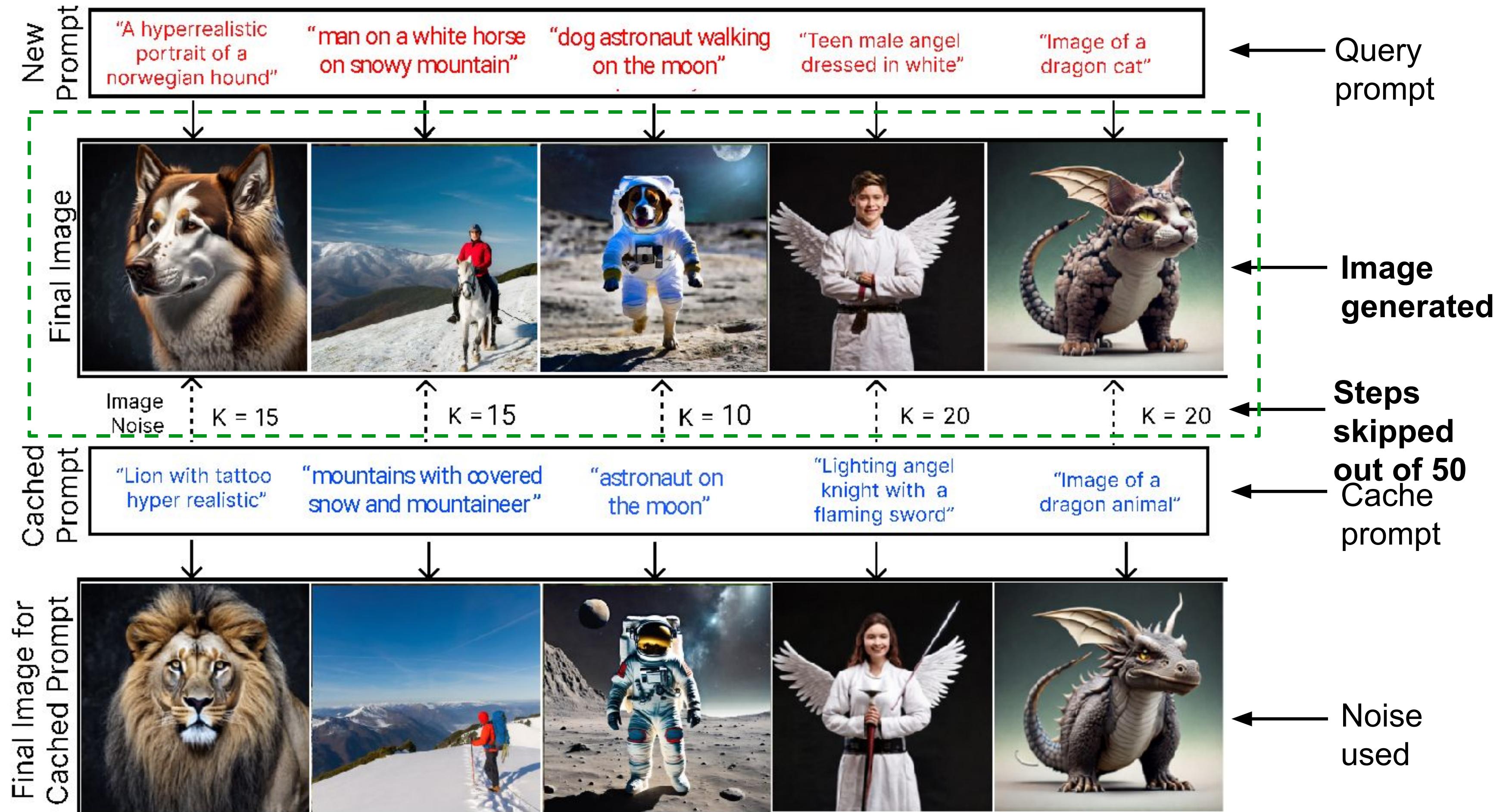
Eviction Policy? Least Computationally Beneficial Cache (LCBFU) Score = K (potential savings) * f (frequency of use)

NIRVANA: Proposed Pipeline



NIRVANA: Proposed Pipeline





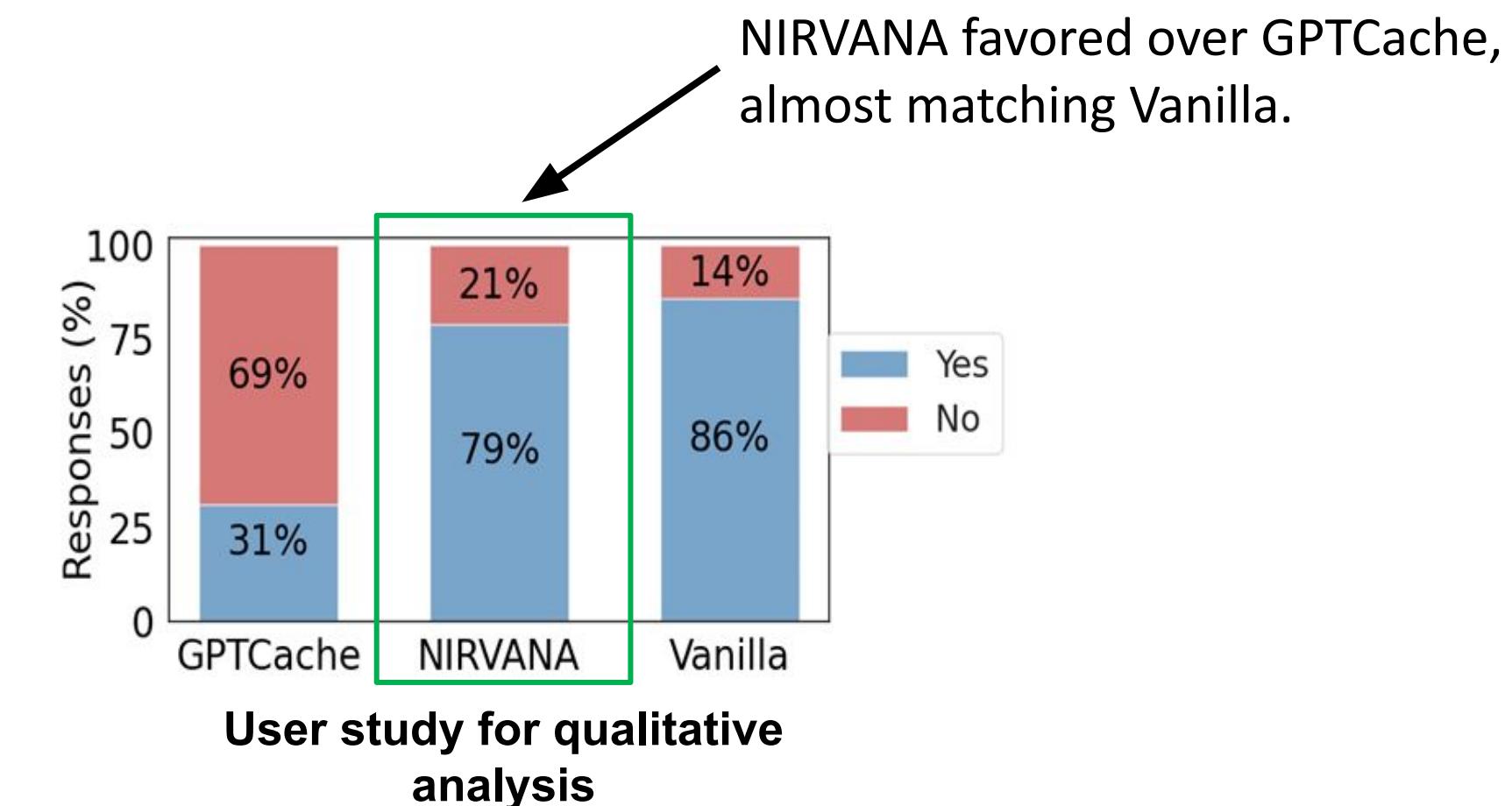
NIRVANA: Results

- We evaluate Nirvana quality using FID, CLIP and PickScore.
- We use real prompt traces from production.
- We conduct a user study with 60 participants.

Dataset	Models	Quality		
		<i>FID</i> ↓	<i>CLIP Score</i> ↑	<i>PickScore</i> ↑
DiffusionDB*	GPT-CACHE	7.98	25.84	19.04
	PINECONE	10.92	24.83	18.92
	CRS	8.43	24.05	18.84
	SMALLMODEL	11.14	25.64	18.65
	NIRVANA – <i>w/o</i> MP	4.94	28.65	20.35
	NIRVANA	4.68	28.81	20.41
SYSTEM-X	VANILLA	6.12-6.92	30.28	20.86
	GPT-CACHE	8.15	26.32	19.11
	PINECONE	10.12	24.43	18.83
	CRS	8.38	23.81	18.78
	SMALLMODEL	11.35	25.91	18.92
	NIRVANA – <i>w/o</i> MP	4.48	28.94	20.31
	NIRVANA	4.15	29.12	20.38
	VANILLA	5.42-6.12	30.4	20.71

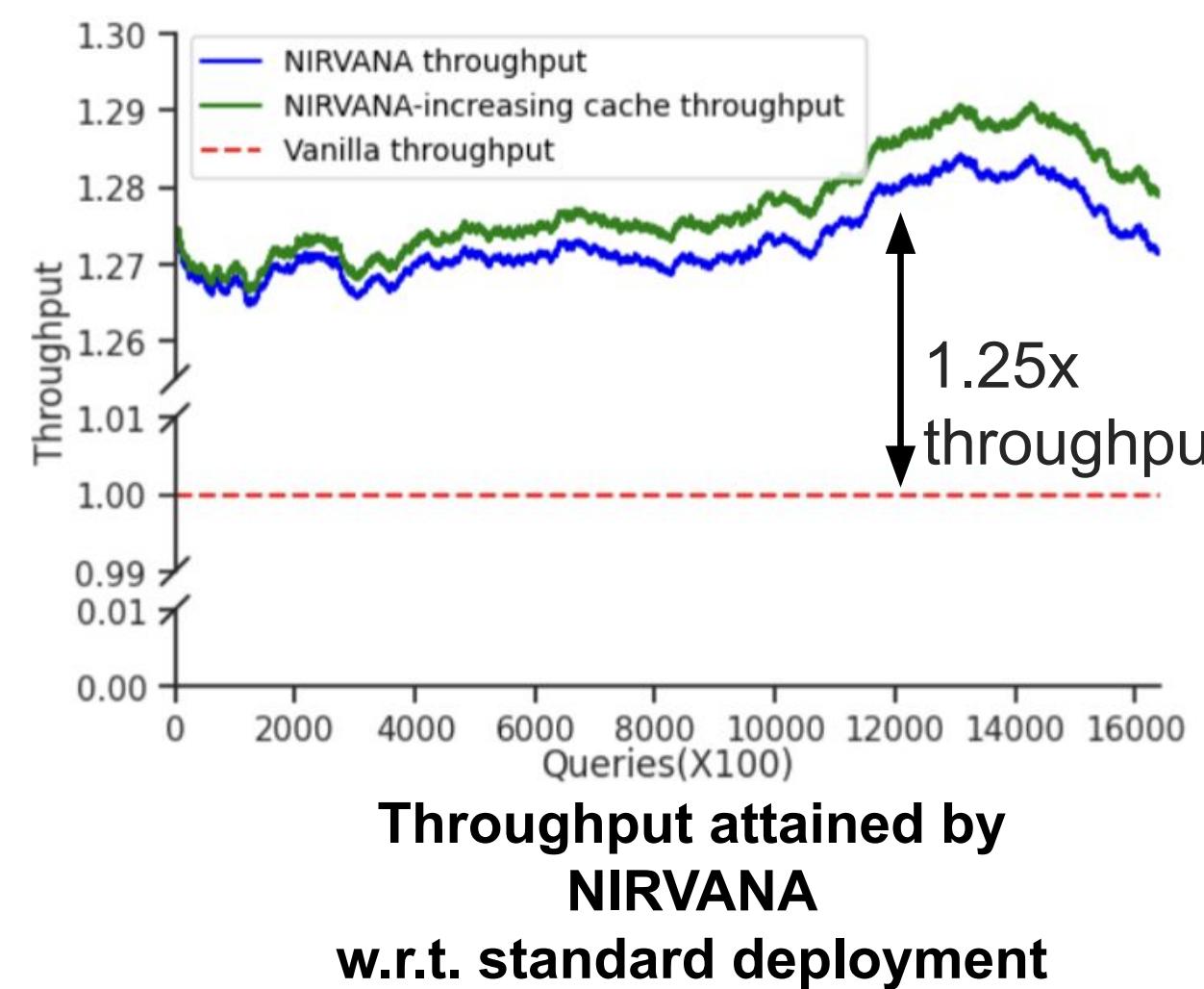
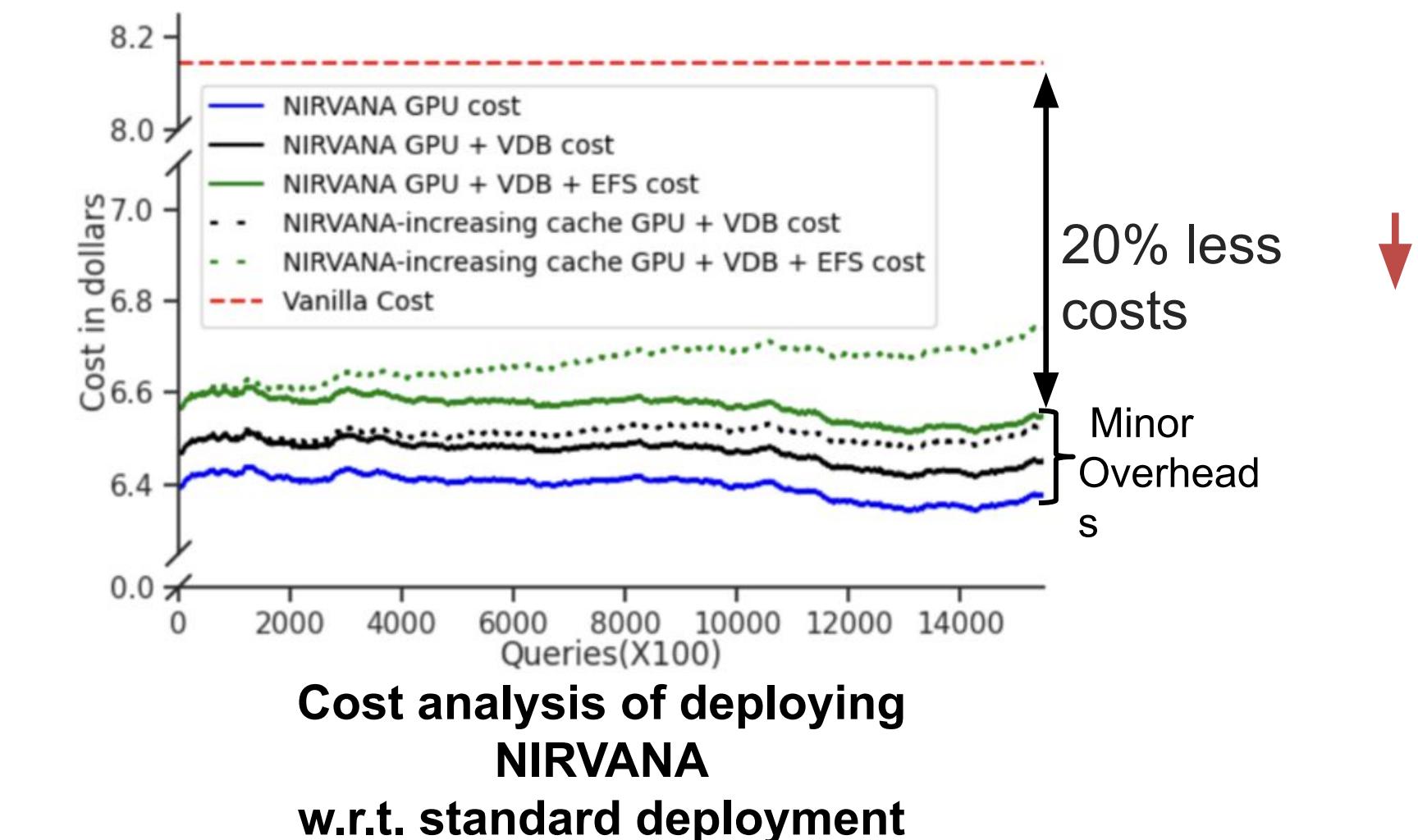
Comparison of NIRVANA against retrieval-based baselines.

We also compare against a small distilled model.



NIRVANA: Results

- We assess the end-to-end speedup and cost reductions realized by NIRVANA.

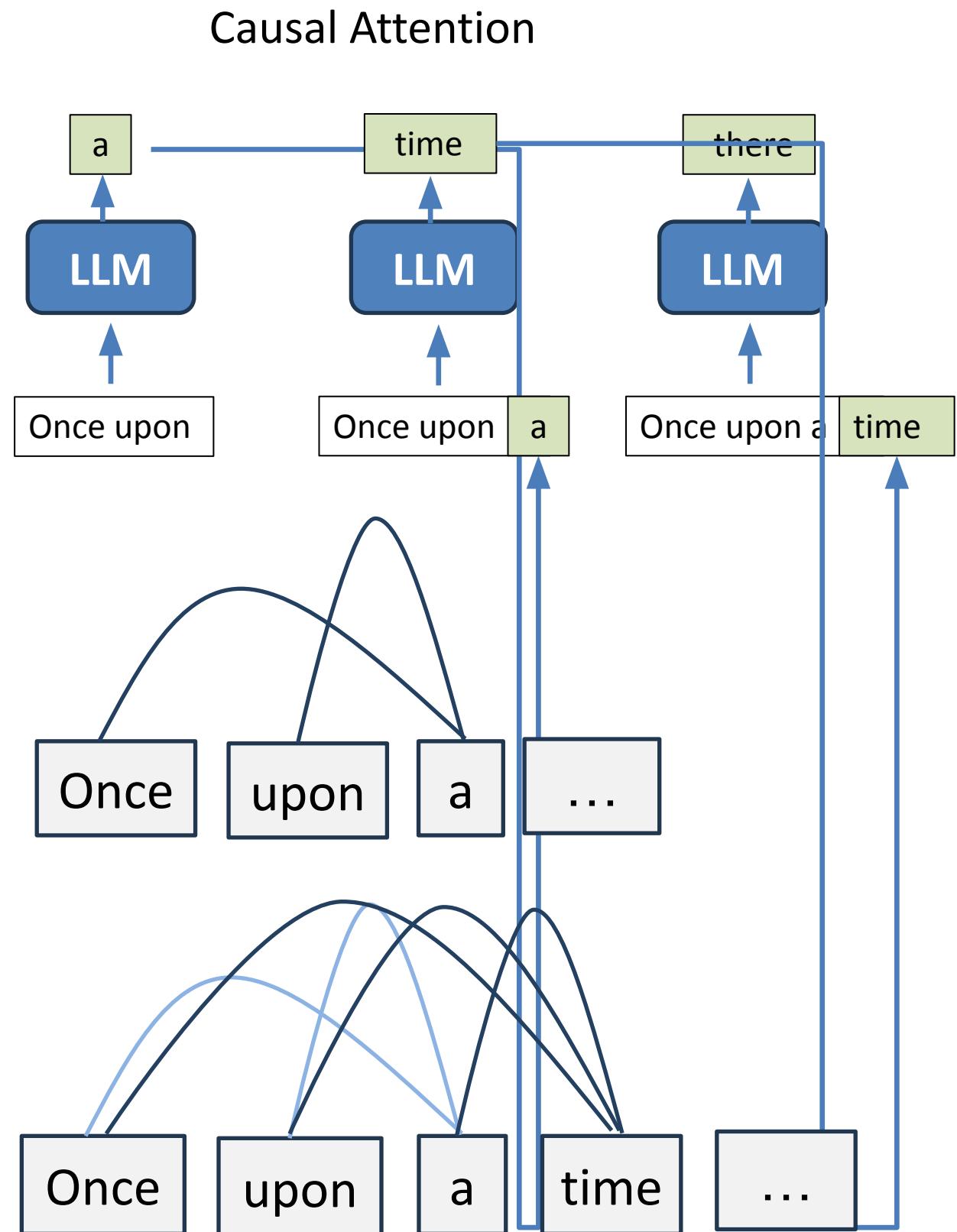
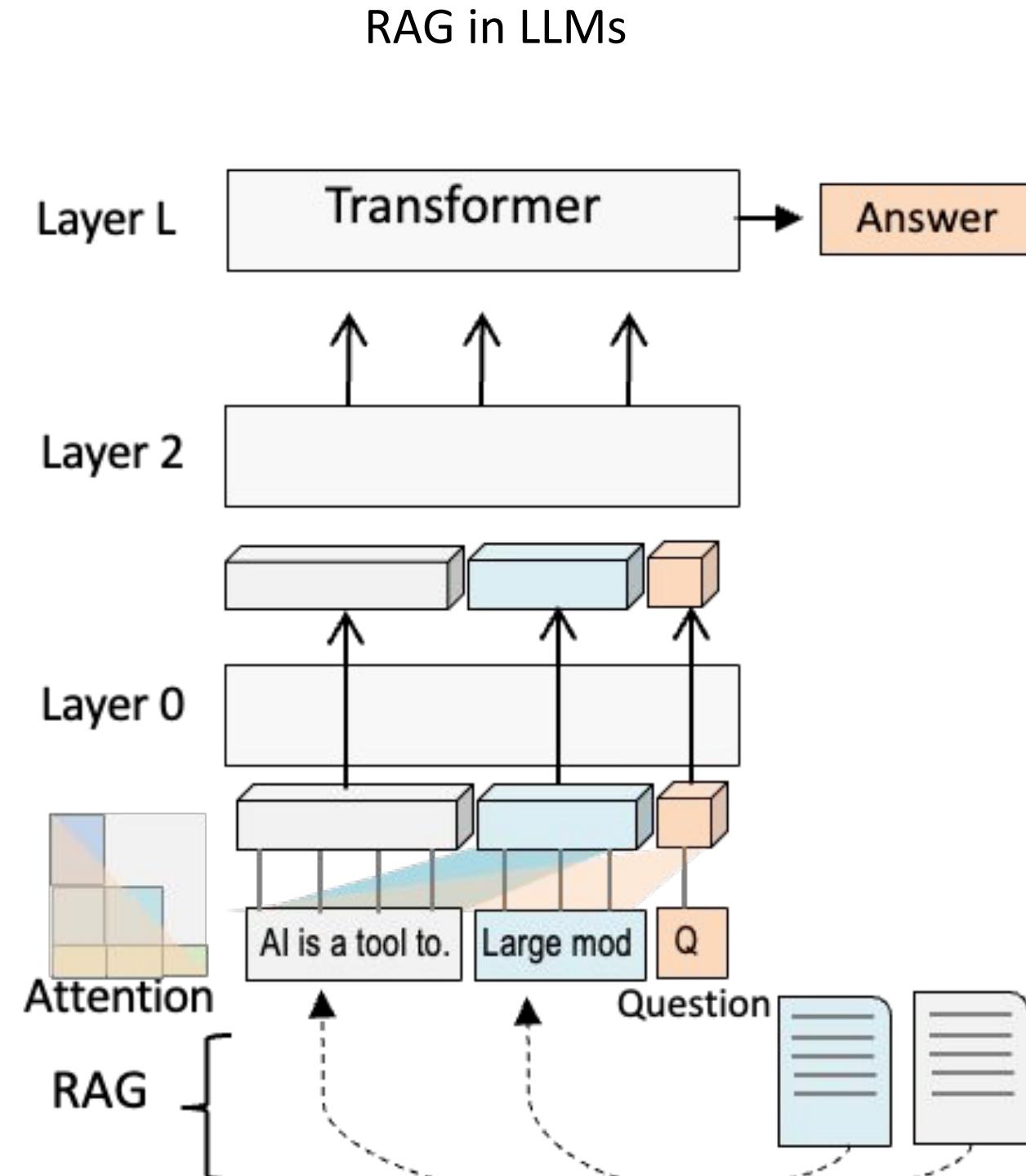
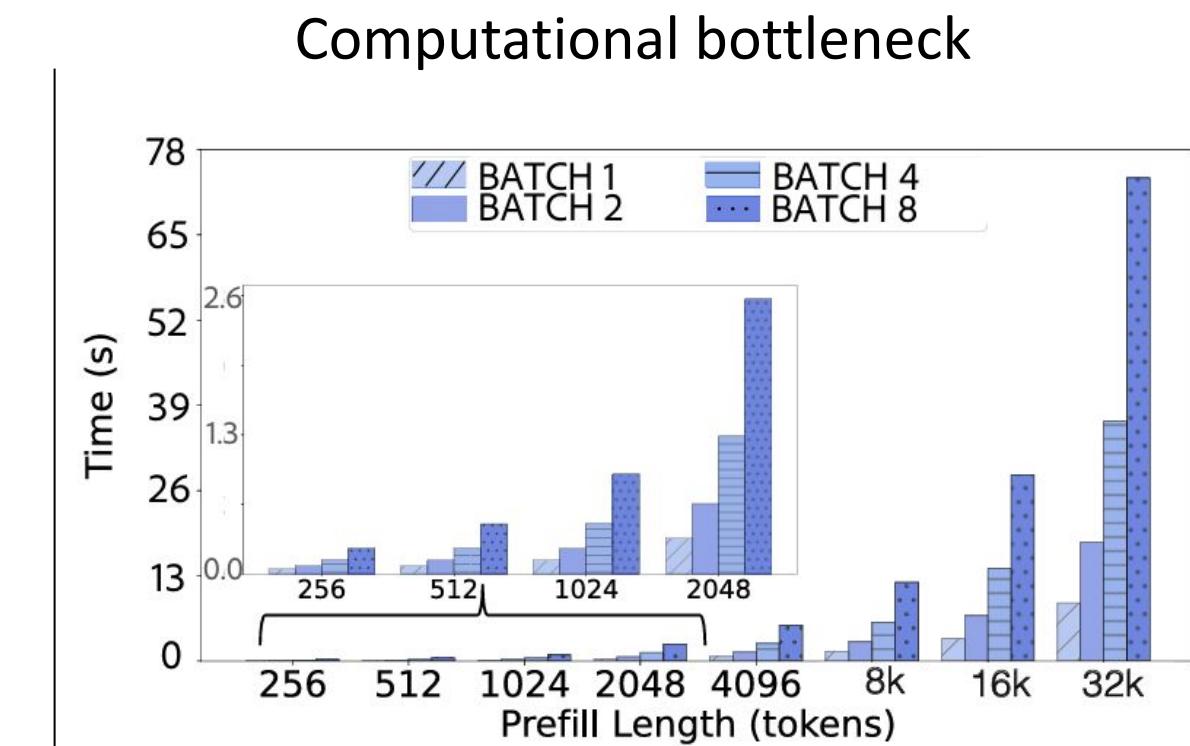
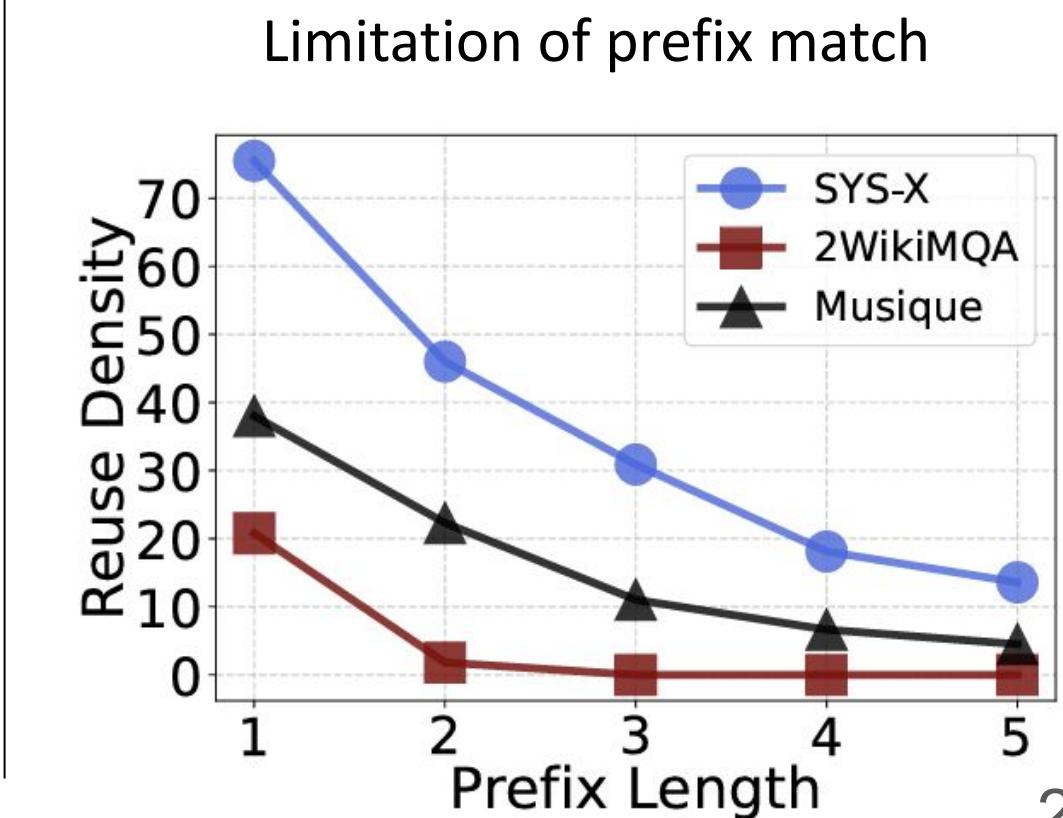


Cache-Craft: Managing Chunk-Caches for Efficient Retrieval-Augmented Generation

Shubham Agarwal^{1*}, Sai Sundaresan^{1*}, Subrata Mitra^{1†}, Debabrata Mahapatra¹
Archit Gupta^{2‡}, Rounak Sharma^{3‡}, Nirmal Joshua Kapu^{3‡}, Tong Yu¹, Shiv Saini¹
¹Adobe Research ²IIT Bombay ³IIT Kanpur

International Conference on Management of Data
(SIGMOD 2025)

Attention Computation



Challenges in Re-use

- During generation use KV caches
- Why can't we use across sessions?

"Sunlight scatters in atmosphere."

"Blue light scatters the most."

"Red light scatters the least."

"Shorter wavelengths scatter more."

"Why is the sky blue?"

"Shorter wavelengths scatter more."

"Sunlight scatters in atmosphere."

"Blue light scatters the most."

Can these values be reused?

"Why are sunsets red?"

"Sunlight scatters in atmosphere."

"Red light scatters the least."

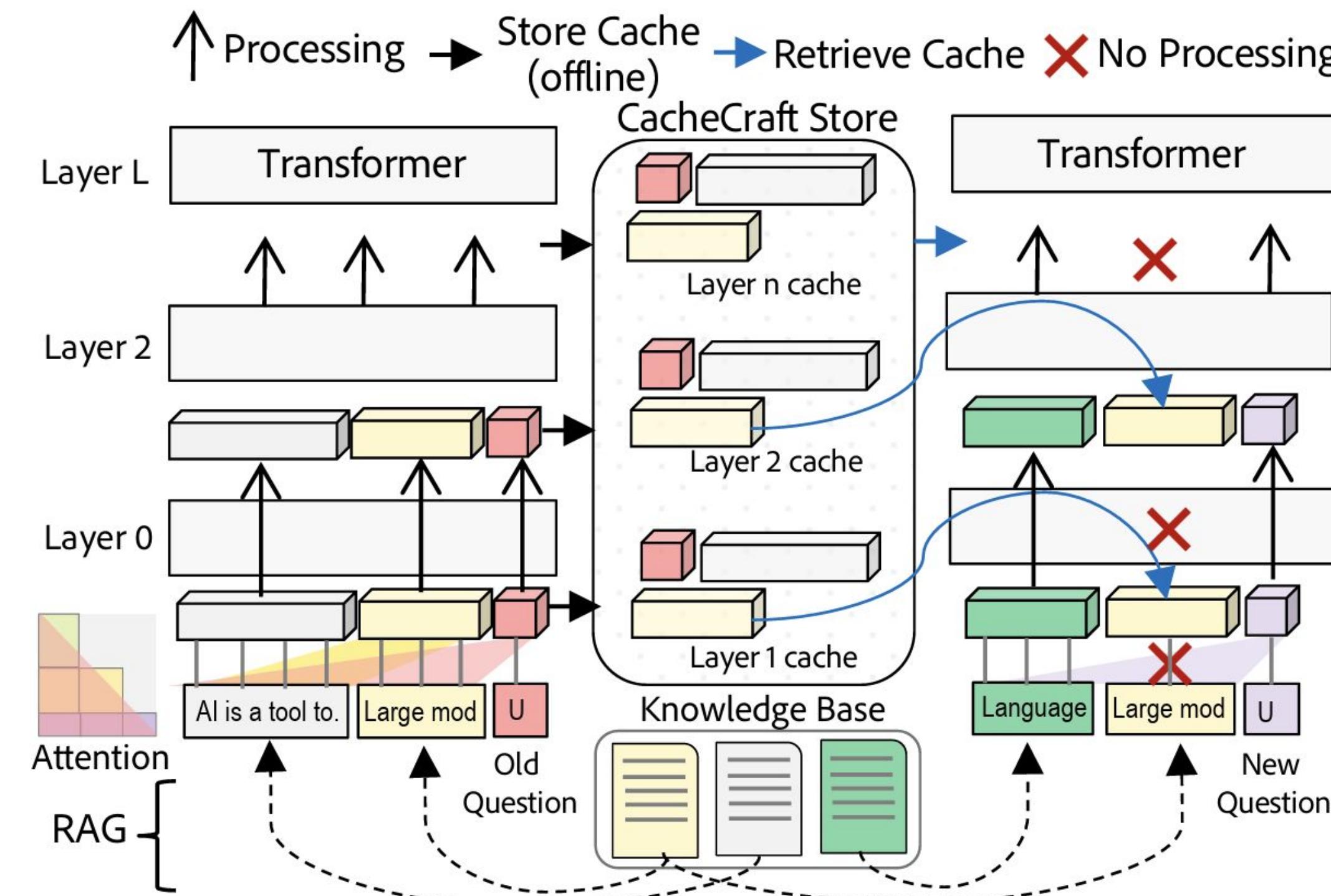
"Shorter wavelengths scatter more."

"Sunlight scatters in atmosphere."

"Blue light scatters the most."

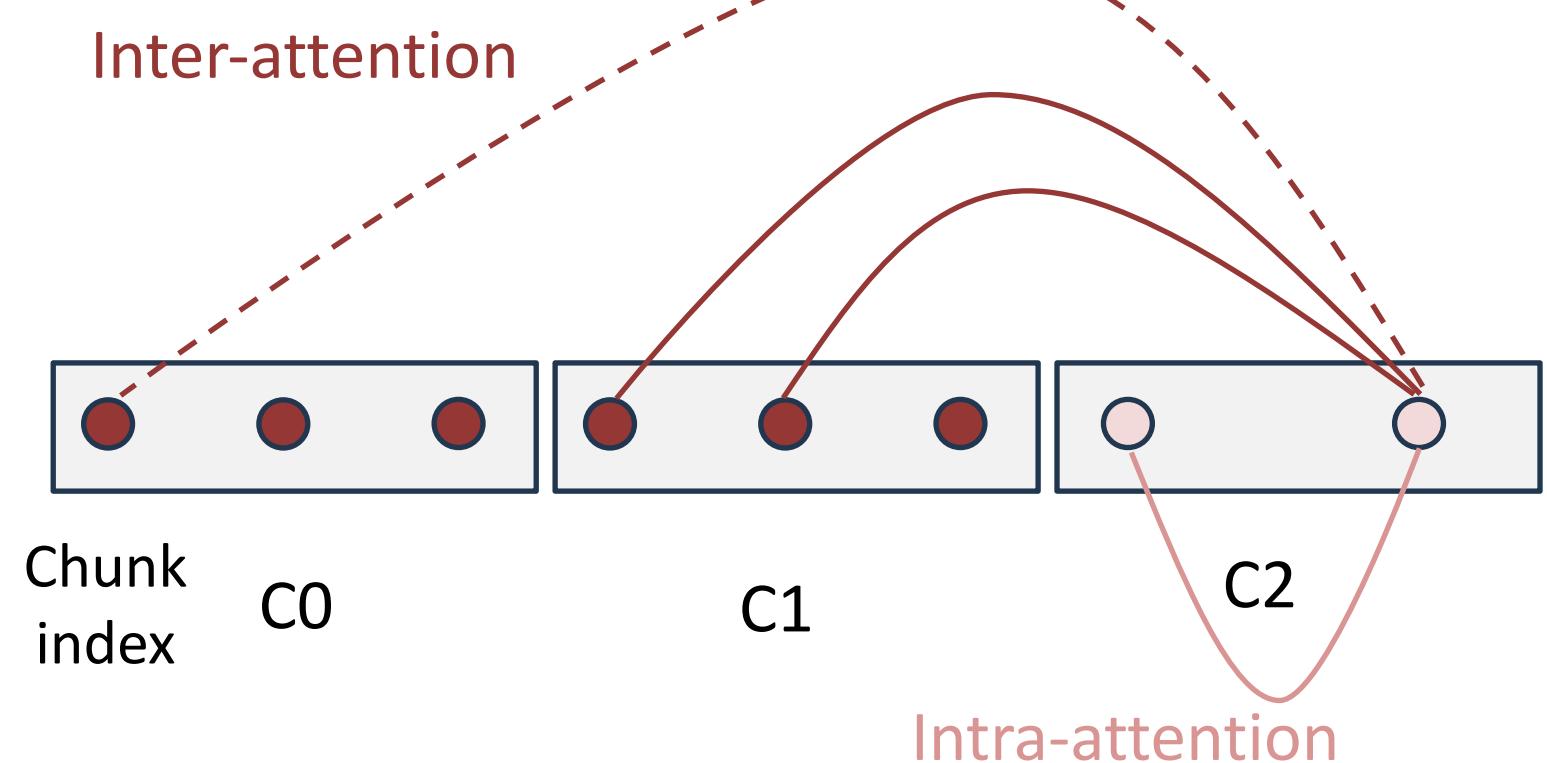
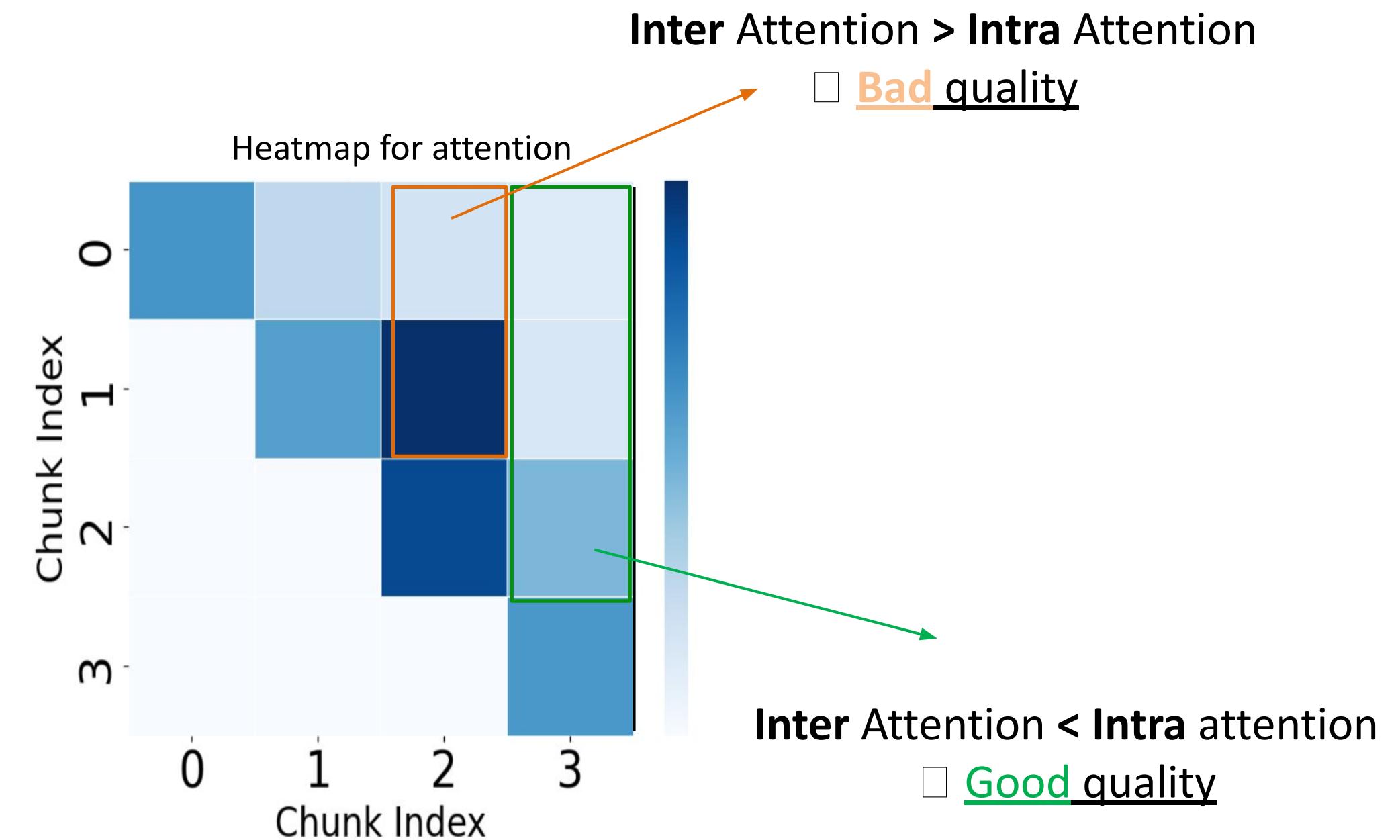
"Why is the sky blue?"

Cache-Craft: Overview

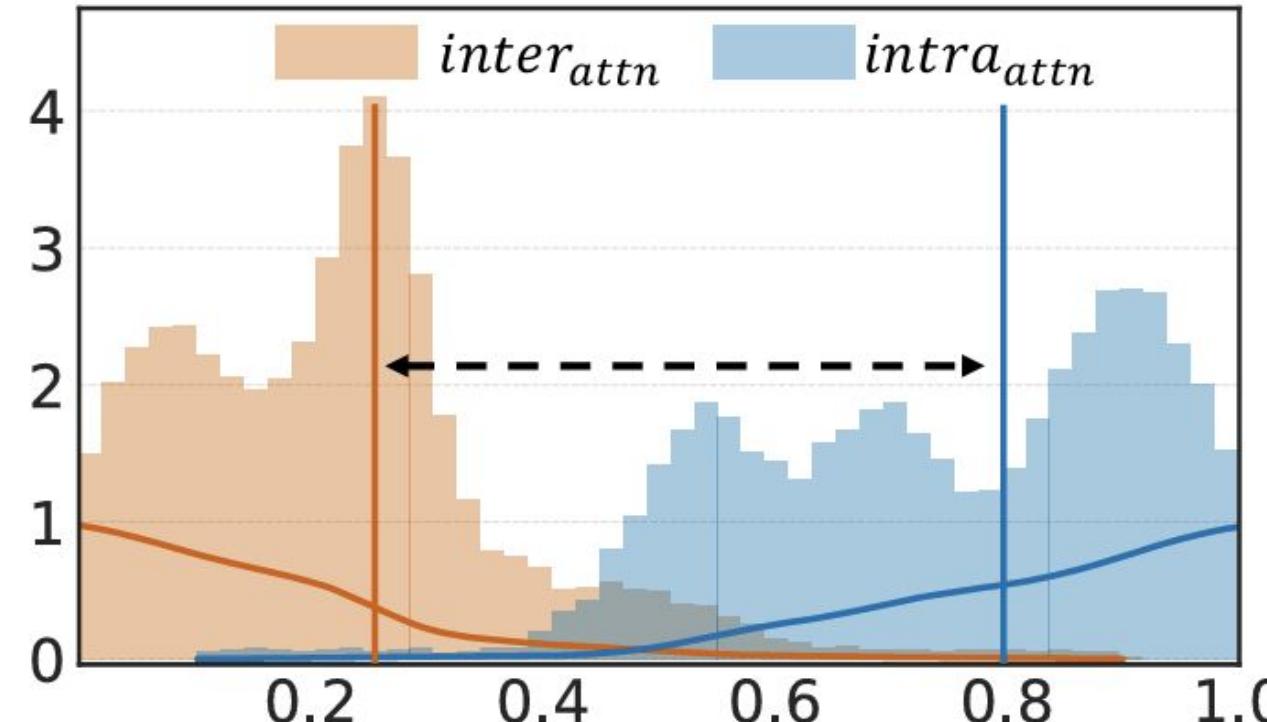


Determining Re-usability

What are good chunk-caches and what are bad chunk-caches?



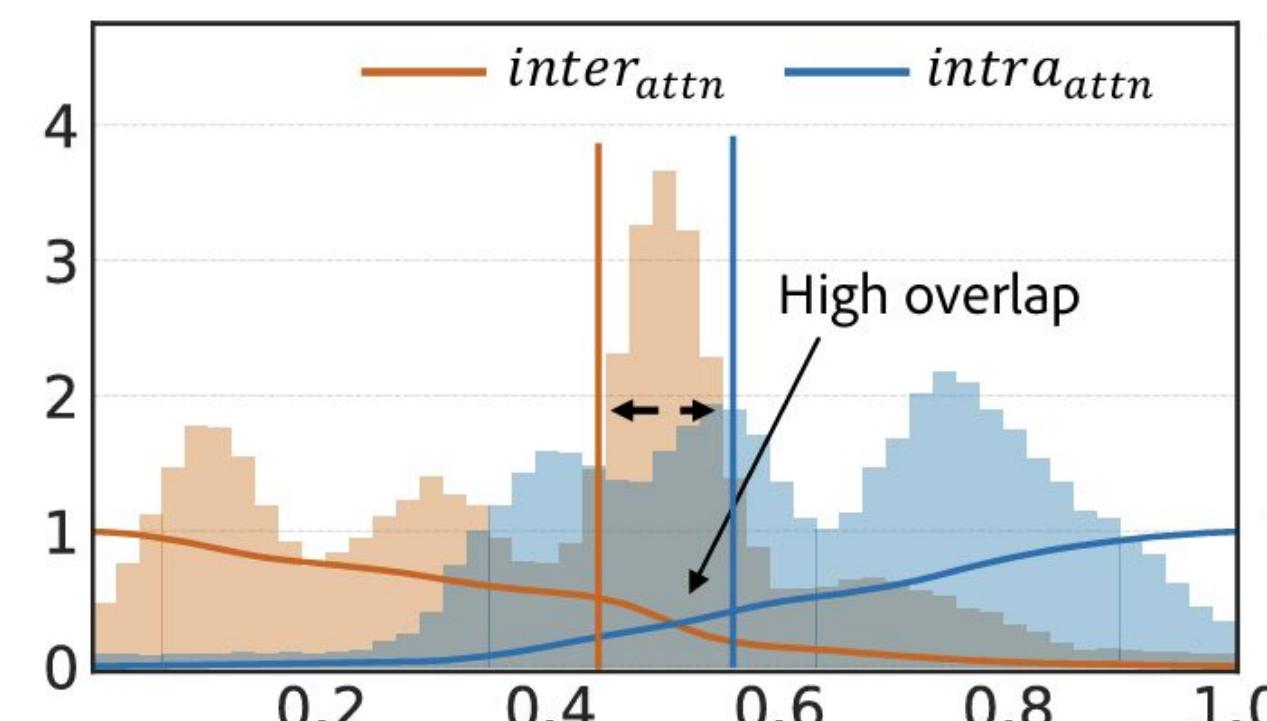
Determining Re-usability



The online education company has been working to enhance the user experience to stay competitive. The company launched a series of updates to its platform, focusing on improving usability and offering new features

Sarah, on the other hand, focused on optimizing the backend. She worked to reduce loading times, which improved engagement, leading to a 30% decrease in bounce rates and brought in 2M fresh students.

Q. Who drove significant improvements in user metrics?
Sarah improved loading times, adding 2M students.

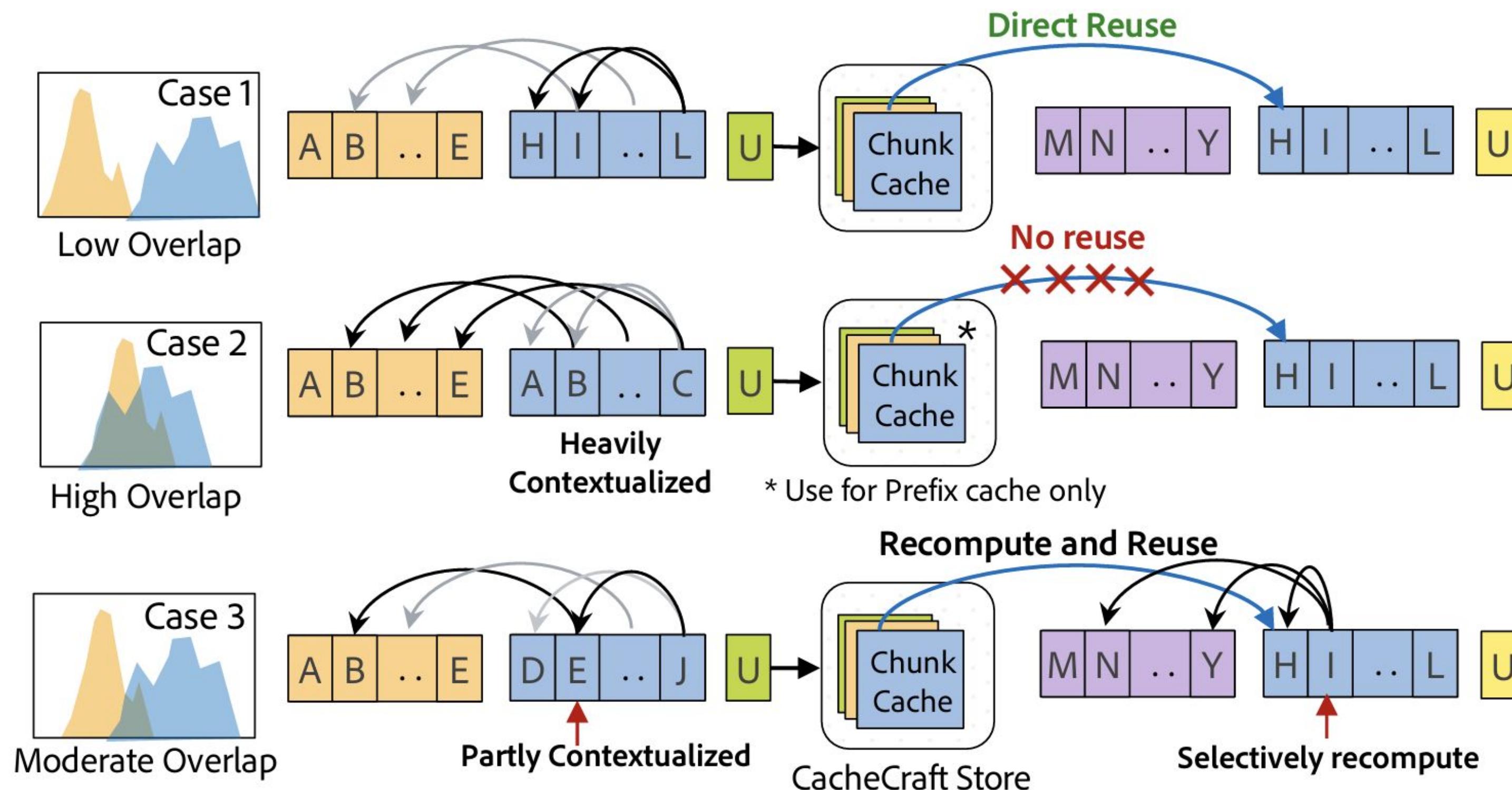


The company started with ~1M students as its users. John led the team's efforts and worked with the designers to make the app user-friendly, leading to a 30% increase in engagement and brought 50% new users.

Sarah, on the other hand, focused on optimizing the backend. She worked to reduce loading times, which improved engagement, leading to a 30% decrease in bounce rates and brought in 2M fresh students.

Q. Who drove significant improvements in user metrics?
John with 30% increase in engagement and 50% new users

Chunk-Cache Re-use Strategy



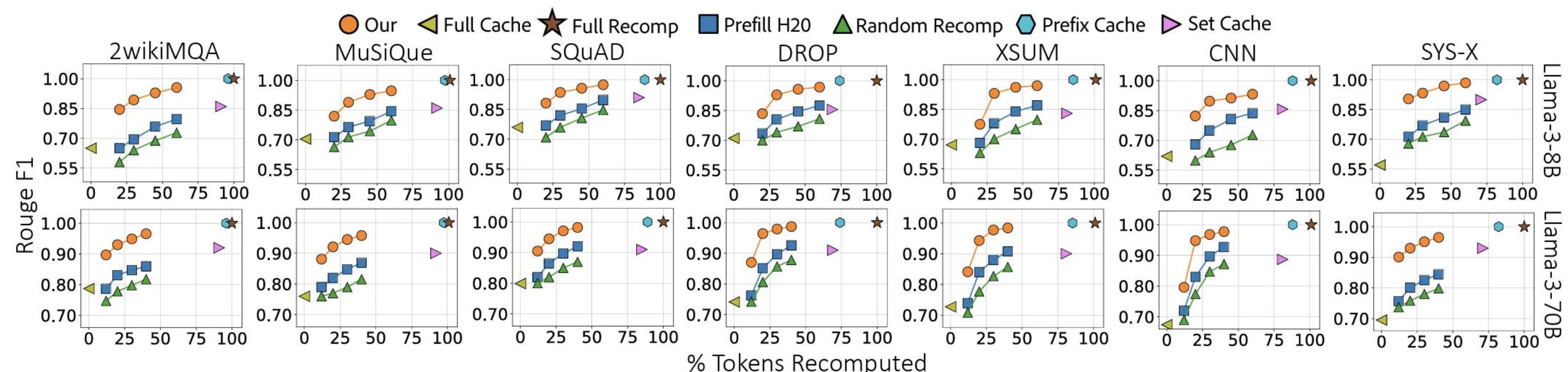
Overlapping Computation and Loading



- Chunk-caches are stored in GPU HBM
- Then moved to CPU memory
- Then moved to SSD

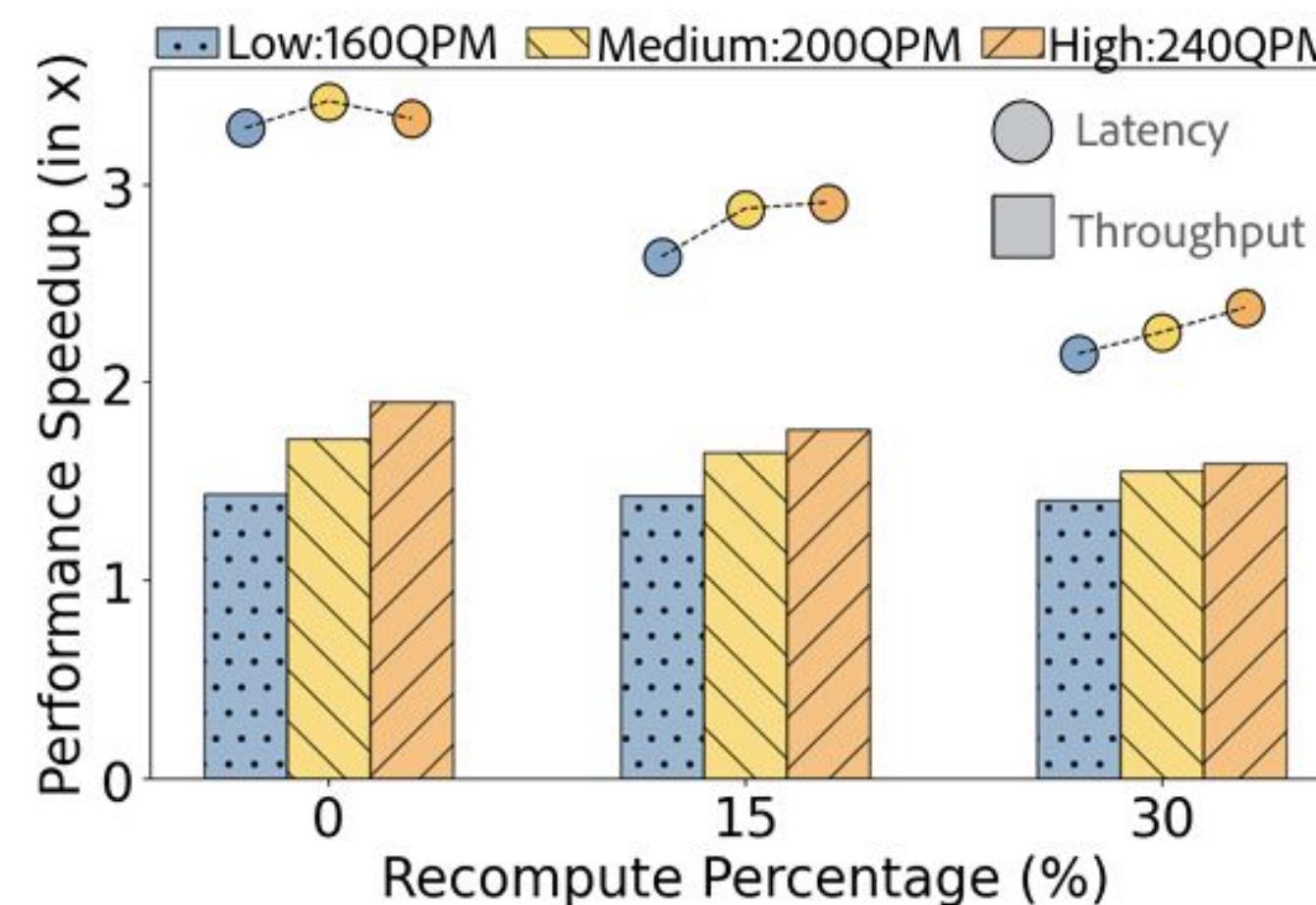
$$L_p = (L - 1) \left(1 - \frac{T_{prefill}}{T_{load}} \right) + 1$$

Cache-Craft: Results

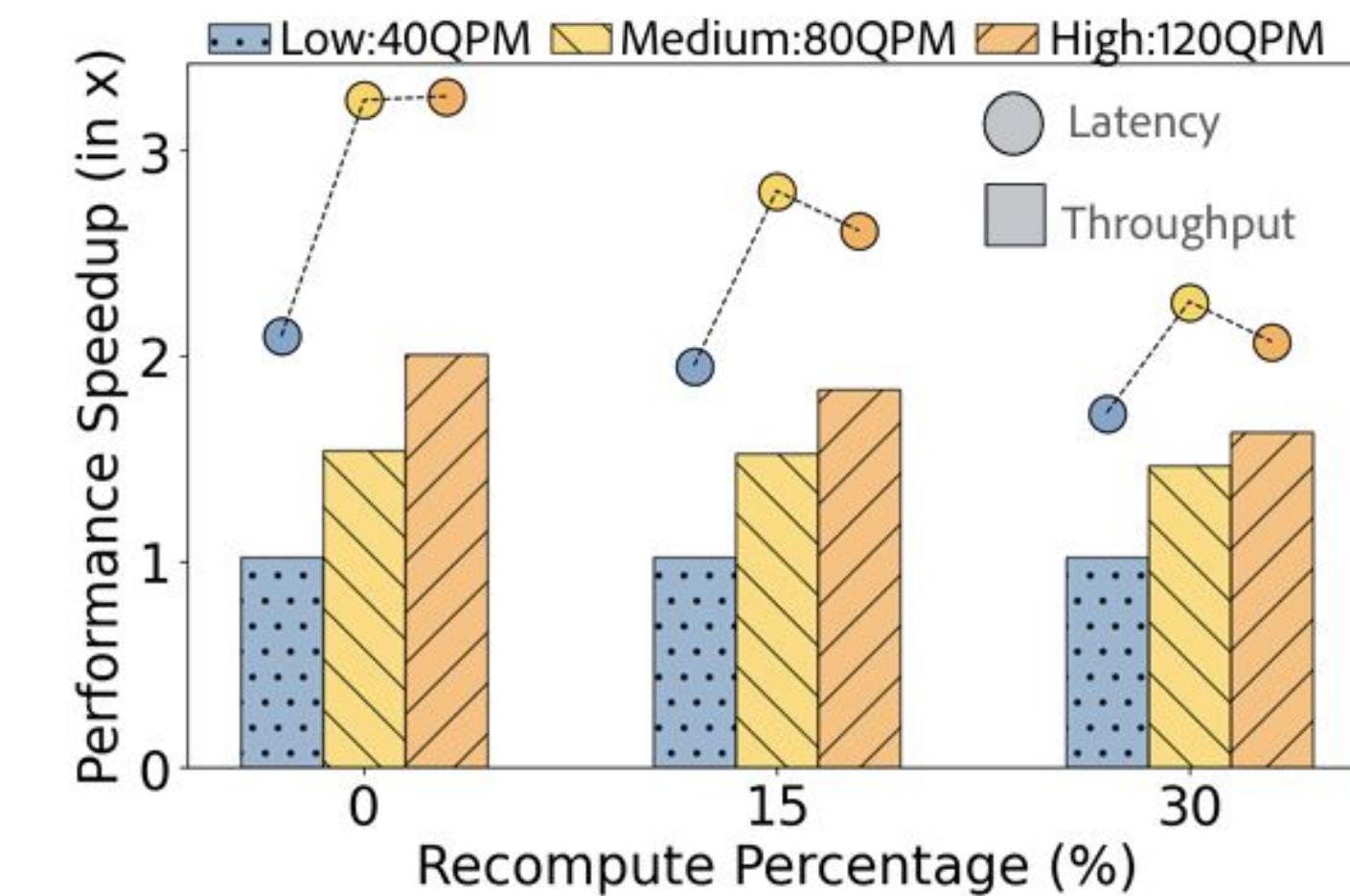


With a given computation budget – Cache-Craft can provide best quality answer

Cache-Craft: Results



LLaMA-3-8B on 1 A100-80GB



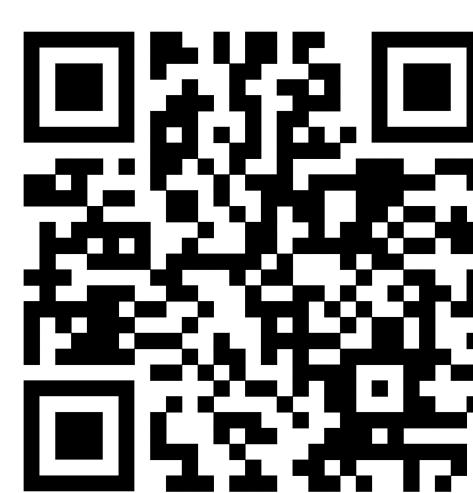
LLaMA-3-70B on 4 A100-80GB

As load increases - Cache-Craft can provides more benefit. 30% recompute $\sim 90\%$ quality based on Rouge-F1. Rouge-F1 $> 60\%$ is considered very good.

Future Directions

- Cache-augmented generation – is an emerging paradigm.
- Extend these technique to *agentic frameworks* - reuse intermediate reasoning steps
- Caching for large-multi-modal models – that can consume both images and texts
- Improve performance of on-device models – using caches across edge and cloud

Thank you



Adobe
Research

References:

1. **“Approximate Caching for Efficiently Serving {Text-to-Image} Diffusion Models”** NSDI 2024

Authors: Shubham Agarwal, Subrata Mitra, Sarthak Chakraborty, Srikrishna Karanam, Koyel Mukherjee, Shiv Kumar Saini

2. **“Cache-Craft: Managing Chunk-Caches for Efficient Retrieval-Augmented Generation”** SIGMOD 2025.

Authors: Shubham Agarwal*, Sai Sundaresan1*, Subrata Mitra, Debabrata Mahapatra, Archit Gupta, Rounak Sharma, Nirmal Joshua Kapu, Tong Yu, Shiv Kumar Saini