# An overview of entropy-regularized optimal transport and Schrödinger bridges

Soumik Pal University of Washington, Seattle CNI Seminar IISc Bangalore

Dec 10, 2024







## The Monge problem 1781

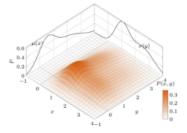


- $\blacksquare P, Q$  probabilities on  $\mathcal{X} = \mathbb{R}^d = \mathcal{Y}$ .
- Minimize among  $T : \mathbb{R}^d \to \mathbb{R}^d$ ,  $T(X) \sim Q$ , if  $X \sim P$ ,  $\mathbb{E} \|T(X) X\|^2$ .



# Couplings

- $\blacksquare \mu, \nu$  probability measures on  $\mathbb{R}^d$ .
- Coupling of  $(\mu, \nu)$  is a joint distribution with marginals  $\mu$  and  $\nu$ .



- $\Pi(\mu, \nu)$  set of couplings of  $(\mu, \nu)$ .
- $\blacksquare$  (X, T(X)), if exists, is a coupling.

Image by M. Cuturi

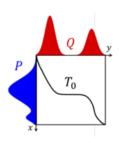
## The Monge-Kantorovich problem

■ (Kantorovich '38) Minimize over  $\Pi(\mu, \nu)$ 

$$\mathbb{W}_{2}^{2}(\mu,\nu):=\inf_{\gamma\in\Pi(\mu,\nu)}\mathbb{E}_{\gamma}\left[\left\Vert Y-X\right\Vert ^{2}\right].$$

- Linear optimization in  $\gamma$  over convex  $\Pi(\mu, \nu)$ .
- Birth of linear programming. Dantzig '49.
- Lower semicontinuity + weak compactness → Existence of optimal coupling.
- How does the optimal coupling look like?

#### Brenier's Theorem



- Suppose  $\mu$  has density. Then unique solution to the MK problem.
- The optimal coupling is supported on a graph. **Monge map**.

$$\gamma = (\mathrm{id}, \nabla \phi)_{\#\mu} = \mathrm{Law}(X, \nabla \phi(X)), \quad X \sim \mu.$$

 $\phi: \mathbb{R}^d \to \mathbb{R}$  is a convex function.



# Why the sudden interest of OT in statistics, ML, AI etc. ?

- OT is everywhere in stat/ML/generative AI
- More robust that Kullback-Leibler.  $\mathbb{W}_2^2(\mu,\nu)<\infty$  even when disjoint support

$$\mathrm{KL}\left(\textit{Uni}(2,3) \mid \textit{Uni}(0,1)\right) = \infty, \ \mathbb{W}_2(\textit{Uni}(2,3), \textit{Uni}(0,1)) = 2.$$

- Manifold learning
- Regression with "uncoupled" data, e.g., single cell genomics
- Matching problems in continuum
- Computer vision and graphics
- Sampling, image generation
- Any problem with an underlying geometry  $\mathbb{W}_2(\delta_x, \delta_y) = \|y x\|$ .

#### Entropy

- Monge solutions are highly degenerate; supported on a graph.
- Entropy as a measure of degeneracy:

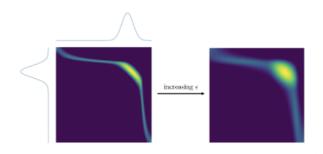
$$\operatorname{Ent}(\nu) := \begin{cases} \int f(x) \log f(x) dx, & \text{if } \nu \text{ has a density } f, \\ \infty, & \text{otherwise.} \end{cases}$$

- Example: Entropy of  $N(0, \sigma^2)$  is  $-\log \sigma + \text{constant}$ .
- Kullback-Leibler/ Relative entropy:

$$KL(P \mid R) = \int \log \frac{dP}{dR} dP,$$

if  $P \ll R$  and  $+\infty$ , otherwise.

#### Entropic regularization



■ Föllmer '88, Galichon and Salanié '09, Cuturi '13 ... suggested penalizing MK OT with entropy.

$$EOT_{\epsilon}(\mu, \nu) = \inf_{\gamma \in \Pi(\mu, \nu)} \left[ \int \|y - x\|^2 d\gamma + \epsilon \operatorname{Ent}(\gamma) \right].$$

 $lue{}$  Optimal coupling is called Schrödinger bridge at temperature  $\epsilon$ .



#### Structure of the solution

■ (Fortet '40, Rüschendorf & Thomsen '93) Schrödinger bridge admits a joint density.  $\exists u^{\epsilon}, v^{\epsilon} : \mathbb{R}^{d} \to \mathbb{R}$ ,

$$\gamma^{\epsilon}(x,y) = \exp\left(-\frac{1}{2\epsilon} \|y - x\|^2 - \frac{1}{\epsilon} u^{\epsilon}(x) - \frac{1}{\epsilon} v^{\epsilon}(y) - f(x) - g(y)\right).$$

- $\mathbf{u}^{\epsilon}$ ,  $\mathbf{v}^{\epsilon}$  Schrödinger potentials. Unique up to constant.
- Typically not explicit. Determined by marginal constraints

$$\int \gamma^{\epsilon}(x,y)dy = e^{-f(x)}, \quad \int \gamma^{\epsilon}(x,y)dx = e^{-g(y)}.$$

One approximate the Monge map by the barycentric projection

$$x \mapsto \mathrm{E}_{\gamma_{\varepsilon}}(Y \mid X = x).$$



# Sinkhorn algorithm

- The proof by Fortet uses an iterative algorithm since called Sinkhorn/IPF.
- $\bullet$   $\epsilon = 1$ .  $\mu, \nu$  uniform on  $\mathcal{X} = \{0, 1\}, \ \mathcal{Y} = \{0, -1\}$ . Initialize:

$$\begin{bmatrix} 1 & e^{-1/2} \\ e^{-1/2} & e^{-2} \end{bmatrix}.$$

■ Make row sums (1/2, 1/2).

$$\begin{bmatrix} \frac{1}{2}(1+e^{-1/2})^{-1} & \frac{1}{2}e^{-1/2}(1+e^{-1/2})^{-1} \\ \frac{1}{2}(e^{-1/2}+e^{-2})^{-1}e^{-1/2} & \frac{1}{2}(e^{-1/2}+e^{-2})^{-1}e^{-2}. \end{bmatrix} \approx \begin{bmatrix} 0.3 & 0.2 \\ 0.4 & 0.1 \end{bmatrix}.$$

■ Make column sums (1/2, 1/2).

$$\begin{bmatrix} 3/14 & 1/3 \\ 4/14 & 1/6. \end{bmatrix}$$

And so on . . . .



#### The Sinkhorn revolution

- Solving OT on finite data is an LP problem. Complexity =  $\tilde{O}(n^3)$ .
- Galichon & Salanié '09, Cuturi '13 proposed the Sinkhorn algorithm.
- Highly parallelizable on GPUs.
- (Altschuler et al. '17) Complexity=  $\tilde{O}(n^2)$ .

#### Entropic Regularization

#### **Applications**

Distance between probability measures  $(W_2)$ 



Bag-of-words models (Rolet, Cuturi, Pevré, 2016)



Siberian husky Eskimo dog Multi-label prediction (Frogner et al., 2015)



Wasserstein GAN (Ariovsky, Chintala, Bottou, 2017)

Uncoupled function estimation  $(T_0)$ 



Domain adaptation (Courty, Flamary, Tuia, 2017)



Color transfer (Rabin, Delon, Gousseau, 2010)



Trajectory inference in scRNA-Seq (Schiebinger, Shu, Tabaka, et al., 2019)

Image by J.-C. Hütter

## Exponential convergence for $\epsilon > 0$

- The matrix algorithm is known to converge exponentially fast for fixed  $\epsilon > 0$  under assumptions (Birkoff '57).
- Recent literature admits unbounded support with tail restrictions.
   See Conforti-Durmus-Greco '23, Ghosal-Nutz '22, Eckstein '23.
- All these results give convergence rates (in TV/ Wasserstein/ KL ) bounded by

$$C_{\epsilon}\kappa_{\epsilon}^{n}$$
,  $C_{\epsilon} > 0$ ,  $\kappa_{\epsilon} \in (0,1)$ ,  $n = \text{iteration}$ .

- As  $\epsilon \downarrow 0$ , constants explode **badly**. Say  $C_{\epsilon} = \exp(\text{poly}(1/\epsilon))$ .
- The "low teamperature" behavior is not understood. See Deb-Kim-P.-Schiebinger '23. Mirror gradient flows.

## Limiting results

$$EOT_{\epsilon}(\mu, \nu) = \inf_{\gamma \in \Pi(\mu, \nu)} \left[ \int \|y - x\|^2 \, d\gamma + \epsilon \text{Ent}(\gamma) \right].$$

■ What happens as  $\epsilon \to 0+$ ? (Mikami '04, Léonard '12)

$$\lim_{\epsilon \to 0+} EOT_{\epsilon}(\mu, \nu) = W_2^2(\mu, \nu)$$

due to Large Deviations.

- Schrödinger bridge  $\gamma_{\epsilon}$  → Monge map.
- (P. '19, Conforti+Tamanini '19) Rate of convergence.

$$\lim_{\epsilon \to 0+} \frac{1}{\epsilon} \left( EOT_{\epsilon}(\mu, \nu) - W_2^2(\mu, \nu) \right) = \operatorname{Ent}(\mu) + \operatorname{Ent}(\nu).$$



## Schrödinger's lazy gas experiment

- $\blacksquare$  R = Law of reversible Brownian motion X diffusion  $\epsilon$ .
- "Condition"  $X_0 \sim \mu$ ,  $X_1 \sim \nu$ . P Law on path space,
- Schrödinger '31, Föllmer '88. Dynamic Schrödinger bridge.
- The joint distribution  $P\#(X_0, X_1)$  is the Schrödinger bridge.
- Given end points, particle follows Brownian bridge.

#### An extremely short review of statistical issues

- A lot of questions arise from estimation of OT and EOT from data.
- Consider  $W_2^2(\hat{\mu}_n, \hat{\nu}_n)$  and  $EOT_{\epsilon}(\hat{\mu}_n, \hat{\nu}_n)$ .

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}, \quad X_i \sim \mu. \quad \hat{\nu}_n = \frac{1}{n} \sum_{j=1}^n \delta_{Y_j}, \quad Y_j \sim \nu.$$

- (Fournier & Guillin '15) Convergence of  $W_2^2(\hat{\mu}_n, \hat{\nu}_n)$  to  $W_2^2(\mu, \nu)$  is  $O(n^{-2/d})$ . Also see Horowitz and Karandikar '94.
- (Mena and Niles-Weed '19) If  $\mu, \nu$  are sub-Gaussian,  $EOT_{\epsilon}(\hat{\mu}_n, \hat{\nu}_n)$  converges at  $O(n^{-1/2})$ . Also see Strommae '22.
- CLTs are recently proved (Gonzalez-Sanz, Loubes and Niles-Weed
   '22) but LDs are not known.
- For other variants, see Harchaoui-Liu-P. '19. Explicit solutions. Similar properties.



Iterated Schrödinger bridge approximation to Wasserstein gradient flows. Joint work with M. Agarwal, Z. Harchaoui and G. Mulcahy.

Arxiv [math.PR] 2406.10823

## Application of Theorem

Self-attention dynamics of Transformer neural architecture (Vaswani et al. '17, Sander et al '22, Geshkovski et al '24)

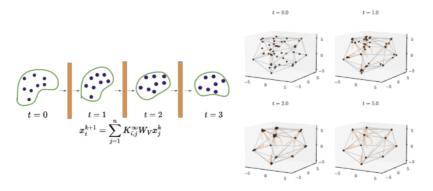


Figure: Self attention of Sinkformer SABP'22 (left) and Transformer GLPR '24 (right)

#### A novel discrete scheme

- Start with  $\rho_0$ . Schrödinger Bridge  $\gamma_{\epsilon}(\rho_0, \rho_0)$ . Temperature  $\epsilon \approx 0$ .
- Compute barycentric projection

$$\mathcal{B}_0(x) = \mathrm{E}_{\gamma_{\epsilon}(\rho_0, \rho_0)}[Y \mid X = x] \approx x.$$

Define

$$\rho_1(\epsilon) = (2id - \mathcal{B}_0) \# \rho.$$

■ I.e., if  $X_0 \sim \rho_0$ , then  $X_1 := (2X_0 - \mathcal{B}_0(X_0)) \sim \rho_1$ .

#### A novel discrete scheme contd.

- Now iterate. For each  $\rho_k(\epsilon)$ , compute Schrödinger bridge  $\gamma_{\epsilon}(\rho_k, \rho_k)$ .
- Compute barycentric projection

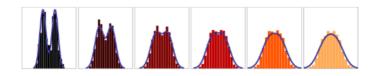
$$\mathcal{B}_k(x) = \mathbb{E}_{\gamma_{\epsilon}(\rho_k,\rho_k)}[Y \mid X = x].$$

Define

$$\rho_{k+1}(\epsilon) = (2\mathrm{id} - \mathcal{B}_k) \# \rho_k.$$

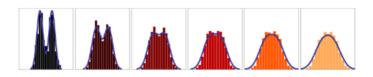
- I.e., if  $X_k \sim \rho_k$ , then  $X_{k+1} := (2X_k \mathcal{B}_k(X_k)) \sim \rho_{k+1}$ .
- As  $\epsilon \to 0+$ , where does this sequence  $(\rho_k)$  converge?

# Where does it converge?



- Scale iterations by  $\epsilon$ .
- lacksquare What is the limit of  $\left( 
  ho_{\lfloor t/\epsilon \rfloor}^{\epsilon}, \ t \geq 0 \right)$  as  $\epsilon o 0$ ?

# Where does it converge?



- Scale iterations by  $\epsilon$ .
- $\blacksquare \ \ \text{What is the limit of} \ \left( \rho^{\epsilon}_{\lfloor t/\epsilon \rfloor}, \ t \geq 0 \right) \ \text{as} \ \epsilon \to 0?$
- Theorem. (P. et al. '24) Under assumptions, heat flow starting with  $\rho_0$ .

$$\dot{\rho}_t = \frac{1}{2} \Delta \rho_t.$$

 Originally observed by Sander-Ablin-Blondel-Peyré '22 in their analysis of Transformers.

# Brief idea of proof

For  $\epsilon \approx 0$ ,

$$\mathrm{E}_{\gamma_{\epsilon}(\rho,\rho)}[Y\mid X=x] \approx x + \frac{1}{2}\epsilon\nabla\log\rho(x).$$

Hence,

$$2x - \mathbb{E}_{\gamma_{\epsilon}(\rho,\rho)}[Y \mid X = x] \approx x - \frac{1}{2} \epsilon \nabla \log \rho(x).$$

■  $X_{k+1} \approx X_k - \frac{\epsilon}{2} \nabla \log \rho_k(X_k)$ . Euler iterations for the ODE:

$$\dot{x}_t = -\nabla \log \rho_t(x), \quad \rho_t = \rho_0 \# x_t.$$

 $\bullet$  ( $\rho_t$ ,  $t \ge 0$ ) satisfies the heat equation

$$\dot{
ho}_t = \frac{1}{2} 
abla \cdot (
ho_t 
abla \log 
ho_t) = \frac{1}{2} \Delta 
ho_t.$$

# Brief idea of proof

- How do we approximate the Schrödinger bridge at low temperatures?
- Let  $(Z_t, t \ge 0)$  denote the stationary Langevin diffusion with law  $\rho$ .

$$dZ_t = \frac{1}{2}\nabla \log \rho(Z_t)dt + dB_t, \ Z_0 \sim \rho.$$

■ Theorem. (P. et al '24)  $\gamma_{\epsilon}(\rho,\rho) \approx$  the law  $\ell_{\epsilon}(\rho)$  of  $(Z_0,Z_{\epsilon})$ ,

$$H(\gamma_{\epsilon} \mid \ell_{\epsilon}) + H(\ell_{\epsilon} \mid \gamma_{\epsilon}) = o(\epsilon^{2}).$$

From the diffusion SDE

$$\mathrm{E}\left(Z_{\epsilon}\mid Z_{0}=x\right)\approx x+rac{\epsilon}{2}\nabla\log\rho(x).$$



## Concluding remarks

- Sander et al '22 proposed changing the weight matrix to be doubly stochastic.
- As an output of the Sinkhorn algorithm.
- The main claim: dynamics of the self-attention converges to the heat flow.
- Our theorems in P. et al '24 justify the claim in continuum.
- Convergence of the particle system remains open.
- The main challenge is to prove consistency of the estimation of score function.

# A curious example

- For each  $\rho_k(\epsilon)$ , compute Schrödinger bridge  $\gamma_{\epsilon}(\rho_k, \rho_k)$ .
- Compute barycentric projection

$$\mathcal{B}_k(x) = \mathrm{E}_{\gamma_{\epsilon}(\rho_k, \rho_k)}[Y \mid X = x].$$

Define

$$\rho_{k+1}(\epsilon) = (\mathcal{B}_k) \# \rho_k.$$

## Reversing the heat flow

- If  $X_k \sim \rho_k$ , then  $X_{k+1} := \mathcal{B}_k(X_k) \sim \rho_{k+1}$ .
- As  $\epsilon \to 0+$ , where does this sequence  $(\rho_k)$  converge?
- Backward heat equation, for small enough  $\epsilon$ !
- No proof. Gaussian computations in P. et al '24.

#### Generalizations

■ We can generalize to other AC curves. General idea:

$$\dot{\rho}_t + \nabla \cdot (\mathbf{v}_t \rho_t) = 0, \quad \mathbf{v}_t = \nabla \phi_t.$$

■ Define a "surrogate density"  $\sigma_t \propto \exp(\pm 2\phi_t)$ . Assume integrable.

$$\mathrm{E}_{\gamma_{\epsilon}(\sigma_{t},\sigma_{t})}[Y\mid X=x] \approx x + \frac{\epsilon}{2}v_{t}(x).$$

- "Geodesic approximation" may be substituted by Sinkhorn algorithm.
- Does not require estimating the "score function".

Thank you for your attention