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Generative Models
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Al Assistants in a Nutshell
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Diffusion-Models: Inference
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LLMs: Inference Efficiency
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VLLM —is the open-source library where most of these optimizations are available

https://github.com/vlim-project/vlim
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https://github.com/vllm-project/vllm

Motivation for Caching
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APPROXIMATE CACHING FOR EFFICIENTLY
SERVING TEXT-TO-IMAGE DIFFUSION MODELS
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Popularity of Text-to-Image
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Efficiency of Diffusion Models

SD-XL still takes 6s for 50 steps

Sampling Diffusion | DPiffusion
Optimizations!'l| Model Model
~ 1000 ~ 50-100
steps steps
>
It has quality-speed tradeoff
~ 1000
. ec Diffusio
o steps Model Diffusion a -
Optimization? | Model Madel
Distilled/Pruned
Model

[1] Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast sampling of diffusion models via operator learning. In ICML 2023.
[2] Chenlin Meng, Robin Rombach, Ruiqgi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim Salimans. On distillation of guided diffusion models. In CVPR, 2023.
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Previous works have overlooked the use of
text-to-image systems across multiple

generations
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Proposed Approximate Caching

Prompt: A small brown house in lush green fields
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Cache Selection
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Cache Management
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NIRVANA: Proposed
Pipeline
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NIRVANA: Proposed Pipeline
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on snowy mountain” on the moon” dressed in white” dragon cat”

portrait of a
norwegian hound”

New
Prompt

-+t
8 O | ; “ : : y “Lighting angel . out of 50
c c Lion with tattoo mountains with covered astronaut on knight with a Image of a h
hyper realistic” i i r s imal” < dache
O g ypP snow and mountaineer the moon flaming sword” dragon animal
O

Final Image for
Cached Prompt

16



NIRVANA: Results

* We evaluate Nirvana quality using FID, CLIP and
PickScore.

* We use real prompt traces from production.

* We conduct a user study with 60 participants.

Quality
Dataset Models FID | CLIP Score T PickScore 1 NIRVANA favored over G PTCache,
GPT-CACHE 7.98 25.84 19.04 almost matching Vani”a.
PINECONE 10.92 24 .83 18.92
o . CRS 8.43 24.05 18.84
DiffusionDB o\ \ 1 iMoDEL 1114 2564 18.65 10 e EEEE | B
NIRVANA — w/oMP _ 4.94 28.65 20.35 3 21% A ‘
- 75 o ' '
NIRVANA 4.68 28.81 2041 $ 69% Yes
VANILLA 6.12-6.92 30.28 20.86 2 50 799% 86% e No
GPT-CACHE 8.15 26.32 19.11 2 | '
PINECONE 10.12 24.43 18.83 0 25| | 31%
A CRS 8.38 2381 18.78 22 )
SMALLMODEL 11.35 25.91 18.92 GPTCaChe NIRVANA Van|”a
NIRVANA —w/oMP 4.48 28.94 20.31 o
NIRVANA 4.15 29.12 20.38 User study for qualitative
VANILLA  5.42-6.12 304 2071 analysis

Comparison of NIRVANA against retrieval-based
baselines.

We also compare against a small distilled model.
*Collected from Stable Diffusion public Discord 17



NIRVANA: Results

* We assess the end-to-end speedup and cost reductions realized by

NIRVANA.
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Cache-Craft: Managing Chunk-Caches for Efficient
Retrieval-Augmented Generation

Shubham Agarwall Sai Sundaresan , Subrata Mitra'", Debabrata Mahapatra’

Archit Gupta?*, Rounak Sharma®*, Nirmal Joshua Kapu®*, Tong Yu', Shiv Saini’
1Adobe Research “IIT Bombay 3IIT Kanpur

International Conference on Management of Data
(SIGMOD 2025)
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Attention Computation
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Challenges in Re-use

* During generation use KV caches
* Why can’t we use across sessions?

“Sunlight scatters in atmosphere." “Blue light scatters the most.”  “Red light scatters the least." “Shorter wavelengths scatter more."

"Why is the sky blue?”

11 ?H
“Shorter wavelengths scatter more." Why are sunsets red:

Can these values be reused? . .
e - -  “Sunlight scatters in atmosphere."

|
|

\ : “Red light scatters the least."”
|

i ’\ 2

“Sunlight scatters in atmosphere."

“Blue light scatters the most.”

“Shorter wavelengths scatter more." “Sunlight scatters in atmosphere." “Blue light scatters the most.” | "Why is the sky blue?”
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Cache-Craft: Overview
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Determining Re-usability

What are good chunk-caches and what are bad chunk-caches?

C2

Chunk Index

0

1

2

0

Inter Attention > Intra Attention

[] quality
Heatmap for attention/'

/

1 2
Chunk Index

[ —

Inter Attention < Intra attention
1 Good quality
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Determining Re-usability

INLET 10y

INtra, .y

The online education company
has been working to enhance the
user experience to stay
competitive. The company
launched a series of updates to its
platform, focusing on improving
usability and offering new features

|

ré(‘\

Sarah, on the other hand, focused
on optimizing the backend. She

| which improved engagement,
leading to a 30% decrease in
bounce rates and bought in 2M
fresh students.

I worked to reduce loading times,

Q. Who drove significant improvements in user metrics?
Sarah improved loading times, adding 2M students.

P R

The company started with ~1M |

students as its users. John led
the team’s efforts and worked
with the designers to make the
app user-friendly, leading to a
30% increase in engagement
and bought 50% new users.

-
|

Sarah, on the other hand,
focused on optimizing the
| backend. She worked to reduce
loading times, which improved
engagement, leading to a 30%
decrease in bounce rates and

bought in 2M fresh students.

— interyiyy = INtragien
4
3 High overlap
2 = -
/

0.2 04 0.6 0.8 1.0

Q. Who drove significant improvements in user metrics?
John with 30% increase in engagement and 50% new users
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Chunk-Cache Re-use
Strategy
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Overlapping Computation and

Loading
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Cache-Craft: Results
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Cache-Craft: Results
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As load increases - Cache-Craft can provides more benefit. 30% recompute ~ 90%
quality based on Rouge-F1. Rouge-F1 > 60% is considered very good.



Future Directions

Cache-augmented generation —is an emerging paradigm.
Extend these technique to agentic frameworks - reuse intermediate reasoning steps
Caching for large-multi-modal models — that can consume both images and texts

Improve performance of on-device models — using caches across edge and cloud
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