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The Monge problem 1781
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m P, Q - probabilities on X =RY = .
m Minimize among T : R? - RY, T(X) ~ Q, if X ~ P,
2
E|[T(X) - X]".
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Couplings

m i, v probability measures on RY.
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m Coupling of (i, ) is a joint distribution with marginals p and v.

m [(p,v) - set of couplings of (i, v).
m (X, T(X)), if exists, is a coupling.
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The Monge-Kantorovich problem

m (Kantorovich '38) Minimize over Ny, )

W3(pu,v) = inf E, [||Y - X||2] .

yeN(p,v)

Linear optimization in =y over convex (s, ).

Birth of linear programming. Dantzig '49.

m Lower semicontinuity + weak compactness — Existence of optimal
coupling.

m How does the optimal coupling look like?



Brenier's Theorem

m Suppose p has density. Then unique solution to the MK problem.
m The optimal coupling is supported on a graph. Monge map.

v = (id, V¢)», = Law(X, V@(X)), X ~ p.

m ¢:RY 5 Risa convex function.
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Why the sudden interest of OT in statistics, ML, Al etc.

m OT is everywhere in stat/ML/generative Al

m More robust that Kullback-Leibler. W2(y, ) < oo even when
disjoint support

KL (Uni(2,3) | Uni(0,1)) = oo, W(Uni(2,3), Uni(0,1)) = 2.

Manifold learning

Regression with “uncoupled” data, e.g., single cell genomics
Matching problems in continuum

Computer vision and graphics

Sampling, image generation

Any problem with an underlying geometry W»(d,d,) = ||y — x|



Entropy

Monge solutions are highly degenerate; supported on a graph.
Entropy as a measure of degeneracy:

[ f(x)log f(x)dx, if v has a density f,
00

Ent(v) := {

otherwise.

7

Example: Entropy of N(0,0?) is —log o+ constant.

Kullback-Leibler/ Relative entropy:

dP
KL(P|R)= | log —dP
(P R) = [ tog adP,

if P < R and +oo, otherwise.



Entropic regularization

increasing «

m Follmer '88, Galichon and Salanié '09, Cuturi '13 ... suggested
penalizing MK OT with entropy.

EOT (p,v) = inf {/ lly — x|[> dv + eEnt(7)] -

FeM(pe,rv)

m Optimal coupling is called Schrédinger bridge at temperature .



Structure of the solution

m (Fortet '40, Riischendorf & Thomsen '93) Schradinger bridge admits
a joint density. 3 v, v : RY 5 R,

(%, y) = exp (—% ly —x|I* - %U"(X) - %V"(y) —f(x) - g(y)) :

m u®, v© - Schrodinger potentials. Unique up to constant.
m Typically not explicit. Determined by marginal constraints

/'Yf(xs_‘/)dy == e_r(x), /fyf(xjy)dx — e_g(Y)_

m One approximate the Monge map by the barycentric projection

x—=E, (Y| X =x).



Sinkhorn algorithm

m The proof by Fortet uses an iterative algorithm since called

Sinkhorn/IPF.
m e =1 p,v uniform on X = {0,1}, Y = {0, —1}. Initialize:

1 e—1/2
e—1/2 o2 |-
m Make row sums (1/2,1/2).
Tl +e /)t 1eV2(1+e1/2)71] [03 0.2
e V2 +e2)te2 |7 |04 0.1

%(6—1/2 +e2)"1e-1/2

m Make column sums (1/2,1/2).
3/14 1/3
[4/14 1/6.}

m Andsoon....



The Sinkhorn revolution

m Solving OT on finite data is an LP problem. Complexity = O(n?).

m Galichon & Salanié '09, Cuturi '13 proposed the Sinkhorn algorithm.
m Highly parallelizable on GPUs.

m (Altschuler et al. '17) Complexity= O(n?).



Entropic Regularization

Applications

Distance between
probability measures

=

(wy) ‘sh:mm‘m;z‘ Eskirno dog.
Bag-of-words models Multi-label prediction ‘Wassarstein GAN
(Rolet, Cuturi, Peyré, 2016)  (Frogner et al, 2015) {Arjovsky, Chintala, Bottou, 2017)

Uncoupled function
estimation (T,)

Domain adaptation Color transfer

{Courty, Flamary, Tuia, 2007} (Rabin, Delon, Gousseay, 2010) Trajectory inference in
scRNA-Seq
[Schiebinger, Shu,

Tabaka, et al, 2019)
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Exponential convergence for € > 0

m The matrix algorithm is known to converge exponentially fast for
fixed € > 0 under assumptions (Birkoff '57).

m Recent literature admits unbounded support with tail restrictions.
See Conforti-Durmus-Greco '23, Ghosal-Nutz '22, Eckstein '23.

m All these results give convergence rates (in TV/ Wasserstein/ KL )
bounded by

Ck!, C >0, k. €(0,1), n = iteration.

m As € | 0, constants explode badly. Say C. = exp(poly(1/¢)).

m The "“low teamperature” behavior is not understood. See
Deb-Kim-P.-Schiebinger '23. Mirror gradient flows.



Limiting results

EOT. (1) = infyenquy | [ lly = xI> dy + eBnt()]
m What happens as ¢ — 0+7 (Mikami '04, Léonard '12)

lim EOT.(u,v) = W2(u,v)
e—0+
due to Large Deviations.

m Schrodinger bridge +. — Monge map.
m (P. '19, Conforti+Tamanini '19) Rate of convergence.

! (EOT.(p,v) — W3(p1,v)) = Ent(u) + Ent(v).

lim —
e—0+ €



Schrodinger's lazy gas experiment

R = Law of reversible Brownian motion X - diffusion e.
“Condition” Xg ~ p, X1 ~ v. P - Law on path space,
Schrédinger '31, Follmer '88. Dynamic Schrédinger bridge.
The joint distribution P#(Xp, X1) is the Schrodinger bridge.
Given end points, particle follows Brownian bridge.



An extremely short review of statistical issues

m A lot of questions arise from estimation of OT and EOT from data.
m Consider W2 (fin, ) and EOT, (fin, 7n).

R 1 n R 1 n
;;,,:;_Z;(SX,., X; ~ . V,,ZEE&?, Y~
1= J=

m (Fournier & Guillin "15) Convergence of W2 (jin, 7) to W2(p,v) is
O(n=2/9). Also see Horowitz and Karandikar '94.

m (Mena and Niles-Weed '19) If u, v are sub-Gaussian, EOT, (fin, 7n)
converges at O(n~/?). Also see Strommae '22.

m CLTs are recently proved (Gonzalez-Sanz, Loubes and Niles-Weed
'22) but LDs are not known.

m For other variants, see Harchaoui-Liu-P. '19. Explicit solutions.
Similar properties.



Iterated Schrédinger bridge approximation to Wasserstein gradient flows.
Joint work with M. Agarwal, Z. Harchaoui and G. Mulcahy.

Arxiv [math.PR] 2406.10823



Application of Theorem

al. ’

Self-attention dynamics of Transformer neural architecture (Vaswani et
17, Sander et al 22, Geshkovski et al '24)

t=00

t=1

t=3
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(right)

Figure: Self attention of Sinkformer SABP'22 (left) and Transformer GLPR '24



A novel discrete scheme

Start with pg. Schrédinger Bridge ~.(po, po). Temperature ¢ 2 0.
Compute barycentric projection

B(](X) = E’Ye{ﬂo,ﬂo) [Y | X = X] XL

m Define
p1(e) = (2id — By) #p-

m le., if Xo ~ po, then X1 := (2Xp — Bo(Xp)) ~ p1-



A novel discrete scheme contd.

Now iterate. For each pi(€), compute Schrédinger bridge 7. (pk, pk)-

Compute barycentric projection

By(x) = Eq (prpe) [Y[|X=x].

m Define
pr+1(€) = (2id — By) #p«.-

le., if Xp ~ Pk, then Xia1 := (ZX;c - B_q(Xk)) ~ Pr+1-
As € — 0+, where does this sequence (py) converge?



Where does it converge?

WLhaaan

m Scale iterations by e.

m What is the limit of (’)Il/f-J’ t > 0) as € — 07



Where does it converge?

WLhaaan

m Scale iterations by e.
= What is the limit of (pf,, |, £>0) as ¢ - 07
m Theorem. (P. et al. '24) Under assumptions, heat flow starting with
Po- 1
Pt = EAp[.

m Originally observed by Sander-Ablin-Blondel-Peyré '22 in their
analysis of Transformers.



Brief idea of proof
m Fore =0,

By (polY | X =x] = x+ —(Vlogp( )-

m Hence,

1
2x — E'n.{p,p)[Y | X =x] = x— E(v log p(x).

m X1 = X — 5V log pi(Xk). Euler iterations for the ODE:

X = —Vlogp(x), pr = po#xe

m (p., t > 0) satisfies the heat equation

. 1 1
pe=5V- (peVlog pe) = 580



Brief idea of proof

m How do we approximate the Schrédinger bridge at low temperatures?
m Let (Z,, t > 0) denote the stationary Langevin diffusion with law p.

1
dZ. = 5 Vlog p(Z,)dt + dB., Zo ~ p.

m Theorem. (P. et al '24) ~.(p, p) = the law £.(p) of (2o, Z.),

H (e | £e) + H (L | 1) = o(e?).

m From the diffusion SDE

E(Z | Zo=x)~=~x+ %Vlogp(x).



Concluding remarks

m Sander et al '22 proposed changing the weight matrix to be doubly
stochastic.

As an output of the Sinkhorn algorithm.

m The main claim: dynamics of the self-attention converges to the
heat flow.

m Our theorems in P. et al '24 justify the claim in continuum.
m Convergence of the particle system remains open.

m The main challenge is to prove consistency of the estimation of score
function.



A curious example

m For each pk(¢), compute Schrodinger bridge ~. (pk, pk)-
m Compute barycentric projection

Bk(x) - E"r..(pmpk) [Y | X = X] -

m Define
pr+1(€) = (Bi) #pk-



Reversing the heat flow

m If Xy ~ py, then Xyiq1 := Br(Xk) ~ pre1-

m As ¢ — 0+, where does this sequence (px) converge?
m Backward heat equation, for small enough ¢!

m No proof. Gaussian computations in P. et al '24.



Generalizations

m We can generalize to other AC curves. General idea:

pe+V- (Vzﬂt) =0, v,=V¢,.

m Define a “surrogate density” o, o< exp (+2¢,). Assume integrable.

€
E'n{cr:,rrr) [Y [ X =x]~x+ EVL(X)-

m "Geodesic approximation" may be substituted by Sinkhorn algorithm.
m Does not require estimating the “score function”.



Thank you for your attention



